Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,528)

Search Parameters:
Keywords = Ti60 alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4345 KiB  
Article
Antifouling Slippery Surface with Enhanced Stability for Marine Applications
by Yun Li, Yuyang Zhou, Junyi Lin, Hao Liu and Xin Liu
Materials 2024, 17(22), 5598; https://doi.org/10.3390/ma17225598 (registering DOI) - 15 Nov 2024
Abstract
In recent years, slippery liquid-infused porous surfaces (SLIPSs) have gained significant attention in antifouling applications. However, their slippery performance often deteriorates in dynamic environments, limiting their service life. TC4 titanium alloy, commonly used in hulls and propellers, is prone to biofouling. SLIPSs have [...] Read more.
In recent years, slippery liquid-infused porous surfaces (SLIPSs) have gained significant attention in antifouling applications. However, their slippery performance often deteriorates in dynamic environments, limiting their service life. TC4 titanium alloy, commonly used in hulls and propellers, is prone to biofouling. SLIPSs have gained significant attention in antifouling applications. However, their slippery performance often deteriorates in dynamic environments, limiting their service life. To address these issues, a novel slippery liquid-infused surface (STASL) was developed on TC4 through the integration of hydroxyl end-blocked dimethylsiloxane (OH-PDMS), a silane coupling agent (KH550), and nano-titanium dioxide loaded with silver particles (TiO2-Ag, anatase) and silicone oil, thereby ensuring stable performance in both dynamic and static conditions. The as-prepared surfaces exhibited excellent sliding capabilities for water, acidic, alkaline, and saline droplets, achieving speeds of up to 2.859 cm/s. Notably, the STASL demonstrated superior oil retention and slippery stability compared to SLIPS, particularly at increased rotational speeds. With remarkable self-cleaning properties, the STASL significantly reduced the adhesion of proteins (50.0%), bacteria (77.8%), and algae (78.8%) compared to the titanium alloy. With these outstanding properties, the STASL has emerged as a promising solution for mitigating marine biofouling and corrosion on titanium alloys. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

20 pages, 13368 KiB  
Article
Effect of Surface-Textured AlSiTiN Coating Parameters on the Performance of Ball-End Milling Cutter in Titanium Alloy Milling
by Shucai Yang, Dongqi Yu and Dawei Wang
Coatings 2024, 14(11), 1458; https://doi.org/10.3390/coatings14111458 - 15 Nov 2024
Abstract
In the high-speed milling of titanium alloys, the combined application of surface texture and coatings can significantly enhance the performance of cemented carbide tools. Investigating the synergistic effect of surface texture and AlSiTiN coating on tool performance is crucial for advancing the development [...] Read more.
In the high-speed milling of titanium alloys, the combined application of surface texture and coatings can significantly enhance the performance of cemented carbide tools. Investigating the synergistic effect of surface texture and AlSiTiN coating on tool performance is crucial for advancing the development of their integrated preparation process. Therefore, in this study, a cemented carbide ball-end milling cutter is taken as the research object, and a surface-textured AlSiTiN coating is applied to the rake face. The effects of texture and coating parameters on the milling performance of titanium alloys are analyzed, and a regression model is developed to optimize the relevant parameters. The results indicate that the surface texture effectively reduces the actual contact area between the tool and the chip, serves as a storage space for chips, and enhances the wear resistance of the AlSiTiN coating. The coating thickness significantly affects milling force, milling temperature, and surface wear. An increase in coating thickness improves the hardness and integrity of the coating surface, and it also strengthens the adhesion of the texture to the coating. Additionally, precise control of the laser power plays a key role in reducing the milling temperature, while both the number of scans and the scanning speed significantly influence surface wear. Furthermore, maintaining an appropriate distance from the edge is crucial for enhancing the surface roughness of the workpiece. The optimized parameters for surface texture and coating preparation are as follows: coating thickness (h) = 3.0 µm, laser power (p) = 40 W, scanning speed (v) = 1590 µm/min, number of scans (n) = 6, texture diameter (d) = 42 µm, texture spacing (l) = 143 µm, and distance from the edge (l1) = 104 µm. The optimized milling performance of the milling cutter shows a significant improvement. Full article
(This article belongs to the Special Issue Cutting Performance of Coated Tools)
Show Figures

Figure 1

22 pages, 7710 KiB  
Article
Investigation of the Effect of Al2O3 Nanoparticle-Added MQL Lubricant on Sustainable and Clean Manufacturing
by Fuat Kara
Lubricants 2024, 12(11), 393; https://doi.org/10.3390/lubricants12110393 - 15 Nov 2024
Abstract
In this study, in order to improve the characteristics of the vegetable-based cutting fluids used in the MQL technique and increase the machining performance of MQL and its positive effects on sustainable manufacturing, the effects of the MQL method with nano-Al2O [...] Read more.
In this study, in order to improve the characteristics of the vegetable-based cutting fluids used in the MQL technique and increase the machining performance of MQL and its positive effects on sustainable manufacturing, the effects of the MQL method with nano-Al2O3 additives on surface roughness (Ra) and cutting temperature (Ctt) were examined through turning experiments carried out by adding nano-Al2O3 to the vegetable-based cutting fluid. For this purpose, machining tests were carried out on hot work tool steel alloyed with Cr-Ni-Mo that has a delivery hardness of 45 HRC. In hard machining experiments, three techniques for cooling and lubricating (dry cutting, MQL, and nano-MQL), three cutting speeds (V) (100, 130, 160 m/min), three feed rates (f) (0.10, 0.125, and 0.15 mm/rev), and two different ceramic cutting tools (uncoated and TiN-coated with PVD methods) were used as control factors. For Ra, the nano-MQL method provided an average of 21.49% improvement compared to other cooling methods. For Ctt, this rate increased to 26.7%. In crater wear areas, the nano-MQL method again exhibited the lowest wear values, decreasing performance by approximately 50%. The results of this research showed that the tests conducted using the cooling of nano-MQL approach produced the best results for all output metrics (Ra, Ctt, and crater wear). Full article
Show Figures

Figure 1

16 pages, 7454 KiB  
Article
Dimensional Accuracy After Precision Milling of Magnesium Alloys Using Coated and Uncoated Cutting Tools
by Jarosław Korpysa and Witold Habrat
Materials 2024, 17(22), 5578; https://doi.org/10.3390/ma17225578 - 15 Nov 2024
Viewed by 146
Abstract
Magnesium alloys are an important group of materials that are used in many industries, primarily due to their low weight. Constantly increasing quality requirements make it necessary to improve the accuracy of manufactured products. In this study, the precision milling process for AZ91D [...] Read more.
Magnesium alloys are an important group of materials that are used in many industries, primarily due to their low weight. Constantly increasing quality requirements make it necessary to improve the accuracy of manufactured products. In this study, the precision milling process for AZ91D and AZ31B magnesium alloys was investigated, and the results obtained with uncoated and TiB2-coated end mills were compared. The impact of variable cutting parameters was also investigated. Specifically, the study focused on the dimensional accuracy of the machined parts. The results showed that even though the dimensional accuracy obtained in milling both magnesium alloys was comparable, it was higher in the case of the AZ31B alloy by up to 22%. The study also demonstrated that the use of the TiB2 coating did not have the desired effect and that higher dimensional accuracy up to 27% was obtained with the uncoated tool. Full article
(This article belongs to the Special Issue Non-conventional Machining: Materials and Processes)
Show Figures

Figure 1

15 pages, 3243 KiB  
Article
Optimization of Laser Based-Powder Bed Fusion Parameters for Controlled Porosity in Titanium Alloy Components
by Emanuele Vaglio, Federico Scalzo, Marco Sortino, Giovanni Totis, Roberto Cremonese, Massimiliano Boccia and Maila Danielis
Materials 2024, 17(22), 5572; https://doi.org/10.3390/ma17225572 - 14 Nov 2024
Viewed by 263
Abstract
Laser based-powder bed fusion (LB-PBF) enables fast, efficient, and cost-effective production of high-performing products. While advanced functionalities are often derived from geometric complexity, the capability to tailor material properties also offers significant opportunities for technical innovation across many fields. This study explores the [...] Read more.
Laser based-powder bed fusion (LB-PBF) enables fast, efficient, and cost-effective production of high-performing products. While advanced functionalities are often derived from geometric complexity, the capability to tailor material properties also offers significant opportunities for technical innovation across many fields. This study explores the optimization of the LB-PBF process parameters for producing Ti6Al4V titanium alloy parts with controlled porosity. To this end, cuboid and lamellar samples were fabricated by systematically varying laser power, hatch distance, and layer thickness according to a full factorial Design of Experiments, and the resulting specimens were thoroughly characterized by analyzing envelope porosity, surface roughness and waviness, surface morphology, and surface area. A selection of specimens was further examined using small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) to investigate the atomic structure and nanometric porosity of the material. The results demonstrated the possibility to finely control the porosity and surface characteristics of Ti6Al4V within specific LB-PBF process ranges. The pores were found to be mostly closed even for thin walls, while the surface roughness was recognized as the primary factor impacting the surface area. The lamellar samples obtained by exposing single scan tracks showed nearly an order-of-magnitude increase in both surface area and pore volume, thereby laying the groundwork for the production of parts with optimized porosity. Full article
(This article belongs to the Special Issue The Additive Manufacturing of Metallic Alloys)
Show Figures

Figure 1

26 pages, 24144 KiB  
Article
Machining Characteristics During Short Hole Drilling of Titanium Alloy Ti10V2Fe3Al
by Michael Storchak
Materials 2024, 17(22), 5569; https://doi.org/10.3390/ma17225569 - 14 Nov 2024
Viewed by 194
Abstract
The single-phase titanium ß-alloy Ti10V2Fe3Al (Ti-1023) has been widely used in the aerospace industry due to its unique mechanical properties, which include high fatigue strength and fracture toughness, as well as high corrosion resistance. On the other hand, these unique properties significantly hinder [...] Read more.
The single-phase titanium ß-alloy Ti10V2Fe3Al (Ti-1023) has been widely used in the aerospace industry due to its unique mechanical properties, which include high fatigue strength and fracture toughness, as well as high corrosion resistance. On the other hand, these unique properties significantly hinder the cutting processes of this material, especially those characterized by a closed machining process area, such as drilling. This paper is devoted to the study of the short hole drilling process of the above-mentioned titanium alloy using direct measurements and numerical modeling. Measurements of the cutting force components in the drilling process and determination of the resultant cutting force and total cutting power were performed. The macro- and microstructure of chips generated during drilling were analyzed, and the dependence of the chip compression ratio and the distance between neighboring segments of serrated chips on cutting speed and drill feed was determined. Experimental studies were supplemented by determining the temperature on the lateral clearance face of the drill’s outer cutting insert in dependence on the cutting modes. For the modeling of the drilling process using the finite element model, the parameters of the triad of component submodels of the numerical model were determined: the machined material model, the model of contact interaction between the tool and the machined material, and the fracture model of the machined material. The determination of these parameters was performed through the DOE sensitivity analysis. The target values for performing this analysis were the total cutting power and the distance between neighboring chip segments. The maximum deviation between the simulated and experimentally determined values of the resulting cutting force is no more than 25%. At the same time, the maximum deviation between the measured values of the temperature on the lateral clearance face of the drill’s outer cutting insert and the corresponding simulated values is 26.1%. Full article
Show Figures

Figure 1

22 pages, 6464 KiB  
Article
Modeling Material Machining Conditions with Gear-Shaper Cutters with TiN0.85-Ti in Adhesive Wear Dominance Using Machine Learning Methods
by Maciej Kupczyk, Michał Leleń, Jerzy Józwik and Paweł Tomiło
Materials 2024, 17(22), 5567; https://doi.org/10.3390/ma17225567 - 14 Nov 2024
Viewed by 189
Abstract
This paper examines the challenges of machining structural alloy steels for carburizing, with a particular focus on gear manufacturing. TiN0.85-Ti coatings were applied to cutting tool blades to improve machining quality and tool life. The research, supported by mathematical modeling, demonstrated [...] Read more.
This paper examines the challenges of machining structural alloy steels for carburizing, with a particular focus on gear manufacturing. TiN0.85-Ti coatings were applied to cutting tool blades to improve machining quality and tool life. The research, supported by mathematical modeling, demonstrated that these coatings significantly reduce adhesive wear and improve blade life. The Kolmogorov–Arnold Network (KAN) was identified as the most effective model comprehensively describing tool life as a function of cutting speed, coating thickness, and feed rate. The results indicate that gear production efficiency can be significantly increased using TiN0.85-Ti coatings. Full article
Show Figures

Figure 1

26 pages, 14835 KiB  
Article
Mechanical and Tribological Properties of (AlCrNbSiTiMo)N High-Entropy Alloy Films Prepared Using Single Multiple-Element Powder Hot-Pressed Sintered Target and Their Practical Application in Nickel-Based Alloy Milling
by Jeng-Haur Horng, Wen-Hsien Kao, Wei-Chen Lin and Ren-Hao Chang
Lubricants 2024, 12(11), 391; https://doi.org/10.3390/lubricants12110391 - 14 Nov 2024
Viewed by 310
Abstract
(AlCrNbSiTiMo)N high-entropy alloy films with different nitrogen contents were deposited on tungsten carbide substrates using a radio-frequency magnetron sputtering system. Two different types of targets were used in the sputtering process: a hot-pressing sintered AlCrNbSiTi target fabricated using a single powder containing multiple [...] Read more.
(AlCrNbSiTiMo)N high-entropy alloy films with different nitrogen contents were deposited on tungsten carbide substrates using a radio-frequency magnetron sputtering system. Two different types of targets were used in the sputtering process: a hot-pressing sintered AlCrNbSiTi target fabricated using a single powder containing multiple elements and a vacuum arc melting Mo target. The deposited films were denoted as RN0, RN33, RN43, RN50, and RN56, where RN indicates the nitrogen flow ratio relative to the total nitrogen and argon flow rate (RN = (N2/(N2 + Ar)) × 100%). The as-sputtered films were vacuum annealed, with the resulting films denoted as HRN0, HRN33, HRN43, HRN50, and HRN56, respectively. The effects of the nitrogen content on the composition, microstructure, mechanical properties, and tribological properties of the films, in both as-sputtered and annealed states, underwent thorough analysis. The RN0 and RN33 films displayed non-crystalline structures. However, with an increase in nitrogen content, the RN43, RN50, and RN56 films transitioned to FCC structures. Among the as-deposited films, the RN43 film exhibited the best mechanical and tribological properties. All of the annealed films, except for the HRN0 film, displayed an FCC structure. In addition, they all formed an MoO3 solid lubricating phase, which reduced the coefficient of friction and improved the anti-wear performance. The heat treatment HRN43 film displayed the supreme hardness, H/E ratio, and adhesion strength. It also demonstrated excellent thermal stability and the best wear resistance. As a result, in milling tests on Inconel 718, the RN43-coated tool demonstrated a significantly lower flank wear and notch wear, indicating an improved machining performance and extended tool life. Thus, the application of the RN43 film in aerospace manufacturing can effectively reduce the tool replacement cost. Full article
(This article belongs to the Special Issue Recent Advances in Tribological Properties of Machine Tools)
Show Figures

Figure 1

12 pages, 3837 KiB  
Article
Investigation into the Suitability of AA 6061 and Ti6Al4V as Substitutes for SS 316L Use in the Paraplegic Swivel Mechanism
by Oluwaseun K. Ajayi, Babafemi O. Malomo, Shengzhi Du, Hakeem A. Owolabi and Olusola A. Oladosu
Appl. Sci. 2024, 14(22), 10462; https://doi.org/10.3390/app142210462 - 13 Nov 2024
Viewed by 385
Abstract
SS 316L, a low-carbon 316 Stainless Steel, has been used to manufacture swivel mechanisms for paraplegic patients, but its weight is relatively high compared to a few materials in its range of properties. Aluminum alloy 6061 and Titanium alloy (Ti6Al4V) offer lightweight and [...] Read more.
SS 316L, a low-carbon 316 Stainless Steel, has been used to manufacture swivel mechanisms for paraplegic patients, but its weight is relatively high compared to a few materials in its range of properties. Aluminum alloy 6061 and Titanium alloy (Ti6Al4V) offer lightweight and incredible strength-to-weight ratio, hence their use for medical, aerospace, and automotive applications. This study, therefore, seeks a replacement for SS 316L. A 3D model of a swivel mechanism was developed to compare the performance of the swivel mechanism made with SS 316L, AA 6061, and Ti6Al4V. The kinematic analysis of the mechanism based on a range of weights: 1kN, 1.1 kN, 1.2 kN, 1.3 kN, 1.4 kN, and 1.5 kN was carried out to generate the inputs for the simulation. The 3D model was made with SolidWorks, and the results of the kinematic analysis were used to define the simulation parameters for the mechanism. Two scenarios generated depicted the full collapse of the mechanism and the full extension. The results showed that AA 6061 and Ti6Al4V outperformed SS 316L with higher yield strength and factor of safety. Therefore, swivel plates made with AA 6061 and Ti6Al4V have higher yield strength than those made with SS 316L, adding to the advantage that they have a higher strength-to-weight ratio. From this analysis and known knowledge of the cost of these materials, the optimal replacement considering cost with yield strength is AA 6061. However, Ti6Al4V is a better alternative for the strength-to-weight ratio for SS 316L. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

13 pages, 6727 KiB  
Article
Fatigue Crack Growth Behavior of Additively Manufactured Ti Metal Matrix Composite with TiB Particles
by Thevika Balakumar, Afsaneh Edrisy and Reza A. Riahi
Coatings 2024, 14(11), 1447; https://doi.org/10.3390/coatings14111447 - 13 Nov 2024
Viewed by 302
Abstract
Fatigue crack growth behavior of additively manufactured Ti metal matrix composite with TiB particles at room temperature was studied using a compact tension specimen and at the stress ratio of 0.1 (R = 0.1). The composite studied in this work was manufactured with [...] Read more.
Fatigue crack growth behavior of additively manufactured Ti metal matrix composite with TiB particles at room temperature was studied using a compact tension specimen and at the stress ratio of 0.1 (R = 0.1). The composite studied in this work was manufactured with a unique additive technique called plasma transferred arc solid free-form fabrication, which was designed to manufacture low-cost near-net-shaped components for aerospace and automotive industries. The fatigue crack growth rate experiments were carried perpendicular and parallel to the additive material build, aiming to find any fatigue anisotropies at room temperature. The findings reveal that additively manufactured Ti-TiB composite shows isotropic fatigue properties with respect to fatigue crack growth. Furthermore, the fatigue crack growth mechanisms in this additive composite material were identified as void nucleation/coalescence and the bypassing of particles and matrix, depending on the interparticle distance. Full article
(This article belongs to the Special Issue Latest Insights in Metal Fatigue, Failure, and Fracture)
Show Figures

Figure 1

10 pages, 2415 KiB  
Article
Neutrophils Respond Selectively to Physical Cues: Roughness Modulates Its Granule Release, and NETosis
by Gayathiri Elangovan, Daniel J. Fernandes, Andrew Cameron, Souptik Basu, Joao Martins De Mello Neto, Anna Peishan Jiang, Peter Reher, Stephen Hamlet and Carlos Marcelo S. Figueredo
J. Funct. Biomater. 2024, 15(11), 342; https://doi.org/10.3390/jfb15110342 - 13 Nov 2024
Viewed by 264
Abstract
Our study examined how different titanium alloy Ti6Al4V (Ti64) and zirconia (ZrO2) surfaces, ranging from rough to very smooth, affect the expression of elastase (NE), matrix metalloproteinase (MMP)-8, MMP-9, and extracellular traps (NETs) by neutrophils. Discs of Ti64 and ZrO2 [...] Read more.
Our study examined how different titanium alloy Ti6Al4V (Ti64) and zirconia (ZrO2) surfaces, ranging from rough to very smooth, affect the expression of elastase (NE), matrix metalloproteinase (MMP)-8, MMP-9, and extracellular traps (NETs) by neutrophils. Discs of Ti64 and ZrO2, 10 mm in diameter and 1.5 mm thick, were created using diamond-impregnated polishing burs and paste to produce rough (Ra > 3 µm), smooth (Ra ≥ 1 to 1.5 µm), and very smooth (Ra < 0.1 µm) surfaces. Neutrophils from Wistar rats were cultured on these surfaces, and the culture supernatants were then examined for NE, MMP-8, and MMP-9 using ELISA. At the same time, NET formation was demonstrated immunohistochemically by staining neutrophils with CD16b and DNA with DAPI. Overall, the expressions of NE and MMP-8 were significantly higher from neutrophil culture on Ti64 and ZrO2 rough surfaces compared to the very smooth surface (R > S > VS) after 2 h and 4 h of culture. The expression of MMP-9 also increased with culture time; however, no significant surface effects on expression were observed. Similarly, rough Ti64 and ZrO2 surfaces (R & S) also showed significantly larger NET formation compared to the very smooth surface (VS) after 4 h and 8 h cultures. Our findings suggest that increasing surface roughness on Ti64 and ZrO2 triggers higher NE, MMP-8, and NET formation secretion. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

25 pages, 6717 KiB  
Article
Gradient Titanium Alloy with Bioactive Hydroxyapatite Porous Structures for Potential Biomedical Applications
by Julia Sadlik, Edyta Kosińska, Magdalena Bańkosz, Agnieszka Tomala, Grzegorz Bruzda, Josef Jampilek and Agnieszka Sobczak-Kupiec
Materials 2024, 17(22), 5511; https://doi.org/10.3390/ma17225511 - 12 Nov 2024
Viewed by 423
Abstract
Hard bone disease is a clinical problem affecting more than 20 million people annually worldwide, with significant health, social, and economic consequences. For successful integration of any implant, the key aspects are bone regeneration, osseointegration at the bone–implant interface, and the mitigation of [...] Read more.
Hard bone disease is a clinical problem affecting more than 20 million people annually worldwide, with significant health, social, and economic consequences. For successful integration of any implant, the key aspects are bone regeneration, osseointegration at the bone–implant interface, and the mitigation of inflammation. The purpose of this research work is to demonstrate an innovative material system and method of biomaterial preparation for regenerative medicine. A number of studies were carried out for both hydroxyapatite powder and composites. Wet-precipitated synthesized hydroxyapatite was compared to commercial products through accurate physicochemical studies that confirmed the high purity of the obtained calcium phosphate without any impurities. Ti/HAp composites before and after sintering were compared by XRF, XRD, SEM, EDS, PSA, and roughness measurements, and the Vickers microhardness was analyzed. The fabrication of the biomaterial was based on a bottom-up approach, which involved fabricating HAp particles with specific morphologies using powder metallurgy (PM) to sinter Ti composites. The resulting gradient structures consisting of two compositions (5%HAp%5CMC and 10%HAp10%CMC) mimic the structure of bone tissue. The created pores of 10–100 µm in size will allow bone cells to penetrate the implant and regenerate bone. In turn, the introduction of hydroxyapatite into the material reduces the microhardness of the composite and introduces properties such as bioactivity. The developed composite material contains a combination of Ti alloy and hydroxyapatite (HAp), creating an excellent biomaterial that promotes bone growth and eliminates the problem of implant loosening by integrating it into the bone. This material requires further research, especially biological research. However, it shows promising potential for further experiments. Full article
Show Figures

Figure 1

29 pages, 7257 KiB  
Article
A New Multi-Axial Functional Stress Analysis Assessing the Longevity of a Ti-6Al-4V Dental Implant Abutment Screw
by Ghada H. Naguib, Ahmed O. Abougazia, Lulwa E. Al-Turki, Hisham A. Mously, Abou Bakr Hossam Hashem, Abdulghani I. Mira, Osama A. Qutub, Abdulelah M. Binmahfooz, Afaf A. Almabadi and Mohamed T. Hamed
Biomimetics 2024, 9(11), 689; https://doi.org/10.3390/biomimetics9110689 - 12 Nov 2024
Viewed by 409
Abstract
This study investigates the impact of tightening torque (preload) and the friction coefficient on stress generation and fatigue resistance of a Ti-6Al-4V abutment screw with an internal hexagonal connection under dynamic multi-axial masticatory loads in high-cycle fatigue (HCF) conditions. A three-dimensional model of [...] Read more.
This study investigates the impact of tightening torque (preload) and the friction coefficient on stress generation and fatigue resistance of a Ti-6Al-4V abutment screw with an internal hexagonal connection under dynamic multi-axial masticatory loads in high-cycle fatigue (HCF) conditions. A three-dimensional model of the implant–abutment assembly was simulated using ANSYS Workbench 16.2 computer aided engineering software with chewing forces ranging from 300 N to 1000 N, evaluated over 1.35 × 107 cycles, simulating 15 years of service. Results indicate that the healthy range of normal to maximal mastication forces (300–550 N) preserved the screw’s structural integrity, while higher loads (≥800 N) exceeded the Ti-6Al-4V alloy’s yield strength, indicating a risk of plastic deformation under extreme conditions. Stress peaked near the end of the occluding phase (206.5 ms), marking a critical temporal point for fatigue accumulation. Optimizing the friction coefficient (0.5 µ) and preload management improved stress distribution, minimized fatigue damage, and ensured joint stability. Masticatory forces up to 550 N were well within the abutment screw’s capacity to sustain extended service life and maintain its elastic behavior. Full article
Show Figures

Figure 1

12 pages, 7334 KiB  
Article
Microstructure and Wear Behavior of AlxCoCuNiTi (x = 0, 0.4, and 1) High-Entropy Alloy Coatings
by Mingxing Ma, Zhixin Wang, Chengjun Zhu, Ying Dong, Liang Zhao, Lixin Liu, Dachuan Zhu and Deliang Zhang
Metals 2024, 14(11), 1280; https://doi.org/10.3390/met14111280 - 11 Nov 2024
Viewed by 353
Abstract
AlxCoCuNiTi (x = 0, 0.4, and 1) high-entropy alloy coatings on 45 steel substrates were prepared by laser cladding, and their phase structure, microstructure, element partition, and wear behavior were investigated. The results show that the AlxCoCuNiTi (x = [...] Read more.
AlxCoCuNiTi (x = 0, 0.4, and 1) high-entropy alloy coatings on 45 steel substrates were prepared by laser cladding, and their phase structure, microstructure, element partition, and wear behavior were investigated. The results show that the AlxCoCuNiTi (x = 0, 0.4, and 1) coatings have a dual-phase structure of FCC and BCC. With the increase of x from 0 to 1, the content of the FCC phase decreases from 66.9 wt.% to 14.3 wt.%, while the content of the BCC phase increases from 33.1 wt.% to 85.7 wt.%. When x = 0.4, the lattice constants of the two phases are the largest, and their densities are the smallest. The microstructure of the AlxCoCuNiTi (x = 0, 0.4, and 1) coatings is composed of BCC-phase dendrites and FCC-phase interdendrite regions. Ti is mainly enriched in the primary phase or BCC dendrites, Cu is enriched in the interdendrite regions, and Al is enriched in the dendrites. The friction coefficients of AlxCoCuNiTi (x = 0, 0.4, and 1) coatings during wear tests are 0.691, 0.691, and 0.627, respectively. The lowering of the wear friction coefficient when increasing the Al content is mainly related to the change in phase structure, microstructure, and wear mechanism. Full article
Show Figures

Figure 1

17 pages, 7142 KiB  
Article
Wear and Corrosion Resistance of ZrN Coatings Deposited on Ti6Al4V Alloy for Biomedical Applications
by Stanislava Rabadzhiyska, Dimitar Dechev, Nikolay Ivanov, Tatyana Ivanova, Velichka Strijkova, Vesela Katrova, Velko Rupetsov, Nina Dimcheva and Stefan Valkov
Coatings 2024, 14(11), 1434; https://doi.org/10.3390/coatings14111434 - 11 Nov 2024
Viewed by 413
Abstract
Zirconium nitrides films were synthesized on Ti6Al4V substrates at a bias voltage of −50 V, −80 V, −110 V and −150 V by the direct current (DC) reactive magnetron sputtering technique. The as-deposited coatings were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) [...] Read more.
Zirconium nitrides films were synthesized on Ti6Al4V substrates at a bias voltage of −50 V, −80 V, −110 V and −150 V by the direct current (DC) reactive magnetron sputtering technique. The as-deposited coatings were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The wear and corrosion resistance of the obtained ZrN coatings were evaluated to determine the possibility for their implementation in modern biomedical applications. It was found that the intensity of the diffraction peak of the Zr-N phase corresponding to the (1 1 1) crystallographic plane rose as the bias voltage increased, while the ZrN coatings’ thickness reduced from 1.21 µm to 250 nm. The ZrN films’ surface roughness rose up to 75 nm at −150 V. Wear tests showed an increase in the wear rate and wear intensity as the bias voltage increased. Corrosion studies of the ZrN coatings were carried out by three electrochemical methods: open circuit potential (OCP), cyclic voltammetry (polarization measurements) and electrochemical impedance spectroscopy (EIS). All electrochemical measurements confirmed that the highest protection to corrosion is the ZrN coating, which was deposited on the Ti6Al4V substrate at a bias voltage of −150 V. Full article
(This article belongs to the Special Issue Anti-corrosion Coatings of Metals and Alloys—New Perspectives)
Show Figures

Figure 1

Back to TopTop