Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = UAVSAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 15128 KiB  
Article
Wildfire Threshold Detection and Progression Monitoring Using an Improved Radar Vegetation Index in California
by Dustin Horton, Joel T. Johnson, Ismail Baris, Thomas Jagdhuber, Rajat Bindlish, Jeonghwan Park and Mohammad M. Al-Khaldi
Remote Sens. 2024, 16(16), 3050; https://doi.org/10.3390/rs16163050 - 19 Aug 2024
Viewed by 545
Abstract
To address the recent increase in wildfire severity and incidence, as well as the subsequent financial and physical costs, forest managers and wildland firefighting agencies rely on remotely sensed products for better decision-making and mitigation efforts. To address the remote sensing needs of [...] Read more.
To address the recent increase in wildfire severity and incidence, as well as the subsequent financial and physical costs, forest managers and wildland firefighting agencies rely on remotely sensed products for better decision-making and mitigation efforts. To address the remote sensing needs of these agencies, which include high spatial resolution, immunity to atmospheric and solar illumination effects, and day/night capabilities, the use of synthetic aperture radar (SAR) is under investigation for application in current and upcoming systems for all phases of a wildfire. Focusing on the active phase, a method for monitoring wildfire activity is presented based on changes in the radar vegetation index (RVI). L-band backscatter measurements from NASA/JPL’s UAVSAR instrument are used to obtain RVI images on multiple dates during the 2020 Bobcat (located in Southern CA, USA) and Hennessey (located in Northern CA, USA) fires and the 2021 Caldor (located in the Sierra Nevada region of CA, USA) fire. Changes in the RVI between measurement dates of a single fire are then compared to indicators of fire activity such as ancillary GIS-based burn extent perimeters and the Landsat 8-based difference normalized burn ratio (dNBR). An RVI-based wildfire “burn” detector/index is then developed by thresholding the RVI change. A combination of the receiver operating characteristic (ROC) curves and F1 scores for this detector are used to derive change detection thresholds at varying spatial resolutions. Six repeat-track UAVSAR lines over the 2020 fires are used to determine appropriate threshold values, and the performance is subsequently investigated for the 2021 Caldor fire. The results show good performance for the Bobcat and Hennessey fires at 100 m resolution, with optimum probability of detections of 67.89% and 71.98%, F1 scores of 0.6865 and 0.7309, and Matthews correlation coefficients of 0.5863 and 0.6207, respectively, with an overall increase in performance for all metrics as spatial resolution becomes coarser. The results for pixels identified as “burned” compare well with other fire indicators such as soil burn severity, known progression maps, and post-fire agency publications. Good performance is also observed for the Caldor fire where the percentage of pixels identified as burned within the known fire perimeters ranges from 37.87% at ~5 m resolution to 88.02% at 500 m resolution, with a general increase in performance as spatial resolution increases. All detections for Caldor show dense collections of burned pixels within the known perimeters, while pixels identified as burned that lie outside of the know perimeters have a sparse spatial distribution similar to noise that decreases as spatial resolution is degraded. The Caldor results also align well with other fire indicators such as soil burn severity and vegetation disturbance. Full article
(This article belongs to the Section Earth Observation for Emergency Management)
Show Figures

Figure 1

17 pages, 12382 KiB  
Article
Analysis of Mass Wasting Processes in the Slumgullion Landslide Using Multi-Track Time-Series UAVSAR Images
by Jiehua Cai, Changcheng Wang and Lu Zhang
Remote Sens. 2023, 15(19), 4746; https://doi.org/10.3390/rs15194746 - 28 Sep 2023
Cited by 1 | Viewed by 1064
Abstract
The Slumgullion landslide is a large translational debris slide whose currently active part has likely been sliding for approximately 300 years. Its permanent motion and evolutionary processes have attracted the attention of many researchers. In order to study its mass wasting processes and [...] Read more.
The Slumgullion landslide is a large translational debris slide whose currently active part has likely been sliding for approximately 300 years. Its permanent motion and evolutionary processes have attracted the attention of many researchers. In order to study its mass wasting processes and evolution trend, the spatial–temporal displacement of the Slumgullion landslide was retrieved using an adaptive pixel offset tracking (POT) method with multi-track Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) images. Based on three-dimensional displacement and slope information, we then revealed the spatial–temporal distribution of surface mass depletion or accumulation in the landslide, which provides a new perspective to analyze the evolutionary processes of landslides. The results indicate that the Slumgullion landslide had a spatially variable displacement, with a maximum displacement of 35 m. The novel findings of this study mainly include two parts. First, we found that the surface mass accumulated in the toe of the landslide and depleted in the top and middle area during the interval, which could increase the resisting force and decrease the driving force of the Slumgullion landslide. This result is compelling evidence which indicates the Slumgullion landslide should eventually tend to be stable. Second, we found that the distribution of geological structures can well explain some of the unique mass wasting in the Slumgullion landslide. The larger local mass depletion in the landslide neck area verifies that the sharp velocity increase in this region is not only caused by the reduction in width but is also significantly affected by the local normal faults. In summary, this study provides an insight into the relation between the landslide motion, mass volume change, and geological structure. The results demonstrate the great potential of multi-track airborne SAR for displacement monitoring and evolutionary analysis of landslides. Full article
Show Figures

Figure 1

21 pages, 53845 KiB  
Article
A Five-Component Decomposition Method with General Rotated Dihedral Scattering Model and Cross-Pol Power Assignment
by Yancui Duan, Sinong Quan, Hui Fan, Zhenhai Xu and Shunping Xiao
Remote Sens. 2023, 15(18), 4512; https://doi.org/10.3390/rs15184512 - 13 Sep 2023
Viewed by 941
Abstract
The model-based polarimetric decomposition is extensively studied due to its simplicity and clear physical interpretation of Polarimetric Synthetic Aperture Radar (PolSAR) data. Though there are many fine basic scattering models and well-designed decomposition methods, the overestimation of volume scattering (OVS) may still occur [...] Read more.
The model-based polarimetric decomposition is extensively studied due to its simplicity and clear physical interpretation of Polarimetric Synthetic Aperture Radar (PolSAR) data. Though there are many fine basic scattering models and well-designed decomposition methods, the overestimation of volume scattering (OVS) may still occur in highly oriented buildings, resulting in severe scattering mechanism ambiguity. It is well known that not only vegetation areas but also oriented buildings may cause intense cross-pol power. To improve the scattering mechanism ambiguity, an appropriate scattering model for oriented buildings and a feasible strategy to assign the cross-pol power between vegetation and oriented buildings are of equal importance. From this point of view, we propose a five-component decomposition method with a general rotated dihedral scattering model and an assignment strategy of cross-pol power. The general rotated dihedral scattering model is established to characterize the integral and internal cross-pol scattering from oriented buildings, while the assignment of cross-pol power between volume and rotated dihedral scattering is achieved by using an eigenvalue-based descriptor DOOB. In addition, a simple branch condition with explicit physical meaning is proposed for model parameters inversion. Experiments on spaceborne Radarsat−2 C band and airborne UAVSAR L band PolSAR datasets demonstrate the effectiveness and advantages of the proposed method in the quantitative characterization of scattering mechanisms, especially for highly oriented buildings. Full article
Show Figures

Graphical abstract

21 pages, 10897 KiB  
Article
Quad-Pol SAR Data Reconstruction from Dual-Pol SAR Mode Based on a Multiscale Feature Aggregation Network
by Junwu Deng, Peng Zhou, Mingdian Li, Haoliang Li and Siwei Chen
Remote Sens. 2023, 15(17), 4182; https://doi.org/10.3390/rs15174182 - 25 Aug 2023
Cited by 2 | Viewed by 1470
Abstract
Polarimetric synthetic aperture radar (PolSAR) is widely used in remote sensing applications due to its ability to obtain full-polarization information. Compared to the quad-pol SAR, the dual-pol SAR mode has a wider observation swath and is more common in most SAR systems. The [...] Read more.
Polarimetric synthetic aperture radar (PolSAR) is widely used in remote sensing applications due to its ability to obtain full-polarization information. Compared to the quad-pol SAR, the dual-pol SAR mode has a wider observation swath and is more common in most SAR systems. The goal of reconstructing quad-pol SAR data from the dual-pol SAR mode is to learn the contextual information of dual-pol SAR images and the relationships among polarimetric channels. This work is dedicated to addressing this issue, and a multiscale feature aggregation network has been established to achieve the reconstruction task. Firstly, multiscale spatial and polarimetric features are extracted from the dual-pol SAR images using the pretrained VGG16 network. Then, a group-attention module (GAM) is designed to progressively fuse the multiscale features extracted by different layers. The fused feature maps are interpolated and aggregated with dual-pol SAR images to form a compact feature representation, which integrates the high- and low-level information of the network. Finally, a three-layer convolutional neural network (CNN) with a 1 × 1 convolutional kernel is employed to establish the mapping relationship between the feature representation and polarimetric covariance matrices. To evaluate the quad-pol SAR data reconstruction performance, both polarimetric target decomposition and terrain classification are adopted. Experimental studies are conducted on the ALOS/PALSAR and UAVSAR datasets. The qualitative and quantitative experimental results demonstrate the superiority of the proposed method. The reconstructed quad-pol SAR data can better sense buildings’ double-bounce scattering changes before and after a disaster. Furthermore, the reconstructed quad-pol SAR data of the proposed method achieve a 97.08% classification accuracy, which is 1.25% higher than that of dual-pol SAR data. Full article
Show Figures

Figure 1

20 pages, 25724 KiB  
Article
Adaptive Speckle Filter for Multi-Temporal PolSAR Image with Multi-Dimensional Information Fusion
by Haoliang Li, Xingchao Cui, Mingdian Li, Junwu Deng and Siwei Chen
Remote Sens. 2023, 15(14), 3679; https://doi.org/10.3390/rs15143679 - 23 Jul 2023
Cited by 1 | Viewed by 1461
Abstract
Polarimetric synthetic aperture radar (PolSAR) is an important sensor for earth observation. Multi-temporal PolSAR images obtained by successive observations of the region of interest contain rich polarimetric–temporal–spatial information of the land covers, which has wide applications. Speckle filtering becomes a necessary pre-processing for [...] Read more.
Polarimetric synthetic aperture radar (PolSAR) is an important sensor for earth observation. Multi-temporal PolSAR images obtained by successive observations of the region of interest contain rich polarimetric–temporal–spatial information of the land covers, which has wide applications. Speckle filtering becomes a necessary pre-processing for many subsequent applications. Currently, it is common to filter multi-temporal PolSAR data by directly using a speckle filter developed for single SAR or PolSAR data. The cross-correlation between different time series contains rich information in multi-temporal PolSAR images. How to utilize complete polarimetric–temporal–spatial information becomes a large challenge to achieve more satisfied performances of speckle reduction and details preservation simultaneously. This work dedicates to this issue and develops a novel speckle filtering approach for multi-temporal PolSAR data by multi-dimensional information fusion. The core idea is to establish an adaptive and efficient strategy of similar pixel selection based on the similarity test of multi-temporal polarimetric covariance matrices. This similar pixel selection scheme fuses the complete information of multi-temporal PolSAR data. The sensitivity of the proposed scheme is demonstrated with several typical and challenging texture patterns. Then, an adaptive speckle filter is established specifically for multi-temporal PolSAR data. Intensive comparison studies are carried out with airborne UAVSAR datasets and spaceborne ALOS/PALSAR datasets. Quantitative investigations in terms of the equivalent number of looks (ENL) and the figure of merit (FOM) indexes demonstrate and validate the superiority of the proposed method. Full article
(This article belongs to the Special Issue Advance in SAR Image Despeckling)
Show Figures

Figure 1

18 pages, 13409 KiB  
Article
Improving Forest Canopy Height Estimation Using a Semi-Empirical Approach to Overcome TomoSAR Phase Errors
by Hongbin Luo, Cairong Yue, Hua Yuan and Si Chen
Forests 2023, 14(7), 1479; https://doi.org/10.3390/f14071479 - 19 Jul 2023
Cited by 2 | Viewed by 1110
Abstract
Forest canopy height is an important forest indicator parameter. Synthetic aperture radar tomography (TomoSAR) is an effective method to characterize forest canopy height and describe forest 3D structure; however, the residual phase error of TomoSAR affects the focus of the relative reflectance and [...] Read more.
Forest canopy height is an important forest indicator parameter. Synthetic aperture radar tomography (TomoSAR) is an effective method to characterize forest canopy height and describe forest 3D structure; however, the residual phase error of TomoSAR affects the focus of the relative reflectance and can lead to errors in forest canopy height estimation. Therefore, this paper proposes a semi-empirical method to overcome the residual phase effects on forest canopy height estimation. In this study, we used airborne multi-baseline UAVSAR data to estimate forest canopy height via TomoSAR techniques and applied a semi-empirical method to improve forest canopy height estimation without phase calibration to mitigate the effects of phase error. The process is divided into three stages: the first step uses a semi-empirical method to initially determine the optimal relative reflectance loss threshold (K) by excluding the inverse extremes; in the second and third steps, the percentile height was used to gradually reduce the height interval between the upper and lower envelopes to minimize overestimation of extreme values and the lower vegetation. When the root mean square error (RMSE) was minimized, the percentile combinations were determined between the inversion results and a LiDAR dataset of the area. The results show that the canopy height estimation results are not satisfactory when relying solely on the K value to estimate the height difference between the envelope at the top of the forest and the ground; the best result was obtained when K = 0.4, but the corresponding R2 value was only 0.13, and the RMSE was 15.23 m. In our proposed method, the K value is determined as 0.3 by excluding the extreme values of the inversion result in the initial step—the corresponding R2 and RMSE values were 0.59 and 10.73 m, respectively, representing an RMSE decrease of 29.54% relative to the initial K value. After two steps of correction overestimation, the inversion accuracy was significantly improved with an R2 value of 0.65 and an RMSE of 9.69 m, corresponding to an RMSE decrease of 36.38%. Overall, the findings of the study represent an important reference for optimizing future spaceborne TomoSAR forest canopy height estimates. Full article
Show Figures

Figure 1

11 pages, 908 KiB  
Communication
CBIR-SAR System Using Stochastic Distance
by Alcilene Dalília Sousa, Pedro Henrique dos Santos Silva, Romuere Rodrigues Veloso Silva, Francisco Alixandre Àvila Rodrigues and Fatima Nelsizeuma Sombra Medeiros
Sensors 2023, 23(13), 6080; https://doi.org/10.3390/s23136080 - 1 Jul 2023
Viewed by 976
Abstract
This article proposes a system for Content-Based Image Retrieval (CBIR) using stochastic distance for Synthetic-Aperture Radar (SAR) images. The methodology consists of three essential steps for image retrieval. First, it estimates the roughness (α^) and scale (γ^) [...] Read more.
This article proposes a system for Content-Based Image Retrieval (CBIR) using stochastic distance for Synthetic-Aperture Radar (SAR) images. The methodology consists of three essential steps for image retrieval. First, it estimates the roughness (α^) and scale (γ^) parameters of the GI0 distribution that models SAR data in intensity. The parameters of the model were estimated using the Maximum Likelihood Estimation and the fast approach of the Log-Cumulants method. Second, using the triangular distance, CBIR-SAR evaluates the similarity between a query image and images in the database. The stochastic distance can identify the most similar regions according to the image features, which are the estimated parameters of the data model. Third, the performance of our proposal was evaluated by applying the Mean Average Precision (MAP) measure and considering clippings from three radar sensors, i.e., UAVSAR, OrbiSaR-2, and ALOS PALSAR. The CBIR-SAR results for synthetic images achieved the highest MAP value, retrieving extremely heterogeneous regions. Regarding the real SAR images, CBIR-SAR achieved MAP values above 0.833 for all polarization channels for image samples of forest (UAVSAR) and urban areas (ORBISAR). Our results confirmed that the proposed method is sensitive to the degree of texture, and hence, it relies on good estimates. They are inputs to the stochastic distance for effective image retrieval. Full article
(This article belongs to the Collection Remote Sensing Image Processing)
Show Figures

Figure 1

26 pages, 25669 KiB  
Article
P-Band UAV-SAR 4D Imaging: A Multi-Master Differential SAR Tomography Approach
by Zhen Wang, Yangkai Wei, Zegang Ding, Jian Zhao, Tao Sun, Yan Wang, Han Li and Tao Zeng
Remote Sens. 2023, 15(9), 2459; https://doi.org/10.3390/rs15092459 - 7 May 2023
Cited by 1 | Viewed by 1903
Abstract
Due to its rapid deployment, high-flexibility, and high-accuracy advantages, the unmanned-aerial-vehicle (UAV)-based differential synthetic aperture radar (SAR) tomography (D-TomoSAR) technique presents an attractive approach for urban risk monitoring. With its sufficiently long spatial and temporal baselines, it offers elevation and velocity resolution beyond [...] Read more.
Due to its rapid deployment, high-flexibility, and high-accuracy advantages, the unmanned-aerial-vehicle (UAV)-based differential synthetic aperture radar (SAR) tomography (D-TomoSAR) technique presents an attractive approach for urban risk monitoring. With its sufficiently long spatial and temporal baselines, it offers elevation and velocity resolution beyond the dimensions of range and azimuth, enabling four-dimensional (4D) SAR imaging. In the case of P-band UAV-SAR, a long spatial-temporal baseline is necessary to achieve high enough elevation-velocity dimensional resolution. Although P-band UAV-SAR maintains temporal coherence, it still faces two issues due to the extended spatial baseline, i.e., low spatial coherence and high sidelobes. To tackle these problems, we introduce a multi-master (MM) D-TomoSAR approach, contributing three main points. Firstly, the traditional D-TomoSAR signal model is extended to a MM one, which improves the average coherence coefficient and the number of baselines (NOB) as well as suppresses sidelobes. Secondly, a baseline distribution optimization processing is proposed to equalize the spatial–temporal baseline distribution, achieve more uniform spectrum samplings, and reduce sidelobes. Thirdly, a clustering-based outlier elimination method is employed to ensure 4D imaging quality. The proposed method is effectively validated through computer simulation and P-band UAV-SAR experiment. Full article
(This article belongs to the Special Issue Advances in SAR: Sensors, Methodologies, and Applications II)
Show Figures

Figure 1

16 pages, 6626 KiB  
Article
A Method for Forest Canopy Height Inversion Based on UAVSAR and Fourier–Legendre Polynomial—Performance in Different Forest Types
by Hongbin Luo, Cairong Yue, Hua Yuan, Ning Wang and Si Chen
Drones 2023, 7(3), 152; https://doi.org/10.3390/drones7030152 - 22 Feb 2023
Viewed by 2175
Abstract
Mapping forest canopy height at large regional scales is of great importance for the global carbon cycle. Polarized interferometric synthetic aperture radar is an efficient and irreplaceable remote sensing tool. Developing an efficient and accurate method for forest canopy height estimation is an [...] Read more.
Mapping forest canopy height at large regional scales is of great importance for the global carbon cycle. Polarized interferometric synthetic aperture radar is an efficient and irreplaceable remote sensing tool. Developing an efficient and accurate method for forest canopy height estimation is an important issue that needs to be addressed urgently. In this paper, we propose a novel four-stage forest height inversion method based on a Fourier–Legendre polynomial (FLP) with reference to the RVoG three-stage method, using the multi-baseline UAVSAR data from the AfriSAR project as the data source. The third-order FLP is used as the vertical structure function, and a small amount of ground phase and LiDAR canopy height is used as the input to solve and fix the FLP coefficients to replace the exponential function in the RVoG three-stage method. The performance of this method was tested in different forest types (mangrove and inland tropical forests). The results show that: (1) in mangroves with homogeneous forest structure, the accuracy based on the four-stage FLP method is better than that of the RVoG three-stage method. For the four-stage FLP method, R2 is 0.82, RMSE is 6.42 m and BIAS is 0.92 m, while the R2 of the RVoG three-stage method is 0.77, RMSE is 7.33 m, and bias is −3.49 m. In inland tropical forests with complex forest structure, the inversion accuracy based on the four-stage FLP method is lower than that of the RVoG three-stage method. The R2 is 0.50, RMSE is 11.54 m, and BIAS is 6.53 m for the four-stage FLP method; the R2 of the RVoG three-stage method is 0.72, RMSE is 8.68 m, and BIAS is 1.67 m. (2) Compared to the RVoG three-stage method, the efficiency of the four-stage FLP method is improved by about tenfold, with the reduction of model parameters. The inversion time of the FLP method in a mangrove forest is 3 min, and that of the RVoG three-stage method is 33 min. In an inland tropical forest, the inversion time of the FLP method is 2.25 min, and that of the RVoG three-stage method is 21 min. With the application of large regional scale data in the future, the method proposed in this study is more efficient when conditions allow. Full article
Show Figures

Figure 1

19 pages, 9458 KiB  
Article
Inundated Vegetation Mapping Using SAR Data: A Comparison of Polarization Configurations of UAVSAR L-Band and Sentinel C-Band
by Abdella Salem and Leila Hashemi-Beni
Remote Sens. 2022, 14(24), 6374; https://doi.org/10.3390/rs14246374 - 16 Dec 2022
Cited by 8 | Viewed by 2485
Abstract
Flood events have become intense and more frequent due to heavy rainfall and hurricanes caused by global warming. Accurate floodwater extent maps are essential information sources for emergency management agencies and flood relief programs to direct their resources to the most affected areas. [...] Read more.
Flood events have become intense and more frequent due to heavy rainfall and hurricanes caused by global warming. Accurate floodwater extent maps are essential information sources for emergency management agencies and flood relief programs to direct their resources to the most affected areas. Synthetic Aperture Radar (SAR) data are superior to optical data for floodwater mapping, especially in vegetated areas and in forests that are adjacent to urban areas and critical infrastructures. Investigating floodwater mapping with various available SAR sensors and comparing their performance allows the identification of suitable SAR sensors that can be used to map inundated areas in different land covers, such as forests and vegetated areas. In this study, we investigated the performance of polarization configurations for flood boundary delineation in vegetated and open areas derived from Sentinel1b, C-band, and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band data collected during flood events resulting from Hurricane Florence in the eastern area of North Carolina. The datasets from the sensors for the flooding event collected on the same day and same study area were processed and classified for five landcover classes using a machine learning method—the Random Forest classification algorithm. We compared the classification results of linear, dual, and full polarizations of the SAR datasets. The L-band fully polarized data classification achieved the highest accuracy for flood mapping as the decomposition of fully polarized SAR data allows land cover features to be identified based on their scattering mechanisms. Full article
(This article belongs to the Collection Feature Paper Special Issue on Forest Remote Sensing)
Show Figures

Figure 1

19 pages, 4294 KiB  
Article
A Method for Forest Canopy Height Inversion Based on Machine Learning and Feature Mining Using UAVSAR
by Hongbin Luo, Cairong Yue, Fuming Xie, Bodong Zhu and Si Chen
Remote Sens. 2022, 14(22), 5849; https://doi.org/10.3390/rs14225849 - 18 Nov 2022
Cited by 2 | Viewed by 2392
Abstract
The mapping of tropical rainforest forest structure parameters plays an important role in biodiversity and carbon stock estimation. The current mechanism models based on PolInSAR for forest height inversion (e.g., the RVoG model) are physical process models, and realistic conditions for model parameterization [...] Read more.
The mapping of tropical rainforest forest structure parameters plays an important role in biodiversity and carbon stock estimation. The current mechanism models based on PolInSAR for forest height inversion (e.g., the RVoG model) are physical process models, and realistic conditions for model parameterization are often difficult to establish for practical applications, resulting in large forest height estimation errors. As an alternative, machine learning approaches offer the benefit of model simplicity, but these tools provide limited capabilities for interpretation and generalization. To explore the forest height estimation method combining the mechanism model and the empirical model, we utilized UAVSAR multi-baseline PolInSAR L-band data from the AfriSAR project and propose a solution of a mechanism model combined with machine learning. In this paper, two mechanism models were used as controls, the RVoG three-phase method and the RVoG phase-coherence amplitude method. The vertical structure parameters of the forest obtained from the mechanism model were used as the independent variables of the machine learning model. Random forest (RF) and partial least squares (PLS) regression models were used to invert the forest canopy height. Results show that the inversion accuracy of the machine learning method, combined with the mechanism model, is significantly better than that of the single-mechanism model method. The most influential independent variables were penetration depth, volume coherence phase center height, coherence separation, and baseline selection. With the precondition that the cumulative contribution of the independent variables was greater than 90%, the number of independent variables in the two study areas was reduced from 19 to 4, and the accuracy of the RF-RVoG-DEP model was higher than that of the PLS-RVoG-DEP model. For the Lope test area, the R2 of the RVoG phase coherence amplitude method is 0.723, the RMSE is 8.583 m, and the model bias is −2.431 m; the R2 of the RVoG three-stage method is 0.775, the RMSE is 7.748, and the bias is 1.120 m, the R2 of the PLS-RVoG-DEP model is 0.850, the RMSE is 6.320 m, and the bias is 0.002 m; and the R2 of the RF-RVoG-DEP model is 0.900, the RMSE is 5.154 m, and the bias is −0.061 m. The results for the Pongara test area are consistent with the pattern for the Lope test area. The combined “fusion model” offers a substantial improvement in forest height estimation from the traditional mechanism modeling method. Full article
(This article belongs to the Collection Feature Paper Special Issue on Forest Remote Sensing)
Show Figures

Figure 1

21 pages, 32807 KiB  
Article
Fast Line Segment Detection and Large Scene Airport Detection for PolSAR
by Daochang Wang, Qi Liu, Qiang Yin and Fei Ma
Remote Sens. 2022, 14(22), 5842; https://doi.org/10.3390/rs14225842 - 18 Nov 2022
Cited by 5 | Viewed by 1887
Abstract
In this paper, we propose a fast Line Segment Detection algorithm for Polarimetric synthetic aperture radar (PolSAR) data (PLSD). We introduce the Constant False Alarm Rate (CFAR) edge detector to obtain the gradient map of the PolSAR image, which tests the equality of [...] Read more.
In this paper, we propose a fast Line Segment Detection algorithm for Polarimetric synthetic aperture radar (PolSAR) data (PLSD). We introduce the Constant False Alarm Rate (CFAR) edge detector to obtain the gradient map of the PolSAR image, which tests the equality of the covariance matrix using the test statistic in the complex Wishart distribution. A new filter configuration is applied here to save time. Then, the Statistical Region Merging (SRM) framework is utilized for the generation of line-support regions. As one of our main contributions, we propose a new Statistical Region Merging algorithm based on gradient Strength and Direction (SRMSD). It determines the merging predicate with consideration of both gradient strength and gradient direction. For the merging order, we set it by bucket sort based on the gradient strength. Furthermore, the pixels are restricted to belong to a unique region, making the algorithm linear in time cost. Finally, based on Markov chains and a contrario approach, the false alarm control of line segments is implemented. Moreover, a large scene airport detection method is designed based on the proposed line segment detection algorithm and scattering characteristics. The effectiveness and applicability of the two methods are demonstrated with PolSAR data provided by UAVSAR. Full article
Show Figures

Figure 1

22 pages, 10479 KiB  
Article
On the Effects of the Incidence Angle on the L-Band Multi-Polarisation Scattering of a Small Ship
by Muhammad Adil, Andrea Buono, Ferdinando Nunziata, Emanuele Ferrentino, Domenico Velotto and Maurizio Migliaccio
Remote Sens. 2022, 14(22), 5813; https://doi.org/10.3390/rs14225813 - 17 Nov 2022
Cited by 14 | Viewed by 2261
Abstract
The monitoring of ships is of paramount importance for ocean and coastal area surveillance. The synthetic aperture radar is shown to be a key sensor to provide effective and continuous observation of ships due to its unique imaging capabilities. When advanced synthetic aperture [...] Read more.
The monitoring of ships is of paramount importance for ocean and coastal area surveillance. The synthetic aperture radar is shown to be a key sensor to provide effective and continuous observation of ships due to its unique imaging capabilities. When advanced synthetic aperture radar imaging systems are considered, the full scattering information is available that was demonstrated to be beneficial in developing improved ship detection and classification algorithms. Nonetheless, the capability of polarimetric synthetic aperture radar to observe marine vessels is significantly affected by several imaging and environmental parameters, including the incidence angle. Nonetheless, how changes in the incidence angle affect the scattering of ships still needs to be further investigated since only a sparse analysis, i.e., on different kinds of ships of different sizes observed at multiple incidence angles, has been performed. Hence, in this study, for the first time, the polarimetric scattering of the same ship, i.e., a small fishing trawler, which is imaged multiple times under the same sea state conditions but in a wide range of incidence angles, is analysed. This unique opportunity is provided by a premium L-band UAVSAR airborne dataset that consists of five full-polarimetric synthetic aperture radar scenes collected in the Gulf of Mexico. Experimental results highlight the key role played by the incidence angle on both coherent, i.e., co-polarisation signature and pedestal height, and incoherent, i.e., multi-polarisation and total backscattering power, polarimetric scattering descriptors. Experimental results show that: (1) the polarised scattering component is more sensitive to the incidence angle with respect to the unpolarised one; (2) the co-polarised channel under horizontal polarisation dominated the polarimetric backscattering from the fishing trawler at lower angles of incidence, while both co-polarised channels contribute to the polarimetric backscattering at higher incidence angles; (3) the HV polarisation provides the largest target-to-clutter ratio at lower incidence angles, while the HH polarisation should be preferred at higher angles of incidence. Full article
(This article belongs to the Special Issue Added-Value SAR Products for the Observation of Coastal Areas)
Show Figures

Figure 1

19 pages, 3159 KiB  
Article
Potential of L- and C- Bands Polarimetric SAR Data for Monitoring Soil Moisture over Forested Sites
by Ramata Magagi, Safa Jammali, Kalifa Goïta, Hongquan Wang and Andreas Colliander
Remote Sens. 2022, 14(21), 5317; https://doi.org/10.3390/rs14215317 - 24 Oct 2022
Cited by 3 | Viewed by 2060
Abstract
This study investigates the potential of L- and C- bands Polarimetric Synthetic Aperture Radar (PolSAR) data to monitor soil moisture over the forested sites of SMAP Validation Experiment 2012 (SMAPVEX12). The optimal backscattering coefficients and polarimetric parameters to characterize the soil moisture were [...] Read more.
This study investigates the potential of L- and C- bands Polarimetric Synthetic Aperture Radar (PolSAR) data to monitor soil moisture over the forested sites of SMAP Validation Experiment 2012 (SMAPVEX12). The optimal backscattering coefficients and polarimetric parameters to characterize the soil moisture were determined based on L-band Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), C-band RADARSAT-2, and ground measurements composed of soil and vegetation parameters collected during SMAPVEX12. Linear and circular backscattering coefficients (σ0) and polarimetric parameters such as correlation coefficients (ρHHVV) and phase difference (φHHVV) between HH and VV, pedestal height (PH), entropy (H), anisotropy (A), α angle, surface (Ps), and double bounce (Pd) powers were used to develop the relationships with soil moisture. The analysis of these relationships shows that over the forested sites of SMAPVEX12: (a) at L-band several optimal backscattering coefficients and polarimetric parameters allow the monitoring of soil moisture, particularly the linear and circular σ0 (r = 0.60–0.96), Ps (r = 0.59–0.84), Pd (r = 0.60–0.82), ρHHHV_30°, ρVVHV_30°, φHHHV_30° and φHHVV_30° (r = 0.56–0.81). However, compared to the results obtained with σ0, there is no added value of the polarimetric parameters for soil moisture retrievals. (b) at C-band, only a few polarimetric parameters φHHHV, φVVHV, and φHHVV are correlated with soil moisture (r = ~0.90). They can contribute to soil moisture retrievals over forested sites when L-band data are not available. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

20 pages, 6226 KiB  
Article
Gap Filling Cloudy Sentinel-2 NDVI and NDWI Pixels with Multi-Frequency Denoised C-Band and L-Band Synthetic Aperture Radar (SAR), Texture, and Shallow Learning Techniques
by Kristofer Lasko
Remote Sens. 2022, 14(17), 4221; https://doi.org/10.3390/rs14174221 - 27 Aug 2022
Cited by 7 | Viewed by 4156
Abstract
Multispectral imagery provides unprecedented information on Earth system processes: however, data gaps due to clouds and shadows are a major limitation. Normalized-Difference Vegetation Index (NDVI) and Normalized-Difference Water Index (NDWI) are two spectral indexes employed for monitoring vegetation phenology, land-cover change and more. [...] Read more.
Multispectral imagery provides unprecedented information on Earth system processes: however, data gaps due to clouds and shadows are a major limitation. Normalized-Difference Vegetation Index (NDVI) and Normalized-Difference Water Index (NDWI) are two spectral indexes employed for monitoring vegetation phenology, land-cover change and more. Synthetic Aperture Radar (SAR) with its cloud-penetrating abilities can fill data gaps using coincident imagery. In this study, we evaluated C-band Sentinel-1, L-band Uninhabited Aerial Vehicle SAR (UAVSAR) and texture for gap filling using efficient machine learning regression algorithms across three seasons. Multiple models were evaluated including Support Vector Machine, Random Forest, Gradient Boosted Trees and an ensemble of models. The Gap filling ability of SAR was evaluated with Sentinel-2 imagery from the same date, 3 days and 8 days later than both SAR sensors in September. Sentinel-1 and Sentinel-2 imagery from winter and spring seasons were also evaluated. Because SAR imagery contains noise, we compared two robust de-noising methods and evaluated performance against a refined lee speckle filter. Mean Absolute Error (MAE) rates of the cloud gap-filling model were assessed across different dataset combinations and land covers. The results indicated de-noised Sentinel-1 SAR and UAVSAR with GLCM texture provided the highest predictive abilities with random forest R2 = 0.91 (±0.014), MAE = 0.078 (±0.003) (NDWI) and R2 = 0.868 (±0.015), MAE = 0.094 (±0.003) (NDVI) during September. The highest errors were observed across bare ground and forest, while the lowest errors were on herbaceous and woody wetland. Results on January and June imagery without UAVSAR were less strong at R2 = 0.60 (±0.036), MAE = 0.211 (±0.005) (NDVI), R2 = 0.61 (±0.043), MAE = 0.209 (±0.005) (NDWI) for January and R2 = 0.72 (±0.018), MAE = 0.142 (±0.004) (NDVI), R2 = 0.77 (±0.022), MAE = 0.125 (±0.004) (NDWI) for June. Ultimately, the results suggest de-noised C-band SAR with texture metrics can accurately predict NDVI and NDWI for gap-filling clouds during most seasons. These shallow machine learning models are rapidly trained and applied faster than intensive deep learning or time series methods. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

Back to TopTop