Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,330)

Search Parameters:
Keywords = V2X

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 17813 KiB  
Article
Parametric Investigation of Corner Effect on Soil Nailed Walls and Prediction Using Machine Learning Methods
by Semiha Poyraz and İsa Vural
Appl. Sci. 2024, 14(16), 7331; https://doi.org/10.3390/app14167331 - 20 Aug 2024
Abstract
The performance of soil nailed walls is evaluated based on lateral displacements, especially in high walls. In this study, the displacement behavior of nailed walls, which are frequently preferred in retaining wall systems in hard clayey soils, was examined by taking into account [...] Read more.
The performance of soil nailed walls is evaluated based on lateral displacements, especially in high walls. In this study, the displacement behavior of nailed walls, which are frequently preferred in retaining wall systems in hard clayey soils, was examined by taking into account the corner effect. The nailed wall model was created using Plaxis 2D v.23, and the performance of the model was verified with the results of inclinometer measurements taken on-site. To assess the influence of excavation pit dimensions on the corner effect, 25 three-dimensional and 25 plane–strain slice models were created using Plaxis 3D v.23, and the effect of excavation pit dimensions on the plane–strain ratio (PSR) was determined. Then, analysis studies were carried out by creating 336 3D and 336 plane–strain slice models with variable parameters, such as slope angle (β), wall angle (α), nail length (L/H), excavation depth (H), and distance from the corner (xH). Its effects on PSR were determined. The interactions of the parameters with each other and PSR estimation were evaluated using machine learning (ML) methods: artificial neural networks (ANN), classifical and regression tree (CART), support vector regression (SVR), extreme gradient boosting (XGBoost). The proposed ML prediction methods and PSR results were compared with performance metrics and reliable results were obtained. Full article
Show Figures

Figure 1

16 pages, 7810 KiB  
Article
Study of Effects of Post-Weld Heat Treatment Time on Corrosion Behavior and Manufacturing Processes of Super Duplex Stainless SAF 2507 for Advanced Li-Ion Battery Cases
by Yoon-Seok Lee, Jinyong Park, Jung-Woo Ok, Seongjun Kim, Byung-Hyun Shin and Jang-Hee Yoon
Materials 2024, 17(16), 4107; https://doi.org/10.3390/ma17164107 - 19 Aug 2024
Viewed by 191
Abstract
Lithium-ion batteries are superior energy storage devices that are widely utilized in various fields, from electric cars to small portable electric devices. However, their susceptibility to thermal runaway necessitates improvements in battery case materials to improve their safety. This study used electrochemical analyses, [...] Read more.
Lithium-ion batteries are superior energy storage devices that are widely utilized in various fields, from electric cars to small portable electric devices. However, their susceptibility to thermal runaway necessitates improvements in battery case materials to improve their safety. This study used electrochemical analyses, including open-circuit potential (OCP), potentiodynamic polarization, and critical pitting temperature (CPT) analyses, to investigate the corrosion resistance of super duplex stainless steel (SAF 2507) applied to battery cases in relation to post-weld heat treatment (PWHT) time. The microstructure during the manufacture, laser welding, and PWHT was analyzed using field-emission scanning electron microscopy, X-ray diffraction, and electron backscatter diffraction, and the chemical composition was analyzed using dispersive X-ray spectroscopy and electron probe micro-analysis. The PWHT increased the volume fraction of austenite from 5% to 50% over 3 min at 1200 °C; this increased the OCP from −0.21 V to +0.03 V, and increased the CPT from 56 °C to 73 °C. The PWHT effectively improved the corrosion resistance, laying the groundwork for utilizing SAF 2507 in battery case materials. But the alloy segregation and heterogeneous grain morphology after PWHT needs improvement. Full article
Show Figures

Figure 1

12 pages, 3213 KiB  
Article
Pressure-Induced YbFe2O4-Type to Spinel Structural Change of InGaMgO4
by Takehiro Koike, Hena Das, Kengo Oka, Yoshihiro Kusano, Fernando Cubillas, Francisco Brown Bojorqez, Victor Emmanuel Alvarez-Montano, Shigekazu Ito, Kei Shigematsu, Hayato Togano, Ikuya Yamada, Hiroki Ishibashi, Yoshiki Kubota, Shigeo Mori, Noboru Kimizuka and Masaki Azuma
Solids 2024, 5(3), 422-433; https://doi.org/10.3390/solids5030028 - 19 Aug 2024
Viewed by 262
Abstract
Spinel-type InGaMgO4 with a = 8.56615(3) Å was prepared by treating layered YbFe2O4-type InGaMgO4 at 6 GPa and 1473 K. DFT calculation and Rietveld analysis of synchrotron X-ray powder diffraction data revealed the inverse spinel structure with [...] Read more.
Spinel-type InGaMgO4 with a = 8.56615(3) Å was prepared by treating layered YbFe2O4-type InGaMgO4 at 6 GPa and 1473 K. DFT calculation and Rietveld analysis of synchrotron X-ray powder diffraction data revealed the inverse spinel structure with In3+:Ga3+/Mg2+ = 0.726:0.274 in the tetrahedral site and 0.137:0.863 in the octahedral site. InGaMgO4 spinel is an insulator with an experimental band gap of 2.80 eV, and the attempt at hole doping by post-annealing in a reducing atmosphere to introduce an oxygen defect was unsuccessful. This is the first report of the bulk synthesis of AB2O4 compounds with both YbFe2O4 and spinel polymorphs. Full article
Show Figures

Figure 1

1 pages, 171 KiB  
Correction
Correction: Feistel, R.; Hellmuth, O. Irreversible Thermodynamics of Seawater Evaporation. J. Mar. Sci. Eng. 2024, 12, 166
by Rainer Feistel and Olaf Hellmuth
J. Mar. Sci. Eng. 2024, 12(8), 1431; https://doi.org/10.3390/jmse12081431 - 19 Aug 2024
Viewed by 110
Abstract
A sign error has been found in Equation (32) of the paper [...]
JW=Dfln1+SMW1SMS+lnψfxV,T,p[...] Full article
9 pages, 2245 KiB  
Article
Prediction of Two-Dimensional Janus Transition-Metal Chalcogenides: Robust Ferromagnetic Semiconductor with High Curie Temperature
by Zijin Wang, Ali Hamza Qureshi, Yuanyuan Duan, Yujie Liu, Yanbiao Wang, Jun Zhu, Jinlian Lu, Tianxia Guo, Yongjun Liu and Xiuyun Zhang
Molecules 2024, 29(16), 3915; https://doi.org/10.3390/molecules29163915 - 19 Aug 2024
Viewed by 213
Abstract
Two-dimensional (2D) ferromagnetic semiconductors (FM SCs) provide an ideal platform for the development of quantum information technology in nanoscale devices. However, many developed 2D FM materials present a very low Curie temperature (TC), greatly limiting their application in spintronic devices. In [...] Read more.
Two-dimensional (2D) ferromagnetic semiconductors (FM SCs) provide an ideal platform for the development of quantum information technology in nanoscale devices. However, many developed 2D FM materials present a very low Curie temperature (TC), greatly limiting their application in spintronic devices. In this work, we predict two stable 2D transition metal chalcogenides, V3Se3X2 (X = S, Te) monolayers, by using first-principles calculations. Our results show that the V3Se3Te2 monolayer is a robust bipolar magnetic SC with a moderate bandgap of 0.53 eV, while V3Se3S2 is a direct band-gap FM SC with a bandgap of 0.59 eV. Interestingly, the ferromagnetisms of both monolayers are robust due to the V–S/Se/Te–V superexchange interaction, and TCs are about 406 K and 301 K, respectively. Applying biaxial strains, the FM SC to antiferromagnetic (AFM) SC transition is revealed at 5% and 3% of biaxial tensile strain. In addition, their high mechanical, dynamical, and thermal stabilities are further verified by phonon dispersion calculations and ab initio molecular dynamics (AIMD) calculations. Their outstanding attributes render the V3Se3Y2 (Y = S, Te) monolayers promising candidates as 2D FM SCs for a wide range of applications. Full article
Show Figures

Figure 1

12 pages, 5448 KiB  
Article
Investigating the Electrochemical Performance of MnFe2O4@xC Nanocomposites as Anode Materials for Sodium-Ion Batteries
by Shi-Wei Liu, Bai-Tong Niu, Bi-Li Lin, Yuan-Ting Lin, Xiao-Ping Chen, Hong-Xu Guo, Yan-Xin Chen and Xiu-Mei Lin
Molecules 2024, 29(16), 3912; https://doi.org/10.3390/molecules29163912 - 19 Aug 2024
Viewed by 277
Abstract
Transition metal oxides (TMOs) are important anode materials in sodium-ion batteries (SIBs) due to their high theoretical capacities, abundant resources, and cost-effectiveness. However, issues such as the low conductivity and large volume variation of TMO bulk materials during the cycling process result in [...] Read more.
Transition metal oxides (TMOs) are important anode materials in sodium-ion batteries (SIBs) due to their high theoretical capacities, abundant resources, and cost-effectiveness. However, issues such as the low conductivity and large volume variation of TMO bulk materials during the cycling process result in poor electrochemical performance. Nanosizing and compositing with carbon materials are two effective strategies to overcome these issues. In this study, spherical MnFe2O4@xC nanocomposites composed of MnFe2O4 inner cores and tunable carbon shell thicknesses were successfully prepared and utilized as anode materials for SIBs. It was found that the property of the carbon shell plays a crucial role in tuning the electrochemical performance of MnFe2O4@xC nanocomposites and an appropriate carbon shell thickness (content) leads to the optimal battery performance. Thus, compared to MnFe2O4@1C and MnFe2O4@8C, MnFe2O4@4C nanocomposite exhibits optimal electrochemical performance by releasing a reversible specific capacity of around 308 mAh·g−1 at 0.1 A·g−1 with 93% capacity retention after 100 cycles, 250 mAh·g−1 at 1.0 A g−1 with 73% capacity retention after 300 cycles in a half cell, and around 111 mAh·g−1 at 1.0 C when coupled with a Na3V2(PO4)3 (NVP) cathode in a full SIB cell. Full article
Show Figures

Figure 1

14 pages, 11156 KiB  
Article
Chromium Affects Mitochondrial Function, Leading to Apoptosis and Autophagy in Turtle Primary Hepatocytes
by Shuqin Lin, Yunjuan Xiao, Jing Lin, Yue Yuan, Haitao Shi, Meiling Hong and Li Ding
Animals 2024, 14(16), 2403; https://doi.org/10.3390/ani14162403 - 19 Aug 2024
Viewed by 196
Abstract
Hexavalent chromium (Cr(VI)), a pervasive industrial contaminant, is highly toxic to both humans and animals. However, its effects on turtles are largely unexplored. Our study aimed to investigate the toxic effects of Cr(VI) on the Reeves’ turtles (Mauremys reevesii) primary hepatocytes. [...] Read more.
Hexavalent chromium (Cr(VI)), a pervasive industrial contaminant, is highly toxic to both humans and animals. However, its effects on turtles are largely unexplored. Our study aimed to investigate the toxic effects of Cr(VI) on the Reeves’ turtles (Mauremys reevesii) primary hepatocytes. We exposed hepatocytes to two concentrations (25 μM and 50 μM) of Cr(VI) for 24 h. The results showed that compared to controls, Cr(VI)-treated cells showed elevated antioxidant enzyme activity (catalase (CAT) and superoxide dismutase (SOD)) and increased reactive oxygen species (ROS) levels. Adenosine triphosphatae (ATP) levels decreased, indicating mitochondrial dysfunction. Additionally, we found significant changes in mitochondrial dynamics related genes, with downregulation of mitofusin 2 (Mfn2) and silent information regulator 1 (SIRT1) and a decrease in sirtuin 3 (SIRT3) and tumor protein 53 (p53) mRNA levels. Annexin V-FITC fluorescence staining-positive cells increased with higher Cr(VI) concentrations, marked by elevated bcl-2-associated X protein (Bax) and cysteinyl aspartate specific proteinase (Caspase3) mRNA levels and reduced B-cell lymphoma-2 (Bcl2) expression. Autophagy-related genes were also affected, with increased microtubule-associated protein 1 light chain 3 (LC3-I), microtubule-associated protein light chain 3II (LC3-II), unc-51-like autophagy-activating kinase 1 (ULK1), and sequestosome 1 (p62/SQSTM1) mRNA levels and decreased mammalian target of rapamycin (mTOR) and Beclin1 expression. Taken together, Cr(VI) promotes cell apoptosis and autophagy in turtle hepatocytes by inducing oxidative stress and disrupting mitochondrial function. These findings highlight the serious health risks posed by Cr(VI) pollution and emphasize the need for protecting wild turtle populations. Full article
(This article belongs to the Special Issue Aquatic Animal Medicine and Pathology)
Show Figures

Figure 1

15 pages, 4981 KiB  
Article
Sequential Immunization with Vaccines Based on SARS-CoV-2 Virus-like Particles Induces Broadly Neutralizing Antibodies
by Youjun Mi, Kun Xu, Wenting Wang, Weize Kong, Xiaonan Xu, Xifeng Rong and Jiying Tan
Vaccines 2024, 12(8), 927; https://doi.org/10.3390/vaccines12080927 - 19 Aug 2024
Viewed by 299
Abstract
Although many people have been vaccinated against COVID-19, infections with SARS-CoV-2 seem hard to avoid. There is a need to develop more effective vaccines and immunization strategies against emerging variants of infectious diseases. To understand whether different immunization strategies using variants sequence-based virus-like [...] Read more.
Although many people have been vaccinated against COVID-19, infections with SARS-CoV-2 seem hard to avoid. There is a need to develop more effective vaccines and immunization strategies against emerging variants of infectious diseases. To understand whether different immunization strategies using variants sequence-based virus-like particles (VLPs) vaccines could offer superior immunity against future SARS-CoV-2 variants, our team constructed VLPs for the original Wuhan-Hu-1 strain (prototype), Delta (δ) variant, and Omicron (ο) variant of SARS-CoV-2, using baculovirus-insect expression system. Then we used these VLPs to assess the immune responses induced by homologous prime-boost, heterologous prime-boost, and sequential immunizations strategies in a mouse model. Our results showed that the pro+δ+ο sequential strategies elicited better neutralizing antibody responses. These sequential strategies also take advantage of inducing CD4+ T and CD8+ T lymphocytes proliferation and tendency to cytokine of Th1. Currently, our data suggest that sequential immunization with VLPs of encoding spike protein derived from SARS-CoV-2 variants of concern may be a potential vaccine strategy against emerging diseases, such as “Disease X”. Full article
(This article belongs to the Special Issue SARS-CoV-2 Infections; Treatment and Development of Vaccine)
Show Figures

Figure 1

16 pages, 4424 KiB  
Article
Mechanism of Ag-SiO2-TiO2 Nanocomposite Coating Formation on NiTi Substrate for Enhanced Functionalization
by Karolina Dudek, Mateusz Dulski, Jacek Podwórny, Magdalena Kujawa and Patrycja Rawicka
Coatings 2024, 14(8), 1055; https://doi.org/10.3390/coatings14081055 - 18 Aug 2024
Viewed by 276
Abstract
The functionality of the NiTi shape memory alloy was improved through engineering Ag-SiO2-TiO2 nanocomposite coatings. For this purpose, an anaphoretic deposition process, conducted at a constant voltage of 40 V and deposition times ranging from 1 to 10 min, was [...] Read more.
The functionality of the NiTi shape memory alloy was improved through engineering Ag-SiO2-TiO2 nanocomposite coatings. For this purpose, an anaphoretic deposition process, conducted at a constant voltage of 40 V and deposition times ranging from 1 to 10 min, was used. Scanning electron microscopy (SEM) analysis demonstrated that the deposition parameters significantly impacted the morphology of the coatings. Complementary Raman Spectroscopy and X-ray diffraction (XRD) analyses confirmed the successful formation of distinct nanocomposite layers, and revealed the details of their crystalline structure and chemical composition. After that, the adhesion between the NiTi substrate and the electrophoretically deposited ceramic coatings was improved through a post-deposition heat treatment. To prevent excessive shrinkage and cracking of the coating, tests were carried out to characterize the behavior of the coating material at elevated temperatures. The nanocomposite coatings were exposed to a temperature of 800 °C for 2 h. The annealing induced significant structural and morphological transformations, resulting in layers that were distinctly different from both the original materials and those produced solely through electrophoretic deposition. The thermal treatment resulted in the formation of a new kind of nanocomposite structure with enhanced reactivity. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

15 pages, 3645 KiB  
Article
Comparison of Corrosion Behavior of a-C Coatings Deposited by Cathode Vacuum Arc and Filter Cathode Vacuum Arc Techniques
by Zhiqing Feng, Zhetong Zhou, Junhao Zeng, Ding Chen, Fengying Luo, Qimin Wang, Wei Dai and Ruiming Zhang
Coatings 2024, 14(8), 1053; https://doi.org/10.3390/coatings14081053 - 17 Aug 2024
Viewed by 293
Abstract
This study explores the utilization of cathodic vacuum arc (CVA) technology to address the limitations of magnetron sputtering technology in preparing amorphous carbon (a-C) coatings, such as having a low ionization rate, low deposition rate, and insufficiently dense structure. Specifically, a-C coatings were [...] Read more.
This study explores the utilization of cathodic vacuum arc (CVA) technology to address the limitations of magnetron sputtering technology in preparing amorphous carbon (a-C) coatings, such as having a low ionization rate, low deposition rate, and insufficiently dense structure. Specifically, a-C coatings were prepared by the cathodic vacuum arc (CVA)and the filtered cathodic vacuum arc (FCVA) technology,, one with embedded carbon particles and one without, both having closely related carbon structures. Research is currently underway on bipolar plate coatings for fuel cells. The corrosion behavior of the prepared a-C coatings was examined through Tafel polarization analysis under simulated fuel cell operating conditions as well as potentiostatic analysis at 0.6 V under normal conditions and 1.6 V under start–stop conditions for 7200 s. The coatings before and after corrosion are characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, and infrared spectroscopy. The results reveal that the incorporation of conductive graphite-like particles in the coatings reduces their contact resistance. However, the gaps between these particles and the coatings act as pathways for corrosive solution, exacerbating the corrosion of the coatings. After corrosion at 0.6 V, both sets of coatings with sp2-hybridized carbon structures are contaminated by elements such as hydrogen and oxygen, leading to an increase in their contact resistance. Under high potential conditions (1.6 V), large corrosion pits and defects appear at the locations of graphite-like carbon particles. Furthermore, both sets of samples exhibit more severe oxygen contamination and a transformation of broken carbon bonds from sp3- to sp2-hybridized forms, irrespective of whether embedded graphite particles are present. Full article
Show Figures

Figure 1

10 pages, 2705 KiB  
Article
High Energy Storage Performance in Pb1−xLax(Hf0.45Sn0.55)0.995O3 Antiferroelectric Ceramics
by Erping Wang, Liqin Yue, Yuanhong Chu, Caixia Sun, Jinyu Zhao, Siyu Zhang, Jiale Liu, Yangyang Zhang and Ling Zhang
Crystals 2024, 14(8), 732; https://doi.org/10.3390/cryst14080732 - 17 Aug 2024
Viewed by 228
Abstract
Energy storage efficiency (η) and large recoverable energy density (Wre) are necessary for antiferroelectric materials in order to develop antiferroelectric-based dielectric capacitors with exceptional energy storage capacity. In the present paper, the effect of doping La3+ on [...] Read more.
Energy storage efficiency (η) and large recoverable energy density (Wre) are necessary for antiferroelectric materials in order to develop antiferroelectric-based dielectric capacitors with exceptional energy storage capacity. In the present paper, the effect of doping La3+ on the energy storage capacity of Pb1−xLax(Hf0.45Sn0.55)0.995O3 antiferroelectric ceramics was studied. Adjusting the content of La and changing the phase structure of PLHS from antiferroelectric to relaxor ferroelectric gradually, which narrowed its hysteresis loop, yielded a high energy storage efficiency of 81.9% and the maximum breakdown field strength of 200 kV/cm when x = 2 mol%. In addition, the recoverable energy density and energy storage efficiency both showed excellent temperature stability and frequency stability in the temperature range of 10–110 °C and the frequency range of 10–100 Hz, suggesting that Pb0.98La0.02(Hf0.45Sn0.55)0.995O3 are favorable materials candidates for the preparation of pulsed-power capacitors that can be used in a wide range of conditions. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

12 pages, 5082 KiB  
Article
Excellent Hole Mobility and Out–of–Plane Piezoelectricity in X–Penta–Graphene (X = Si or Ge) with Poisson’s Ratio Inversion
by Sitong Liu, Xiao Shang, Xizhe Liu, Xiaochun Wang, Fuchun Liu and Jun Zhang
Nanomaterials 2024, 14(16), 1358; https://doi.org/10.3390/nano14161358 - 17 Aug 2024
Viewed by 214
Abstract
Recently, the application of two–dimensional (2D) piezoelectric materials has been seriously hindered because most of them possess only in–plane piezoelectricity but lack out–of–plane piezoelectricity. In this work, using first–principles calculation, by atomic substitution of penta–graphene (PG) with tiny out–of–plane piezoelectricity, we design and [...] Read more.
Recently, the application of two–dimensional (2D) piezoelectric materials has been seriously hindered because most of them possess only in–plane piezoelectricity but lack out–of–plane piezoelectricity. In this work, using first–principles calculation, by atomic substitution of penta–graphene (PG) with tiny out–of–plane piezoelectricity, we design and predict stable 2D X–PG (X = Si or Ge) semiconductors with excellent in–plane and out–of–plane piezoelectricity and extremely high in–plane hole mobility. Among them, Ge–PG exhibits better performance in all aspects with an in–plane strain piezoelectric coefficient d11 = 8.43 pm/V, an out–of–plane strain piezoelectric coefficient d33 = −3.63 pm/V, and in–plane hole mobility μh = 57.33 × 103 cm2 V−1 s−1. By doping Si and Ge atoms, the negative Poisson’s ratio of PG approaches zero and reaches a positive value, which is due to the gradual weakening of the structure’s mechanical strength. The bandgaps of Si–PG (0.78 eV) and Ge–PG (0.89 eV) are much smaller than that of PG (2.20 eV), by 2.82 and 2.47 times, respectively. This indicates that the substitution of X atoms can regulate the bandgap of PG. Importantly, the physical mechanism of the out–of–plane piezoelectricity of these monolayers is revealed. The super–dipole–moment effect proposed in the previous work is proved to exist in PG and X–PG, i.e., it is proved that their out–of–plane piezoelectric stress coefficient e33 increases with the super–dipole–moment. The e33–induced polarization direction is also consistent with the super–dipole–moment direction. X–PG is predicted to have prominent potential for nanodevices applied as electromechanical coupling systems: wearable, ultra–thin devices; high–speed electronic transmission devices; and so on. Full article
Show Figures

Figure 1

14 pages, 900 KiB  
Article
Bit Error Rate Performance Improvement for Orthogonal Time Frequency Space Modulation with a Selective Decode-and-Forward Cooperative Communication Scenario in an Internet of Vehicles System
by Selman Kulaç and Müjdat Şahin
Sensors 2024, 24(16), 5324; https://doi.org/10.3390/s24165324 - 17 Aug 2024
Viewed by 259
Abstract
Orthogonal time frequency space (OTFS) modulation has recently found its place in the literature as a much more effective waveform in time-varying channels. It is anticipated that OTFS will be widely used in the communications of smart vehicles, especially those considered within the [...] Read more.
Orthogonal time frequency space (OTFS) modulation has recently found its place in the literature as a much more effective waveform in time-varying channels. It is anticipated that OTFS will be widely used in the communications of smart vehicles, especially those considered within the scope of Internet of Things (IoT). There are efforts to obtain customized traditional point-to-point single-input single-output (SISO)-OTFS studies in the literature, but their BER performance seems a bit low. It is possible to use cooperative communications in order improve BER performance, but it is noticeable that there are very few OTFS studies in the area of cooperative communications. In this study, to the best of the authors’ knowledge, it is addressed for the first time in the literature that better performance is achieved for the OTFS waveform transmission in a selective decode-and-forward (SDF) cooperative communication scenario. In this context, by establishing a cooperative communication model consisting of a base station/source, a traffic sign/relay and a smart vehicle/destination moving at a constant speed, an end-to-end BER expression is derived. SNR-BER analysis is performed with this SDF-OTFS scheme and it is shown that a superior BER performance is achieved compared to the traditional point-to-point single-input single-output (SISO)-OTFS structure. Full article
(This article belongs to the Special Issue Connected Vehicles and Vehicular Sensing in Smart Cities)
Show Figures

Figure 1

9 pages, 1281 KiB  
Article
Algorithm Validation for Quantifying ActiGraph™ Physical Activity Metrics in Individuals with Chronic Low Back Pain and Healthy Controls
by Jordan F. Hoydick, Marit E. Johnson, Harold A. Cook, Zakiy F. Alfikri, John M. Jakicic, Sara R. Piva, April J. Chambers and Kevin M. Bell
Sensors 2024, 24(16), 5323; https://doi.org/10.3390/s24165323 - 17 Aug 2024
Viewed by 226
Abstract
Assessing physical activity is important in the treatment of chronic conditions, including chronic low back pain (cLBP). ActiGraph™, a widely used physical activity monitor, collects raw acceleration data, and processes these data through proprietary algorithms to produce physical activity measures. The purpose of [...] Read more.
Assessing physical activity is important in the treatment of chronic conditions, including chronic low back pain (cLBP). ActiGraph™, a widely used physical activity monitor, collects raw acceleration data, and processes these data through proprietary algorithms to produce physical activity measures. The purpose of this study was to replicate ActiGraph™ algorithms in MATLAB and test the validity of this method with both healthy controls and participants with cLBP. MATLAB code was developed to replicate ActiGraph™’s activity counts and step counts algorithms, to sum the activity counts into counts per minute (CPM), and categorize each minute into activity intensity cut points. A free-living validation was performed where 24 individuals, 12 cLBP and 12 healthy, wore an ActiGraph™ GT9X on their non-dominant hip for up to seven days. The raw acceleration data were processed in both ActiLife™ (v6), ActiGraph™’s data analysis software platform, and through MATLAB (2022a). Percent errors between methods for all 24 participants, as well as separated by cLBP and healthy, were all less than 2%. ActiGraph™ algorithms were replicated and validated for both populations, based on minimal error differences between ActiLife™ and MATLAB, allowing researchers to analyze data from any accelerometer in a manner comparable to ActiLife™. Full article
(This article belongs to the Special Issue IMU and Innovative Sensors for Healthcare)
Show Figures

Figure 1

13 pages, 3503 KiB  
Article
The Thermal Stability and Photoluminescence of ZnSeO3 Nanocrystals Chemically Synthesized into SiO2/Si Track Templates
by Gulnara Aralbayeva, Gulnaz Sarsekhan, Aiman Akylbekova, Liudmila A. Vlasukova, Zein Baimukhanov, Vera Yuvchenko, Assyl-Dastan Bazarbek, Alma Dauletbekova, Gaukhar Kabdrakhimova and Abdirash T. Akilbekov
Crystals 2024, 14(8), 730; https://doi.org/10.3390/cryst14080730 - 17 Aug 2024
Viewed by 228
Abstract
We report the effect of high-temperature treatment on the structure and photoluminescence of zinc selenite nanocrystals (ZnSeO3) deposited into SiO2/Si track templates. The templates were formed via irradiation with Xe ions (200 MeV, 108 ions/cm2) followed [...] Read more.
We report the effect of high-temperature treatment on the structure and photoluminescence of zinc selenite nanocrystals (ZnSeO3) deposited into SiO2/Si track templates. The templates were formed via irradiation with Xe ions (200 MeV, 108 ions/cm2) followed by etching in HF solution. ZnSeO3 nanocrystals were obtained via chemical deposition from the aqueous solution of ZnCl2 and SeO2 as Zn-, Se- and O-precursors. To estimate the thermal stability of the deposited precipitates, heat treatment was carried out at 800 and 1000 °C for 60 min in a vacuum environment. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), photoluminescence (PL) spectroscopy, and electrical measurements were used for the characterization of ZnSeO3/SiO2nanoporous/Si nanocomposites. Thermal treatment of the synthesized nanocomposites resulted in structural transformations with the formation of ZnSe and ZnO phases while the content of the ZnSeO3 phase decreased. For the as-deposited and annealed precipitates, an emission in the range of (400 to 600) nm was observed. PL spectra were approximated by four Gaussian curves with maxima at ~550 nm (2.2 eV), 488 nm (2.54 eV), ~440 nm (2.82 eV), and 410 nm (3.03 eV). Annealing resulted in a decrease in PL intensity that was possibly due to the weight loss of the deposited substance during high-temperature treatment. The redistribution of maxima intensities after annealing was also observed with an increase in blue and violet emissions. The origin of the observed PL is discussed. The I–V curve analysis revealed an electronic type of conductivity for the ZnSeO3(NCs)/SiO2nanoporous/Si structure. The values of the specific conductivity were calculated within the percolation model. The sample annealed at 800 °C showed the highest specific conductivity of 8.5 × 10−6 Ohm−1·cm−1. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

Back to TopTop