Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (850)

Search Parameters:
Keywords = TiAlN

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7710 KiB  
Article
Investigation of the Effect of Al2O3 Nanoparticle-Added MQL Lubricant on Sustainable and Clean Manufacturing
by Fuat Kara
Lubricants 2024, 12(11), 393; https://doi.org/10.3390/lubricants12110393 - 15 Nov 2024
Abstract
In this study, in order to improve the characteristics of the vegetable-based cutting fluids used in the MQL technique and increase the machining performance of MQL and its positive effects on sustainable manufacturing, the effects of the MQL method with nano-Al2O [...] Read more.
In this study, in order to improve the characteristics of the vegetable-based cutting fluids used in the MQL technique and increase the machining performance of MQL and its positive effects on sustainable manufacturing, the effects of the MQL method with nano-Al2O3 additives on surface roughness (Ra) and cutting temperature (Ctt) were examined through turning experiments carried out by adding nano-Al2O3 to the vegetable-based cutting fluid. For this purpose, machining tests were carried out on hot work tool steel alloyed with Cr-Ni-Mo that has a delivery hardness of 45 HRC. In hard machining experiments, three techniques for cooling and lubricating (dry cutting, MQL, and nano-MQL), three cutting speeds (V) (100, 130, 160 m/min), three feed rates (f) (0.10, 0.125, and 0.15 mm/rev), and two different ceramic cutting tools (uncoated and TiN-coated with PVD methods) were used as control factors. For Ra, the nano-MQL method provided an average of 21.49% improvement compared to other cooling methods. For Ctt, this rate increased to 26.7%. In crater wear areas, the nano-MQL method again exhibited the lowest wear values, decreasing performance by approximately 50%. The results of this research showed that the tests conducted using the cooling of nano-MQL approach produced the best results for all output metrics (Ra, Ctt, and crater wear). Full article
Show Figures

Figure 1

26 pages, 14835 KiB  
Article
Mechanical and Tribological Properties of (AlCrNbSiTiMo)N High-Entropy Alloy Films Prepared Using Single Multiple-Element Powder Hot-Pressed Sintered Target and Their Practical Application in Nickel-Based Alloy Milling
by Jeng-Haur Horng, Wen-Hsien Kao, Wei-Chen Lin and Ren-Hao Chang
Lubricants 2024, 12(11), 391; https://doi.org/10.3390/lubricants12110391 - 14 Nov 2024
Viewed by 310
Abstract
(AlCrNbSiTiMo)N high-entropy alloy films with different nitrogen contents were deposited on tungsten carbide substrates using a radio-frequency magnetron sputtering system. Two different types of targets were used in the sputtering process: a hot-pressing sintered AlCrNbSiTi target fabricated using a single powder containing multiple [...] Read more.
(AlCrNbSiTiMo)N high-entropy alloy films with different nitrogen contents were deposited on tungsten carbide substrates using a radio-frequency magnetron sputtering system. Two different types of targets were used in the sputtering process: a hot-pressing sintered AlCrNbSiTi target fabricated using a single powder containing multiple elements and a vacuum arc melting Mo target. The deposited films were denoted as RN0, RN33, RN43, RN50, and RN56, where RN indicates the nitrogen flow ratio relative to the total nitrogen and argon flow rate (RN = (N2/(N2 + Ar)) × 100%). The as-sputtered films were vacuum annealed, with the resulting films denoted as HRN0, HRN33, HRN43, HRN50, and HRN56, respectively. The effects of the nitrogen content on the composition, microstructure, mechanical properties, and tribological properties of the films, in both as-sputtered and annealed states, underwent thorough analysis. The RN0 and RN33 films displayed non-crystalline structures. However, with an increase in nitrogen content, the RN43, RN50, and RN56 films transitioned to FCC structures. Among the as-deposited films, the RN43 film exhibited the best mechanical and tribological properties. All of the annealed films, except for the HRN0 film, displayed an FCC structure. In addition, they all formed an MoO3 solid lubricating phase, which reduced the coefficient of friction and improved the anti-wear performance. The heat treatment HRN43 film displayed the supreme hardness, H/E ratio, and adhesion strength. It also demonstrated excellent thermal stability and the best wear resistance. As a result, in milling tests on Inconel 718, the RN43-coated tool demonstrated a significantly lower flank wear and notch wear, indicating an improved machining performance and extended tool life. Thus, the application of the RN43 film in aerospace manufacturing can effectively reduce the tool replacement cost. Full article
(This article belongs to the Special Issue Recent Advances in Tribological Properties of Machine Tools)
Show Figures

Figure 1

17 pages, 7379 KiB  
Article
Cracking Resistance of Selected PVD Hard Coatings
by Peter Panjan, Aleksandar Miletić, Aljaž Drnovšek, Pal Terek, Miha Čekada, Lazar Kovačević and Matjaž Panjan
Coatings 2024, 14(11), 1452; https://doi.org/10.3390/coatings14111452 - 14 Nov 2024
Viewed by 221
Abstract
In this study, we used the depth-sensing indentation technique to determine the cracking resistance of different PVD hard coatings deposited on tool steel substrates. By comparison, with the load–displacement curves, measured at the sites of carbide inclusion and a tempered martensite matrix in [...] Read more.
In this study, we used the depth-sensing indentation technique to determine the cracking resistance of different PVD hard coatings deposited on tool steel substrates. By comparison, with the load–displacement curves, measured at the sites of carbide inclusion and a tempered martensite matrix in the D2 tool steel substrate surface, we observed different fracture mechanisms on TiAlN hard coating prepared by sputtering. Additional information about the deformation and fracture phenomena was obtained from the SEM images of FIB cross-sections of both types of indents. We found that the main deformation mechanism in the coating is the shear sliding along the columnar boundaries, which causes the formation of steps on the substrate surface under individual columns. Using nanoindentation test, we also analyzed the cracking resistance of a set of nl-(Cr,Al)N nanolayer coatings with different Cr/Al atomic ratios, which were sputter deposited in a single batch. From the indentation curves, we determined the loads (Fc) at which the first pop-in appears and compared them with the plasticity index H3/E2. A good correlation of both parameters was found. We also compared the indentation curves of the TiAlN coating, which were prepared by cathodic arc evaporation using 1-fold, 2-fold and 3-fold rotation of the substrates. Additionally, on the same set of samples, the fracture toughness measurements were performed by micro-cantilever deflection test. The impact of growth defects on the cracking resistance of the hard coatings was also confirmed. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

12 pages, 3837 KiB  
Article
Investigation into the Suitability of AA 6061 and Ti6Al4V as Substitutes for SS 316L Use in the Paraplegic Swivel Mechanism
by Oluwaseun K. Ajayi, Babafemi O. Malomo, Shengzhi Du, Hakeem A. Owolabi and Olusola A. Oladosu
Appl. Sci. 2024, 14(22), 10462; https://doi.org/10.3390/app142210462 - 13 Nov 2024
Viewed by 385
Abstract
SS 316L, a low-carbon 316 Stainless Steel, has been used to manufacture swivel mechanisms for paraplegic patients, but its weight is relatively high compared to a few materials in its range of properties. Aluminum alloy 6061 and Titanium alloy (Ti6Al4V) offer lightweight and [...] Read more.
SS 316L, a low-carbon 316 Stainless Steel, has been used to manufacture swivel mechanisms for paraplegic patients, but its weight is relatively high compared to a few materials in its range of properties. Aluminum alloy 6061 and Titanium alloy (Ti6Al4V) offer lightweight and incredible strength-to-weight ratio, hence their use for medical, aerospace, and automotive applications. This study, therefore, seeks a replacement for SS 316L. A 3D model of a swivel mechanism was developed to compare the performance of the swivel mechanism made with SS 316L, AA 6061, and Ti6Al4V. The kinematic analysis of the mechanism based on a range of weights: 1kN, 1.1 kN, 1.2 kN, 1.3 kN, 1.4 kN, and 1.5 kN was carried out to generate the inputs for the simulation. The 3D model was made with SolidWorks, and the results of the kinematic analysis were used to define the simulation parameters for the mechanism. Two scenarios generated depicted the full collapse of the mechanism and the full extension. The results showed that AA 6061 and Ti6Al4V outperformed SS 316L with higher yield strength and factor of safety. Therefore, swivel plates made with AA 6061 and Ti6Al4V have higher yield strength than those made with SS 316L, adding to the advantage that they have a higher strength-to-weight ratio. From this analysis and known knowledge of the cost of these materials, the optimal replacement considering cost with yield strength is AA 6061. However, Ti6Al4V is a better alternative for the strength-to-weight ratio for SS 316L. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

29 pages, 7257 KiB  
Article
A New Multi-Axial Functional Stress Analysis Assessing the Longevity of a Ti-6Al-4V Dental Implant Abutment Screw
by Ghada H. Naguib, Ahmed O. Abougazia, Lulwa E. Al-Turki, Hisham A. Mously, Abou Bakr Hossam Hashem, Abdulghani I. Mira, Osama A. Qutub, Abdulelah M. Binmahfooz, Afaf A. Almabadi and Mohamed T. Hamed
Biomimetics 2024, 9(11), 689; https://doi.org/10.3390/biomimetics9110689 - 12 Nov 2024
Viewed by 409
Abstract
This study investigates the impact of tightening torque (preload) and the friction coefficient on stress generation and fatigue resistance of a Ti-6Al-4V abutment screw with an internal hexagonal connection under dynamic multi-axial masticatory loads in high-cycle fatigue (HCF) conditions. A three-dimensional model of [...] Read more.
This study investigates the impact of tightening torque (preload) and the friction coefficient on stress generation and fatigue resistance of a Ti-6Al-4V abutment screw with an internal hexagonal connection under dynamic multi-axial masticatory loads in high-cycle fatigue (HCF) conditions. A three-dimensional model of the implant–abutment assembly was simulated using ANSYS Workbench 16.2 computer aided engineering software with chewing forces ranging from 300 N to 1000 N, evaluated over 1.35 × 107 cycles, simulating 15 years of service. Results indicate that the healthy range of normal to maximal mastication forces (300–550 N) preserved the screw’s structural integrity, while higher loads (≥800 N) exceeded the Ti-6Al-4V alloy’s yield strength, indicating a risk of plastic deformation under extreme conditions. Stress peaked near the end of the occluding phase (206.5 ms), marking a critical temporal point for fatigue accumulation. Optimizing the friction coefficient (0.5 µ) and preload management improved stress distribution, minimized fatigue damage, and ensured joint stability. Masticatory forces up to 550 N were well within the abutment screw’s capacity to sustain extended service life and maintain its elastic behavior. Full article
Show Figures

Figure 1

11 pages, 2628 KiB  
Article
Design and Corrosion Resistance Performance of Nano-Multilayer Coatings for the Protection of Breathing Gas Cylinders Used in Diving
by Feng Yuan, Yunjiang Yu, Yuekai Li, Yanxiong Xiang and Changwei Zou
Coatings 2024, 14(11), 1435; https://doi.org/10.3390/coatings14111435 - 12 Nov 2024
Viewed by 348
Abstract
Seamless gas cylinders for diving exhibit excellent low-temperature impact performance, lightweight characteristics, and good corrosion resistance, making them widely applicable in underwater activities. However, during use, the peeling of paint or corrosion on the surface of these cylinders poses a significant threat to [...] Read more.
Seamless gas cylinders for diving exhibit excellent low-temperature impact performance, lightweight characteristics, and good corrosion resistance, making them widely applicable in underwater activities. However, during use, the peeling of paint or corrosion on the surface of these cylinders poses a significant threat to their safety. In this study, environmentally friendly arc ion plating technology was used to deposit TiBN, CrAlN, and nano-multilayer coatings of CrAlN/TiBN. The surface morphology, tribological properties, and corrosion resistance of these coatings were investigated. The results indicated that both CrAlN and CrAlN/TiBN coatings possess fewer droplets, pinholes, and pits, and the cross-section of the CrAlN/TiBN coating exhibits a denser structure. The preferred orientation for TiBN was identified as TiB2 (101), while that for CrAlN was Cr(Al)N (200), with the preferred orientation for CrAlN/TiBN being TiB2 (101). The friction measurements revealed that the lowest coefficient was observed in the CrAlN/TiBN coating (0.489), followed by CrAlN (0.491) and then TiBN (0.642). Electrochemical tests conducted in artificial seawater demonstrated that the self-corrosion potential was highest for the CrAlN/TiBN coating, followed by CrAlN and lastly TiBN. The developed TiBN-based nano-multilayer coatings hold substantial application value in protecting seamless gas cylinders used in diving. Full article
Show Figures

Figure 1

17 pages, 7142 KiB  
Article
Wear and Corrosion Resistance of ZrN Coatings Deposited on Ti6Al4V Alloy for Biomedical Applications
by Stanislava Rabadzhiyska, Dimitar Dechev, Nikolay Ivanov, Tatyana Ivanova, Velichka Strijkova, Vesela Katrova, Velko Rupetsov, Nina Dimcheva and Stefan Valkov
Coatings 2024, 14(11), 1434; https://doi.org/10.3390/coatings14111434 - 11 Nov 2024
Viewed by 413
Abstract
Zirconium nitrides films were synthesized on Ti6Al4V substrates at a bias voltage of −50 V, −80 V, −110 V and −150 V by the direct current (DC) reactive magnetron sputtering technique. The as-deposited coatings were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) [...] Read more.
Zirconium nitrides films were synthesized on Ti6Al4V substrates at a bias voltage of −50 V, −80 V, −110 V and −150 V by the direct current (DC) reactive magnetron sputtering technique. The as-deposited coatings were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The wear and corrosion resistance of the obtained ZrN coatings were evaluated to determine the possibility for their implementation in modern biomedical applications. It was found that the intensity of the diffraction peak of the Zr-N phase corresponding to the (1 1 1) crystallographic plane rose as the bias voltage increased, while the ZrN coatings’ thickness reduced from 1.21 µm to 250 nm. The ZrN films’ surface roughness rose up to 75 nm at −150 V. Wear tests showed an increase in the wear rate and wear intensity as the bias voltage increased. Corrosion studies of the ZrN coatings were carried out by three electrochemical methods: open circuit potential (OCP), cyclic voltammetry (polarization measurements) and electrochemical impedance spectroscopy (EIS). All electrochemical measurements confirmed that the highest protection to corrosion is the ZrN coating, which was deposited on the Ti6Al4V substrate at a bias voltage of −150 V. Full article
(This article belongs to the Special Issue Anti-corrosion Coatings of Metals and Alloys—New Perspectives)
Show Figures

Figure 1

17 pages, 3612 KiB  
Article
Dissolution of Lithium Contained in Lepidolite Using Ascorbic Acid: Kinetic and Modeling Analysis
by Sayra Ordoñez, Iván A. Reyes, Francisco Patiño, Hernán Islas, Martín Reyes, Miguel Pérez, Julio C. Juárez and Mizraim U. Flores
Materials 2024, 17(22), 5447; https://doi.org/10.3390/ma17225447 - 7 Nov 2024
Viewed by 388
Abstract
In this work, a kinetic study and modeling of the decomposition of a rock sample in an ascorbic acid medium with a high content of lepidolite phase were carried out, the results of which are of great importance due to the sample’s high [...] Read more.
In this work, a kinetic study and modeling of the decomposition of a rock sample in an ascorbic acid medium with a high content of lepidolite phase were carried out, the results of which are of great importance due to the sample’s high lithium (Li) content. The rock sample was characterized by X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and X-ray photoelectron spectroscopy (XPS), and the mineral species detected in the sample were lepidolite, at 65.3%, quartz, at 30.6%, and muscovite, at 4.1%, with a quantitative chemical analysis indicating the presence of elements such as Li, Si, K, Na, O, Al and, to a lesser extent, Fe and Ti; this highlights that the Li content present in the sample was 3.38%. Lithium was the element with which the chemical analysis of the kinetics was performed, resulting in decomposition curves comprising the induction period, progressive conversion and stabilization; this highlighted that the reaction progressed during the first two periods, obtaining a reaction order (n) of 0.4307 for the induction period and an activation energy (Ea) of 48.58 kJ mol−1, followed by a progressive conversion period with n = 0.309 and Ea = 25.161 kJ mol−1. This suggested a mixed control regime present in the lower temperature ranges, with a transition from chemical control to transport control present at high temperatures, with the study of the nature of the reaction and the concentration effect showing that chemical control predominates. The kinetic parameters and kinetic expressions for both periods were obtained, with the modeling showing that the calculated and experimental data do not present a major discrepancy. Full article
Show Figures

Graphical abstract

20 pages, 4836 KiB  
Article
Simple Scaling as a Tool to Help Assess the Closure-Free da/dN Versus ΔKeff Curve in a Range of Materials
by Rhys Jones, Andrew S. M. Ang and Daren Peng
Materials 2024, 17(22), 5423; https://doi.org/10.3390/ma17225423 - 6 Nov 2024
Viewed by 356
Abstract
Recent studies have proposed a simple formula, which is based on Elber’s original approach to account for R-ratio effects, for determining the crack closure-free ΔKeff versus da/dN curve from the measured R-ratio-dependent ΔK versus da/ [...] Read more.
Recent studies have proposed a simple formula, which is based on Elber’s original approach to account for R-ratio effects, for determining the crack closure-free ΔKeff versus da/dN curve from the measured R-ratio-dependent ΔK versus da/dN curves. This approach, which is termed “Simple Scaling,” has been shown to collapse the various R-ratio-dependent curves onto a single curve. Indeed, this approach has been verified for a number of tests on metals, polymers, and a medium-entropy alloy. However, it has not yet been used to help assess/determine the closure-free ΔKeff versus da/dN curve. The current paper addresses this shortcoming and illustrates how to use this methodology to assess the ΔKeff versus da/dN curves given in the open literature for tests on a number of steels, aluminum alloys, STOA Ti-6Al-4V, a magnesium alloy, and Rene 95. As such, it would appear to be a useful tool for assessing fatigue crack growth. Full article
Show Figures

Figure 1

18 pages, 17356 KiB  
Article
A Study of the Features of Coating Deposition on a Carbide Substrate Using Preliminary Etching with Glow-Discharge Plasma
by Sergey Grigoriev, Marina Volosova, Yuri Bublikov, Catherine Sotova, Filipp Milovich, Anton Seleznev, Ilya Shmakov and Alexey Vereschaka
Surfaces 2024, 7(4), 920-937; https://doi.org/10.3390/surfaces7040060 - 2 Nov 2024
Viewed by 433
Abstract
The properties of coatings obtained using two surface preparation methods were compared: heating and etching by ion bombardment with plasma generation by arc evaporators and heating and etching by a glow discharge. A Ti-TiN-(Ti,Cr,Al)N coating was deposited. The use of a glow discharge [...] Read more.
The properties of coatings obtained using two surface preparation methods were compared: heating and etching by ion bombardment with plasma generation by arc evaporators and heating and etching by a glow discharge. A Ti-TiN-(Ti,Cr,Al)N coating was deposited. The use of a glow discharge provides better resistance of the coating to destruction during the scratch test and wear resistance of metal-cutting tools when turning steel. As the cutting speed increases, the advantage in wear resistance of the coating deposited using a glow discharge increases. During the process of heating and etching by ion bombardment with metal ions, a nanolayer rich in cobalt and tooling elements (iron, molybdenum) is formed in the area of the interface of the coating and the carbide substrate. When heated and etched by a glow discharge, such a layer does not form. When using both methods, there is identical diffusion of tungsten into the coating and diffusion of chromium and possibly titanium into the substrate. Thus, the glow-discharge heating and etching method can be effectively used in the process of PVD coating deposition. Full article
Show Figures

Figure 1

22 pages, 3722 KiB  
Article
X-Ray Photoelectron Spectroscopy of TixAl and TixAl/A-Si:H Interlayer with Different Thicknesses on Stainless Steel to Enhancing Adhesion of DLC Films
by W. S. Hincapie Campos, J. M. Gutiérrez Bernal, G. Capote and V. J. Trava-Airoldi
Coatings 2024, 14(11), 1393; https://doi.org/10.3390/coatings14111393 - 1 Nov 2024
Viewed by 531
Abstract
In this research, two intermediate layers were deposited on 316L stainless steel to improve the adhesion of diamond-like carbon (DLC) films, one composed of TixAl and produced using the RF sputtering technique with three thicknesses, 100 nm, 200 nm, and 300 [...] Read more.
In this research, two intermediate layers were deposited on 316L stainless steel to improve the adhesion of diamond-like carbon (DLC) films, one composed of TixAl and produced using the RF sputtering technique with three thicknesses, 100 nm, 200 nm, and 300 nm; the other, interlayer composed of amorphous hydrogenated silicon (a-Si:H). The DLC films were deposited using the pulsed-DC PECVD method with an active screen to achieve the AISI 316L/TixAl//DLC and AISI 316L/TiₓAl/a-Si/DLC configurations. The binding energy between the substrate/TixAl and TixAl/a-Si:H was investigated via X-ray photoelectron spectroscopy with high-resolution spectra. The chemical composition and microstructure of the titanium–aluminum interlayers were investigated using energy-dispersive X-ray spectroscopy and X-ray diffraction, and the microstructure of the DLC coatings was studied using Raman spectroscopy. The coatings’ adherence was measured using scratch and indentation tests, and the hardness of the DLC coatings was determined with the nanoindentation test. The X-ray diffractograms did not allow the determination of any crystalline structure in the TixAl interlayers. The XPS results showed that between the AISI 316L substrate and the TixAl intermediate layer, Ti-O-Fe and FeAl2O4 were formed. On the other hand, at the TixAl/a-Si:H interface, TiSi2 and Al2SiO5 compounds were identified. The DLC coatings grew as hydrogenated amorphous carbon with a hydrogen content of around 30 at.% and a hardness of 24 GPa. The deposition methods used and the TixAl/a-Si:H interlayers allowed the obtainment of adherent DLC coatings on AISI 316L stainless steel substrates. High critical load values of about 30 N were obtained. The novelty of this work is underscored by the absence of previous studies that thoroughly examine the bonds present in interlayers used as gradients to enhance the adhesion of DLC. Full article
Show Figures

Figure 1

20 pages, 12927 KiB  
Article
Wear Behavior of TiAlN/DLC Coating on Tools in Milling Copper–Beryllium Alloy AMPCOLOY® 83
by Fábio R. S. Freitas, Rafaela C. B. Casais, Francisco J. G. Silva, Naiara P. V. Sebbe, Rui P. Martinho, Vitor F. C. Sousa, Rita C. M. Sales-Contini and Filipe Fernandes
Coatings 2024, 14(11), 1354; https://doi.org/10.3390/coatings14111354 - 24 Oct 2024
Viewed by 614
Abstract
In recent years, the exponential growth of the machining industry and its needs has driven the development of new manufacturing technologies, more advanced cutting tool types, and new types of coatings to extend tool lifespan. New coating solutions have been studied and implemented [...] Read more.
In recent years, the exponential growth of the machining industry and its needs has driven the development of new manufacturing technologies, more advanced cutting tool types, and new types of coatings to extend tool lifespan. New coating solutions have been studied and implemented for machining tools, which provide a low friction coefficient and lubrication, thus increasing tool lifespan. Following this line of reasoning, it is relevant to develop scientific work aimed at studying the behavior of cutting tools coated with thin films that promote low friction and high lubrication, as is the case with DLC (diamond-like carbon) coatings. These coatings promote good resistance to oxidation and allow high machining speeds, properties also exhibited by TiAlN (titanium aluminum nitride) coatings. In fact, there is a gap in the literature studying the performance of cemented carbide tools provided with multilayered coatings in milling operations of Cu–Be alloys, commonly used in inserts of plastic injection molds. This study’s objective was to investigate the effect of a multilayer coating (TiAlN/DLC) on end-milling tools to analyze their cutting performance when milling a Cu–Be alloy known commercially as AMPCOLOY®83. The quality of the machined surface was evaluated, and the wear of the cutting tool was studied. A comparative analysis of milling parameters with respect to their effect on the condition of the surface after machining and the resulting wear on the tools, using coated and uncoated tools and different machining parameters, allowed us to verify a better quality of the machined surface and wear quantified in approximately half when used coated tools. Full article
Show Figures

Figure 1

18 pages, 15188 KiB  
Article
Research on 4N8 High-Purity Quartz Purification Technology Prepared Using Vein Quartz from Pakistan
by Yutian Xie, Mei Xia, Xiaoyong Yang, Ibrar Khan and Zhenhui Hou
Minerals 2024, 14(10), 1049; https://doi.org/10.3390/min14101049 - 19 Oct 2024
Viewed by 674
Abstract
This study investigates the potential of two quartz vein ores from the Hunza District, Gilgit-Baltistan, Pakistan, as raw materials to obtain 4N8 high-purity quartz (HPQ) sand. Various quartz purification processes were examined, including ore calcination, water quenching, flotation, sand calcination, acid leaching, and [...] Read more.
This study investigates the potential of two quartz vein ores from the Hunza District, Gilgit-Baltistan, Pakistan, as raw materials to obtain 4N8 high-purity quartz (HPQ) sand. Various quartz purification processes were examined, including ore calcination, water quenching, flotation, sand calcination, acid leaching, and chlorination roasting. Analytical techniques such as optical microscopy, Raman spectroscopy, and inductively coupled plasma spectroscopy were employed to analyze the microstructure, inclusion characteristics, and chemical composition of both the quartz raw ore and the processed quartz sand. Microscopic observation reveals that the PK-AML quartz raw ore has relatively high purity, the secondary fluid inclusions are arranged in a directional–linear manner or developed along crystal micro-cracks, and most intracrystalline regions exhibit low inclusion contents, while the PK-JTLT quartz raw ore contains a certain number of melt inclusions. The two processed quartz sand samples exhibit a smooth surface with extremely low fluid inclusion content. A comparative analysis of different purification processes shows that quartz sand calcination has a higher impurity removal rate than ore calcination. After crushing the raw ore into sand, the particles become finer with a larger specific surface area. Quartz sand calcination maximally exposes the inclusions and lattice impurity elements within the quartz, facilitating subsequent impurity removal through acid leaching. Following the processes of crushing, ultrasonic desliming, flotation, sand calcination, water quenching, acid leaching, and chlorination roasting, the SiO2 content of PK-AML processed quartz sand is 99.998 wt.%, with only a small amount of Ti and Li remaining, and a total impurity element content of 20.83 µg·g−1. This meets the standard requirements for crucible preparation in industrial applications, making this vein quartz suitable for producing high-end HPQ products. In contrast, the overall purity of PK-JTLT quartz is lower, and the high contents of impurity elements such as Li, Al, and Ti are difficult to remove via purification experiments. The SiO2 content of PK-JTLT processed quartz sand is 99.991 wt.%, which is applied to higher-quality glass products such as photovoltaic glass, electronic glass, and optical glass, thus presenting broad prospects for application. Full article
(This article belongs to the Special Issue Physicochemical Properties and Purification of Quartz Minerals)
Show Figures

Figure 1

27 pages, 11358 KiB  
Article
Geochemistry and Mineralogy of Upper Paleozoic Coal in the Renjiazhuang Mining District, Northwest Ordos Basin, China: Evidence for Sediment Sources, Depositional Environment, and Elemental Occurrence
by Meng Wu, Yong Qin, Guchun Zhang, Jian Shen, Jianxin Yu, Xiaoyan Ji, Shifei Zhu, Wenqiang Wang, Yali Wan, Ying Liu and Yunhu Qin
Minerals 2024, 14(10), 1045; https://doi.org/10.3390/min14101045 - 18 Oct 2024
Viewed by 474
Abstract
This study aims to investigate the depositional environment, sediment sources, and elemental occurrence of Upper Paleozoic coal in the Renjiazhuang Mining District, Western Ordos Basin. Furthermore, SEM-EDX, optical microscope (OM), ICP-AES, ICP-MS, and AAS were used. Compared with hard coal of the world, [...] Read more.
This study aims to investigate the depositional environment, sediment sources, and elemental occurrence of Upper Paleozoic coal in the Renjiazhuang Mining District, Western Ordos Basin. Furthermore, SEM-EDX, optical microscope (OM), ICP-AES, ICP-MS, and AAS were used. Compared with hard coal of the world, M3 coals were enriched in Ga, Li, Zr, Be, Ta, Hf, Nb, Pb, and Th, M5 coals were enriched in Li (CC = 10.21), Ta (CC = 6.96), Nb (CC = 6.95), Be, Sc, Ga, Hf, Th, Pb, Zr, In, and REY, while M9 coals were enriched in Li (CC = 14.79), Ta (CC = 5.41), Ga, W, Hf, Nb, Zr, Pb, and Th. In addition, minerals were mainly composed of kaolinite, dolomite, pyrite, feldspar, calcite, and quartz, locally visible minor amounts of monazite, zircon, clausthalite, chalcopyrite, iron dolomite, albite, fluorite, siderite, galena, barite, boehmite, and rutile. In addition, maceral compositions of M3 coals and M9 coals were dominated by vitrinite (up to 78.50%), while M5 coals were the main inertite (up to 76.26%), and minor amounts of liptinite. REY distribution patterns of all samples exhibited light REY enrichment and negative Eu anomalies. The geochemistry of samples (TiO2 and Al2O3, Nb/Y and Zr × 0.0001/TiO2 ratios, and REY enrichment types) indicates that the sediment sources of samples originated from felsic igneous rocks. Indicator parameters (TPI, GI, VI, GWI, V/I, Sr/Ba, Th/U, and CeN/CeN*) suggest that these coals were formed in different paleopeat swamp environments: M3 coal was formed in a lower delta plain and terrestrial (lacustrine) facies with weak oxidation and reduction, and M5 coal was formed in a terrestrial and dry forest swamp environment with weak oxidation–oxidation, while M9 coal was formed in a seawater environment of humid forest swamps and the transition from the lower delta plain to continental sedimentation with weak oxidation and reduction. Statistical methods were used to study the elemental occurrence. Moreover, Li, Ta, Hf, Nb, Zr, Pb, and Th elements were associated with aluminosilicates, and Ga occurred as silicate. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

20 pages, 10023 KiB  
Article
Features of the Application of Coatings Based on the ZrN System to Increase Resistance to Mechanical Wear and Corrosion of Titanium Alloy Products
by Marina Volosova, Valery Zhylinski, Catherine Sotova, Filipp Milovich, Anton Seleznev, Hanna Pyanka, Kirill Makarevich and Alexey Vereschaka
Coatings 2024, 14(10), 1304; https://doi.org/10.3390/coatings14101304 - 12 Oct 2024
Viewed by 886
Abstract
The coatings of ZrN, (Zr,Ti)N, (Ti,Zr,Hf)N and (Ti,Zr,Nb)N deposited on the titanium alloy substrate were compared. The wear resistance in the pin-on-disk test together with the Al2O3 indenter and the corrosion resistance in 3.5% NaCl solution were studied. It was [...] Read more.
The coatings of ZrN, (Zr,Ti)N, (Ti,Zr,Hf)N and (Ti,Zr,Nb)N deposited on the titanium alloy substrate were compared. The wear resistance in the pin-on-disk test together with the Al2O3 indenter and the corrosion resistance in 3.5% NaCl solution were studied. It was found that the (Zr,Nb,Ti)N coating has the best resistance to wear, but has low corrosion resistance. The (Ti,Zr,Hf)N coating, on the contrary, has the best corrosion resistance, but low resistance to wear. The ZrN coating has good corrosion resistance combined with good resistance to wear. This coating is best suited for use in friction conditions with a ceramic counterbody under the influence of seawater. An important resource for increasing the properties of coatings is increasing their adhesion to the substrate, which can be achieved in two combined ways: (1) complete removal of the original oxide layer from the surface of the substrate and (2) the use of optimal compositions of the adhesive sublayer, which have not only high adhesive properties in relation to both the substrate and the coating, but also high strength. While the introduction of Nb into the ZrN coating composition increases wear resistance and the introduction of Hf increases corrosion resistance, the ZrN coating without additives best resists wear and corrosion simultaneously. Full article
Show Figures

Figure 1

Back to TopTop