Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,515)

Search Parameters:
Keywords = Ti-Al4-V6 alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3243 KiB  
Article
Optimization of Laser Based-Powder Bed Fusion Parameters for Controlled Porosity in Titanium Alloy Components
by Emanuele Vaglio, Federico Scalzo, Marco Sortino, Giovanni Totis, Roberto Cremonese, Massimiliano Boccia and Maila Danielis
Materials 2024, 17(22), 5572; https://doi.org/10.3390/ma17225572 - 14 Nov 2024
Abstract
Laser based-powder bed fusion (LB-PBF) enables fast, efficient, and cost-effective production of high-performing products. While advanced functionalities are often derived from geometric complexity, the capability to tailor material properties also offers significant opportunities for technical innovation across many fields. This study explores the [...] Read more.
Laser based-powder bed fusion (LB-PBF) enables fast, efficient, and cost-effective production of high-performing products. While advanced functionalities are often derived from geometric complexity, the capability to tailor material properties also offers significant opportunities for technical innovation across many fields. This study explores the optimization of the LB-PBF process parameters for producing Ti6Al4V titanium alloy parts with controlled porosity. To this end, cuboid and lamellar samples were fabricated by systematically varying laser power, hatch distance, and layer thickness according to a full factorial Design of Experiments, and the resulting specimens were thoroughly characterized by analyzing envelope porosity, surface roughness and waviness, surface morphology, and surface area. A selection of specimens was further examined using small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) to investigate the atomic structure and nanometric porosity of the material. The results demonstrated the possibility to finely control the porosity and surface characteristics of Ti6Al4V within specific LB-PBF process ranges. The pores were found to be mostly closed even for thin walls, while the surface roughness was recognized as the primary factor impacting the surface area. The lamellar samples obtained by exposing single scan tracks showed nearly an order-of-magnitude increase in both surface area and pore volume, thereby laying the groundwork for the production of parts with optimized porosity. Full article
(This article belongs to the Special Issue The Additive Manufacturing of Metallic Alloys)
Show Figures

Figure 1

26 pages, 1811 KiB  
Article
Machining Characteristics During Short Hole Drilling of Titanium Alloy Ti10V2Fe3Al
by Michael Storchak
Materials 2024, 17(22), 5569; https://doi.org/10.3390/ma17225569 - 14 Nov 2024
Abstract
The single-phase titanium ß-alloy Ti10V2Fe3Al (Ti-1023) has been widely used in the aerospace industry due to its unique mechanical properties, which include high fatigue strength and fracture toughness, as well as high corrosion resistance. On the other hand, these unique properties significantly hinder [...] Read more.
The single-phase titanium ß-alloy Ti10V2Fe3Al (Ti-1023) has been widely used in the aerospace industry due to its unique mechanical properties, which include high fatigue strength and fracture toughness, as well as high corrosion resistance. On the other hand, these unique properties significantly hinder the cutting processes of this material, especially those characterized by a closed machining process area, such as drilling. This paper is devoted to the study of the short hole drilling process of the above-mentioned titanium alloy using direct measurements and numerical modeling. Measurements of the cutting force components in the drilling process and determination of the resultant cutting force and total cutting power were performed. The macro- and microstructure of chips generated during drilling were analyzed, and the dependence of the chip compression ratio and the distance between neighboring segments of serrated chips on cutting speed and drill feed was determined. Experimental studies were supplemented by determining the temperature on the lateral clearance face of the drill’s outer cutting insert in dependence on the cutting modes. For the modeling of the drilling process using the finite element model, the parameters of the triad of component submodels of the numerical model were determined: the machined material model, the model of contact interaction between the tool and the machined material, and the fracture model of the machined material. The determination of these parameters was performed through the DOE sensitivity analysis. The target values for performing this analysis were the total cutting power and the distance between neighboring chip segments. The maximum deviation between the simulated and experimentally determined values of the resulting cutting force is no more than 25%. At the same time, the maximum deviation between the measured values of the temperature on the lateral clearance face of the drill’s outer cutting insert and the corresponding simulated values is 26.1%. Full article
12 pages, 3837 KiB  
Article
Investigation into the Suitability of AA 6061 and Ti6Al4V as Substitutes for SS 316L Use in the Paraplegic Swivel Mechanism
by Oluwaseun K. Ajayi, Babafemi O. Malomo, Shengzhi Du, Hakeem A. Owolabi and Olusola A. Oladosu
Appl. Sci. 2024, 14(22), 10462; https://doi.org/10.3390/app142210462 - 13 Nov 2024
Viewed by 342
Abstract
SS 316L, a low-carbon 316 Stainless Steel, has been used to manufacture swivel mechanisms for paraplegic patients, but its weight is relatively high compared to a few materials in its range of properties. Aluminum alloy 6061 and Titanium alloy (Ti6Al4V) offer lightweight and [...] Read more.
SS 316L, a low-carbon 316 Stainless Steel, has been used to manufacture swivel mechanisms for paraplegic patients, but its weight is relatively high compared to a few materials in its range of properties. Aluminum alloy 6061 and Titanium alloy (Ti6Al4V) offer lightweight and incredible strength-to-weight ratio, hence their use for medical, aerospace, and automotive applications. This study, therefore, seeks a replacement for SS 316L. A 3D model of a swivel mechanism was developed to compare the performance of the swivel mechanism made with SS 316L, AA 6061, and Ti6Al4V. The kinematic analysis of the mechanism based on a range of weights: 1kN, 1.1 kN, 1.2 kN, 1.3 kN, 1.4 kN, and 1.5 kN was carried out to generate the inputs for the simulation. The 3D model was made with SolidWorks, and the results of the kinematic analysis were used to define the simulation parameters for the mechanism. Two scenarios generated depicted the full collapse of the mechanism and the full extension. The results showed that AA 6061 and Ti6Al4V outperformed SS 316L with higher yield strength and factor of safety. Therefore, swivel plates made with AA 6061 and Ti6Al4V have higher yield strength than those made with SS 316L, adding to the advantage that they have a higher strength-to-weight ratio. From this analysis and known knowledge of the cost of these materials, the optimal replacement considering cost with yield strength is AA 6061. However, Ti6Al4V is a better alternative for the strength-to-weight ratio for SS 316L. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

10 pages, 2415 KiB  
Article
Neutrophils Respond Selectively to Physical Cues: Roughness Modulates Its Granule Release, and NETosis
by Gayathiri Elangovan, Daniel J. Fernandes, Andrew Cameron, Souptik Basu, Joao Martins De Mello Neto, Anna Peishan Jiang, Peter Reher, Stephen Hamlet and Carlos Marcelo S. Figueredo
J. Funct. Biomater. 2024, 15(11), 342; https://doi.org/10.3390/jfb15110342 - 13 Nov 2024
Viewed by 224
Abstract
Our study examined how different titanium alloy Ti6Al4V (Ti64) and zirconia (ZrO2) surfaces, ranging from rough to very smooth, affect the expression of elastase (NE), matrix metalloproteinase (MMP)-8, MMP-9, and extracellular traps (NETs) by neutrophils. Discs of Ti64 and ZrO2 [...] Read more.
Our study examined how different titanium alloy Ti6Al4V (Ti64) and zirconia (ZrO2) surfaces, ranging from rough to very smooth, affect the expression of elastase (NE), matrix metalloproteinase (MMP)-8, MMP-9, and extracellular traps (NETs) by neutrophils. Discs of Ti64 and ZrO2, 10 mm in diameter and 1.5 mm thick, were created using diamond-impregnated polishing burs and paste to produce rough (Ra > 3 µm), smooth (Ra ≥ 1 to 1.5 µm), and very smooth (Ra < 0.1 µm) surfaces. Neutrophils from Wistar rats were cultured on these surfaces, and the culture supernatants were then examined for NE, MMP-8, and MMP-9 using ELISA. At the same time, NET formation was demonstrated immunohistochemically by staining neutrophils with CD16b and DNA with DAPI. Overall, the expressions of NE and MMP-8 were significantly higher from neutrophil culture on Ti64 and ZrO2 rough surfaces compared to the very smooth surface (R > S > VS) after 2 h and 4 h of culture. The expression of MMP-9 also increased with culture time; however, no significant surface effects on expression were observed. Similarly, rough Ti64 and ZrO2 surfaces (R & S) also showed significantly larger NET formation compared to the very smooth surface (VS) after 4 h and 8 h cultures. Our findings suggest that increasing surface roughness on Ti64 and ZrO2 triggers higher NE, MMP-8, and NET formation secretion. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

25 pages, 6717 KiB  
Article
Gradient Titanium Alloy with Bioactive Hydroxyapatite Porous Structures for Potential Biomedical Applications
by Julia Sadlik, Edyta Kosińska, Magdalena Bańkosz, Agnieszka Tomala, Grzegorz Bruzda, Josef Jampilek and Agnieszka Sobczak-Kupiec
Materials 2024, 17(22), 5511; https://doi.org/10.3390/ma17225511 - 12 Nov 2024
Viewed by 400
Abstract
Hard bone disease is a clinical problem affecting more than 20 million people annually worldwide, with significant health, social, and economic consequences. For successful integration of any implant, the key aspects are bone regeneration, osseointegration at the bone–implant interface, and the mitigation of [...] Read more.
Hard bone disease is a clinical problem affecting more than 20 million people annually worldwide, with significant health, social, and economic consequences. For successful integration of any implant, the key aspects are bone regeneration, osseointegration at the bone–implant interface, and the mitigation of inflammation. The purpose of this research work is to demonstrate an innovative material system and method of biomaterial preparation for regenerative medicine. A number of studies were carried out for both hydroxyapatite powder and composites. Wet-precipitated synthesized hydroxyapatite was compared to commercial products through accurate physicochemical studies that confirmed the high purity of the obtained calcium phosphate without any impurities. Ti/HAp composites before and after sintering were compared by XRF, XRD, SEM, EDS, PSA, and roughness measurements, and the Vickers microhardness was analyzed. The fabrication of the biomaterial was based on a bottom-up approach, which involved fabricating HAp particles with specific morphologies using powder metallurgy (PM) to sinter Ti composites. The resulting gradient structures consisting of two compositions (5%HAp%5CMC and 10%HAp10%CMC) mimic the structure of bone tissue. The created pores of 10–100 µm in size will allow bone cells to penetrate the implant and regenerate bone. In turn, the introduction of hydroxyapatite into the material reduces the microhardness of the composite and introduces properties such as bioactivity. The developed composite material contains a combination of Ti alloy and hydroxyapatite (HAp), creating an excellent biomaterial that promotes bone growth and eliminates the problem of implant loosening by integrating it into the bone. This material requires further research, especially biological research. However, it shows promising potential for further experiments. Full article
Show Figures

Figure 1

29 pages, 7257 KiB  
Article
A New Multi-Axial Functional Stress Analysis Assessing the Longevity of a Ti-6Al-4V Dental Implant Abutment Screw
by Ghada H. Naguib, Ahmed O. Abougazia, Lulwa E. Al-Turki, Hisham A. Mously, Abou Bakr Hossam Hashem, Abdulghani I. Mira, Osama A. Qutub, Abdulelah M. Binmahfooz, Afaf A. Almabadi and Mohamed T. Hamed
Biomimetics 2024, 9(11), 689; https://doi.org/10.3390/biomimetics9110689 - 12 Nov 2024
Viewed by 379
Abstract
This study investigates the impact of tightening torque (preload) and the friction coefficient on stress generation and fatigue resistance of a Ti-6Al-4V abutment screw with an internal hexagonal connection under dynamic multi-axial masticatory loads in high-cycle fatigue (HCF) conditions. A three-dimensional model of [...] Read more.
This study investigates the impact of tightening torque (preload) and the friction coefficient on stress generation and fatigue resistance of a Ti-6Al-4V abutment screw with an internal hexagonal connection under dynamic multi-axial masticatory loads in high-cycle fatigue (HCF) conditions. A three-dimensional model of the implant–abutment assembly was simulated using ANSYS Workbench 16.2 computer aided engineering software with chewing forces ranging from 300 N to 1000 N, evaluated over 1.35 × 107 cycles, simulating 15 years of service. Results indicate that the healthy range of normal to maximal mastication forces (300–550 N) preserved the screw’s structural integrity, while higher loads (≥800 N) exceeded the Ti-6Al-4V alloy’s yield strength, indicating a risk of plastic deformation under extreme conditions. Stress peaked near the end of the occluding phase (206.5 ms), marking a critical temporal point for fatigue accumulation. Optimizing the friction coefficient (0.5 µ) and preload management improved stress distribution, minimized fatigue damage, and ensured joint stability. Masticatory forces up to 550 N were well within the abutment screw’s capacity to sustain extended service life and maintain its elastic behavior. Full article
Show Figures

Figure 1

17 pages, 7142 KiB  
Article
Wear and Corrosion Resistance of ZrN Coatings Deposited on Ti6Al4V Alloy for Biomedical Applications
by Stanislava Rabadzhiyska, Dimitar Dechev, Nikolay Ivanov, Tatyana Ivanova, Velichka Strijkova, Vesela Katrova, Velko Rupetsov, Nina Dimcheva and Stefan Valkov
Coatings 2024, 14(11), 1434; https://doi.org/10.3390/coatings14111434 - 11 Nov 2024
Viewed by 378
Abstract
Zirconium nitrides films were synthesized on Ti6Al4V substrates at a bias voltage of −50 V, −80 V, −110 V and −150 V by the direct current (DC) reactive magnetron sputtering technique. The as-deposited coatings were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) [...] Read more.
Zirconium nitrides films were synthesized on Ti6Al4V substrates at a bias voltage of −50 V, −80 V, −110 V and −150 V by the direct current (DC) reactive magnetron sputtering technique. The as-deposited coatings were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The wear and corrosion resistance of the obtained ZrN coatings were evaluated to determine the possibility for their implementation in modern biomedical applications. It was found that the intensity of the diffraction peak of the Zr-N phase corresponding to the (1 1 1) crystallographic plane rose as the bias voltage increased, while the ZrN coatings’ thickness reduced from 1.21 µm to 250 nm. The ZrN films’ surface roughness rose up to 75 nm at −150 V. Wear tests showed an increase in the wear rate and wear intensity as the bias voltage increased. Corrosion studies of the ZrN coatings were carried out by three electrochemical methods: open circuit potential (OCP), cyclic voltammetry (polarization measurements) and electrochemical impedance spectroscopy (EIS). All electrochemical measurements confirmed that the highest protection to corrosion is the ZrN coating, which was deposited on the Ti6Al4V substrate at a bias voltage of −150 V. Full article
(This article belongs to the Special Issue Anti-corrosion Coatings of Metals and Alloys—New Perspectives)
Show Figures

Figure 1

28 pages, 2305 KiB  
Review
Insights into Machining Techniques for Additively Manufactured Ti6Al4V Alloy: A Comprehensive Review
by Abdulkadir Mohammed Sambo, Muhammad Younas and James Njuguna
Appl. Sci. 2024, 14(22), 10340; https://doi.org/10.3390/app142210340 - 11 Nov 2024
Viewed by 511
Abstract
Investigation into the post-processing machinability of Ti6Al4V alloy is increasingly crucial in the manufacturing industry, particularly in the machining of additively manufactured (AM) Ti6Al4V alloy to ensure effective machining parameters. This review article summarizes various AM techniques and machining processes for Ti6Al4V alloy. [...] Read more.
Investigation into the post-processing machinability of Ti6Al4V alloy is increasingly crucial in the manufacturing industry, particularly in the machining of additively manufactured (AM) Ti6Al4V alloy to ensure effective machining parameters. This review article summarizes various AM techniques and machining processes for Ti6Al4V alloy. It focuses on powder-based fusion AM techniques such as electron beam melting (EBM), selected laser melting (SLM), and direct metal deposition (DMD). The review addresses key aspects of machining Ti6Al4V alloy, including machining parameters, residual stress effects, hardness, microstructural changes, and surface defects introduced during the additive manufacturing (AM) process. Additionally, it covers the qualification process for machined components and the optimization of cutting parameters. It also examines the application of finite element analysis (FEA) in post-processing methods for Ti6Al4V alloy. The review reveals a scarcity of articles addressing the significance of post-processing methods and the qualification process for machined parts of Ti6Al4V alloy fabricated using such AM techniques. Consequently, this article focuses on the AM-based techniques for Ti6Al4V alloy parts to evaluate and understand the performance of the Johnson–Cook (J–C) model in predicting flow stress and cutting forces during machining of the alloy. Full article
Show Figures

Figure 1

13 pages, 13688 KiB  
Article
Weakening the Anisotropic Property and Refining Prior-β Grains via Hammer Peening Treatment During Wire Arc Additively Manufacturing of Ti-6Al-4V
by Guo Xian, Jingbang Pan, Junghoon Lee and Namhyun Kang
Metals 2024, 14(11), 1261; https://doi.org/10.3390/met14111261 - 7 Nov 2024
Viewed by 331
Abstract
In Wire Arc Additive Manufacturing (WAAM), solidification grain morphology in titanium alloy tends to be columnar rather than equiaxed due to heat dissipation and repeated thermal cycles. This study demonstrates improved microstructure and anisotropic properties in Ti-6Al-4V specimens fabricated by WAAM and treated [...] Read more.
In Wire Arc Additive Manufacturing (WAAM), solidification grain morphology in titanium alloy tends to be columnar rather than equiaxed due to heat dissipation and repeated thermal cycles. This study demonstrates improved microstructure and anisotropic properties in Ti-6Al-4V specimens fabricated by WAAM and treated with hammer peening, resulting in a transition from columnar grains to fine equiaxed grains (~300 μm) in both single-pass and four-bead WAAM walls. The anisotropic elongation decreased by approximately 7%, and tensile strength along the building direction decreased by ~50 MPa for a single-pass wall. Additionally, small and large equiaxed prior-β grains appeared alternately due to the combined effect of hammer peening and welding deposition. The region can be categorized into three parts (MAX, MED, MIN) based on the degree of plastic strain characterized by KAM mapping of EBSD data. In current WAAM parameters, the ratio of strong (~1.5 mm) deformation field (MAX) is about 50% within one deposition layer (MAX+MIN), suggesting a new approach for producing equiaxed prior-β grains. We expect that this method will be applicable for transforming the prior-β grains from columnar to equiaxed. Furthermore, the distribution of plastic strain and phase transformation mechanisms offers innovative approaches to optimize the hammer peening process, with potential applications to optimize the process for more complex components in the aerospace and power plant industries. Full article
(This article belongs to the Special Issue Advance in Wire-Based Additive Manufacturing of Metal Materials)
Show Figures

Figure 1

20 pages, 4836 KiB  
Article
Simple Scaling as a Tool to Help Assess the Closure-Free da/dN Versus ΔKeff Curve in a Range of Materials
by Rhys Jones, Andrew S. M. Ang and Daren Peng
Materials 2024, 17(22), 5423; https://doi.org/10.3390/ma17225423 - 6 Nov 2024
Viewed by 350
Abstract
Recent studies have proposed a simple formula, which is based on Elber’s original approach to account for R-ratio effects, for determining the crack closure-free ΔKeff versus da/dN curve from the measured R-ratio-dependent ΔK versus da/ [...] Read more.
Recent studies have proposed a simple formula, which is based on Elber’s original approach to account for R-ratio effects, for determining the crack closure-free ΔKeff versus da/dN curve from the measured R-ratio-dependent ΔK versus da/dN curves. This approach, which is termed “Simple Scaling,” has been shown to collapse the various R-ratio-dependent curves onto a single curve. Indeed, this approach has been verified for a number of tests on metals, polymers, and a medium-entropy alloy. However, it has not yet been used to help assess/determine the closure-free ΔKeff versus da/dN curve. The current paper addresses this shortcoming and illustrates how to use this methodology to assess the ΔKeff versus da/dN curves given in the open literature for tests on a number of steels, aluminum alloys, STOA Ti-6Al-4V, a magnesium alloy, and Rene 95. As such, it would appear to be a useful tool for assessing fatigue crack growth. Full article
Show Figures

Figure 1

17 pages, 8436 KiB  
Article
Impact of Combined Zr, Ti, and V Additions on the Microstructure, Mechanical Properties, and Thermomechanical Fatigue Behavior of Al-Cu Cast Alloys
by Peng Hu, Kun Liu, Lei Pan and X.-Grant Chen
J. Manuf. Mater. Process. 2024, 8(6), 250; https://doi.org/10.3390/jmmp8060250 - 6 Nov 2024
Viewed by 345
Abstract
The effects of minor additions of the transition elements Zr, Ti, and V on the microstructure, mechanical properties, and out-of-phase thermomechanical fatigue behavior of 224 Al-Cu alloys were investigated. The results revealed that the introduction of the transition elements led to a refined [...] Read more.
The effects of minor additions of the transition elements Zr, Ti, and V on the microstructure, mechanical properties, and out-of-phase thermomechanical fatigue behavior of 224 Al-Cu alloys were investigated. The results revealed that the introduction of the transition elements led to a refined grain size and a finer and much denser distribution of θ″/θ′ precipitates compared to that of the base alloy, which enhanced the tensile strength but reduced the elongation at both room temperature and 300 °C. Constitutive analyses based on theoretical strength calculations indicated that precipitation strengthening was the primary mechanism contributing to the strength of both tested alloys at room temperature and 300 °C. The out-of-phase thermomechanical fatigue test results showed that the addition of transition elements caused a slight decrease in the fatigue lifetime, which was mainly attributed to the reduced ductility and higher peak tensile stress at low temperatures. During the fatigue process, the transition element-added alloy exhibited a lower coarsening ratio, indicating higher thermal stability, which mitigated the negative impact of the reduced ductility on the fatigue performance to some extent. Considering their various properties, the addition of Zr, Ti, and V is recommended to improve the overall performance of Al-Cu 224 cast alloys. Full article
Show Figures

Figure 1

33 pages, 9739 KiB  
Article
Numerical Modelling and Experimental Validation of Selective Laser Melting Processes Using a Custom Argon Chamber Setup for 316L Stainless Steel and Ti6AI4V
by Gasser Abdelal, Daniel Higgins, Chi-Wai Chan and Brian G. Falzon
Coatings 2024, 14(11), 1406; https://doi.org/10.3390/coatings14111406 - 5 Nov 2024
Viewed by 637
Abstract
Selective Laser Melting (SLM) is an advanced additive manufacturing technique that demands meticulous control over thermal dynamics to maintain the integrity and performance of manufactured parts. This study presents the development and validation of a thermal model designed to enhance the SLM process [...] Read more.
Selective Laser Melting (SLM) is an advanced additive manufacturing technique that demands meticulous control over thermal dynamics to maintain the integrity and performance of manufactured parts. This study presents the development and validation of a thermal model designed to enhance the SLM process for 316L stainless steel (316L SS) and titanium alloy Ti6Al4V. A specially constructed Argon Chamber Setup, equipped with a 200 W continuous-wave (CW) fibre laser system, was used to create an SLM-representative environment for 316L SS, enabling precise experimental validation of the model. This validation serves as a robust baseline, facilitating the model’s extension to more complex materials like Ti6Al4V, thereby supporting a cost-efficient and safe approach to initial testing. The rigorously validated thermal model offers a comprehensive link between experimental data and numerical simulations in SLM. It supports process optimisation by accurately predicting thermal behaviours, contributing significantly to additive manufacturing advancements. By fine-tuning processing parameters, this model enhances material characteristics, thereby providing practical insights applicable to industrial production and improving the consistency and quality of SLM-manufactured parts. Full article
(This article belongs to the Special Issue Laser Surface Engineering and Additive Manufacturing)
Show Figures

Figure 1

20 pages, 20027 KiB  
Article
First Principles Calculation of the Influence of Alloying on the Phase Stability, Elasticity, and Thermodynamic Properties of the MoNbTiVX (X = Al/Cr) Refractory High-Entropy Alloy
by Lin Chen, Weijun Li, Weihe Shi, Liuqing Liang, Jinghui Sun, Chengchu Yin, Jiafei Yi, Xuming Zhang, Peilin Qing, Alin Cao, Xiaowei Zhang and Hongxi Liu
Coatings 2024, 14(11), 1399; https://doi.org/10.3390/coatings14111399 - 4 Nov 2024
Viewed by 526
Abstract
In response to the poor wear resistance and high-temperature oxidation resistance of titanium alloys during service, a series of lightweight refractory high-entropy alloys (RHEAs) can be designed for the laser cladding coating of titanium alloy surfaces, with due consideration of the compositional and [...] Read more.
In response to the poor wear resistance and high-temperature oxidation resistance of titanium alloys during service, a series of lightweight refractory high-entropy alloys (RHEAs) can be designed for the laser cladding coating of titanium alloy surfaces, with due consideration of the compositional and structural characteristics of titanium alloys. Firstly, the structural stability, mechanical and thermal properties of four lightweight RHEAs (MoNbTiV, AlMoNbTiW, CrMoNbTiV, and AlCrMoNbTiV) with equal atomic ratios were designed and calculated using first principles combined with quasi-harmonic approximation (QHA). The results indicate that all four RHEAs are stable BCC, exhibiting elastic anisotropy and ductility. The lightest density is 6.409 g/cm3. Adding Al/Cr can cause structural distortion and affect its mechanical properties. Their Young’s moduli are in the following order: AlCrMoNbTiV > MoNbTiV > CrMoNbTiV > AlMoNbTiV. The thermal expansion coefficients of the four RHEAs and titanium alloys are very close, with a difference in linear expansion coefficient of less than 1.16 × 10−5/K. Meanwhile, the metallurgical bonding of four types of RHEA coatings was successfully achieved on a Ti-6Al-4V(TC4) substrate through laser cladding technology, and all coatings exhibited a unique BCC solid solution phase. Full article
(This article belongs to the Special Issue High-Temperature Protective Coatings)
Show Figures

Figure 1

14 pages, 9394 KiB  
Article
Study on Mitigation of Interfacial Intermetallic Compounds by Applying Alternating Magnetic Field in Laser-Directed Energy Deposition of Ti6Al4V/AA2024 Dissimilar Materials
by Dongqi Zhang, Dong Du, Shuai Xue, Junjie Qi, Jiaming Zhang and Baohua Chang
Metals 2024, 14(11), 1250; https://doi.org/10.3390/met14111250 - 4 Nov 2024
Viewed by 401
Abstract
Brittle intermetallic compounds (IMCs) at the interface of dissimilar materials can seriously affect the mechanical properties of the dissimilar components. Introducing external assisted fields in the fabrication of dissimilar components is a potential solution to this problem. In this study, an alternating magnetic [...] Read more.
Brittle intermetallic compounds (IMCs) at the interface of dissimilar materials can seriously affect the mechanical properties of the dissimilar components. Introducing external assisted fields in the fabrication of dissimilar components is a potential solution to this problem. In this study, an alternating magnetic field (AMF) was introduced for the first time in the additive manufacturing of Ti6Al4V/AA2024 dissimilar alloy components by laser-directed energy deposition (L-DED). The effect of the AMF on the interfacial IMCs’ distribution was studied. The results indicate that the contents of the IMCs were different for different magnetic flux densities and frequencies, and the lowest content was obtained with a magnetic flux density of 10 mT at a frequency of 40 Hz. When an appropriate AMF was applied, the IMC layer was no longer continuous at the interface, and the thickness was notably decreased. In addition, the influence of the AMF on the temperature distribution and fluid flow in the melt pool was analyzed through numerical simulation. The simulation results indicate that the effect of the AMF on the temperature of the melt pool was not significant, but it changed the flow pattern inside the melt pool. The two vortices inside the cross-section that formed when the AMF was applied caused different orientations of club-shaped IMCs inside the deposition layer. A sudden change in the streamline direction at the bottom of the longitudinal cross-section of the melt pool can affect the formation of the IMC layer at the interface of dissimilar materials, resulting in inconsistent thickness and even gaps. This work provides a useful guidance for regulating IMCs at dissimilar material interfaces. Full article
Show Figures

Figure 1

14 pages, 8426 KiB  
Article
Comparison of Stress between Three Different Functionally Graded Hip Stem Implants Made of Different Titanium Alloys and Composite Materials
by Mario Ceddia, Giuseppe Solarino, Pasquale Dramisino, Giuseppe De Giosa, Stefano Rizzo and Bartolomeo Trentadue
J. Compos. Sci. 2024, 8(11), 449; https://doi.org/10.3390/jcs8110449 - 1 Nov 2024
Viewed by 422
Abstract
This study aims to evaluate the mechanical behavior, by ways of the FEM, of three femoral stems made of a Ti-6Al-4V titanium alloy with transverse holes in the proximal zone and a stem made of a β-type titanium alloy with a stiffness varying [...] Read more.
This study aims to evaluate the mechanical behavior, by ways of the FEM, of three femoral stems made of a Ti-6Al-4V titanium alloy with transverse holes in the proximal zone and a stem made of a β-type titanium alloy with a stiffness varying from 65 GPa in the proximal zone to 110 GPa in the distal zone and the CFRP composite material. The purpose of the study was to evaluate the effect of stress shielding on an intact femoral bone. A three-dimensional model of the intact femur was created, and the three prostheses were inserted with perfect stem bone fit. Applying constraint conditions such as fixation in all directions of the distal part of the femur and the application of a static load simulating standing still during a gait cycle allowed the stresses of both the implants and the bone to be compared. Evaluating the stress shielding for the three proposed materials was possible by identifying the seven Gruen zones. We can see from the results obtained that the metal alloys produced observable stress shielding in all the Gruen zones. There was a difference for the β-type alloy which, as a result of its stiffness variation from the proximal to the distal zone, did not show any level of stress shielding in Gruen zones 1 and 2. The CFRP composite, in contrast, showed no stress shielding in all of the Gruen zones and is an excellent material for the fabrication of total hip replacements. Further in vitro and in vivo validation studies are needed to make the modeling more accurate and understand the biological effects of the use of the three materials. Full article
Show Figures

Figure 1

Back to TopTop