Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Wu-Manber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4286 KiB  
Article
Accelerating Pattern Matching Using a Novel Multi-Pattern-Matching Algorithm on GPU
by Merve Çelebi and Uraz Yavanoğlu
Appl. Sci. 2023, 13(14), 8104; https://doi.org/10.3390/app13148104 - 11 Jul 2023
Cited by 2 | Viewed by 1736
Abstract
Nowadays, almost all network traffic is encrypted. Attackers hide themselves using this traffic and attack over encrypted channels. Inspections performed only on packet headers and metadata are insufficient for detecting cyberattacks over encrypted channels. Therefore, it is important to analyze packet contents in [...] Read more.
Nowadays, almost all network traffic is encrypted. Attackers hide themselves using this traffic and attack over encrypted channels. Inspections performed only on packet headers and metadata are insufficient for detecting cyberattacks over encrypted channels. Therefore, it is important to analyze packet contents in applications that require control over payloads, such as content filtering, intrusion detection systems (IDSs), data loss prevention systems (DLPs), and fraud detection. This technology, known as deep packet inspection (DPI), provides full control over the communication between two end stations by keenly analyzing the network traffic. This study proposes a multi-pattern-matching algorithm that reduces the memory space and time required in the DPI pattern matching compared to traditional automaton-based algorithms with its ability to process more than one packet payload character at once. The pattern-matching process in the DPI system created to evaluate the performance of the proposed algorithm (PA) is conducted on the graphics processing unit (GPU), which accelerates the processing of network packets with its parallel computing capability. This study compares the PA with the Aho-Corasick (AC) and Wu–Manber (WM) algorithms, which are widely used in the pattern-matching process, considering the memory space required and throughput obtained. Algorithm tables created with a dataset containing 500 patterns use 425 and 688 times less memory space than those of the AC and WM algorithms, respectively. In the pattern-matching process using these tables, the PA is 3.5 and 1.5 times more efficient than the AC and WM algorithms, respectively. Full article
(This article belongs to the Collection Software Engineering: Computer Science and System)
Show Figures

Figure 1

15 pages, 4358 KiB  
Article
Text Filtering through Multi-Pattern Matching: A Case Study of Wu–Manber–Uy on the Language of Uyghur
by Turdi Tohti, Jimmy Huang, Askar Hamdulla and Xing Tan
Information 2019, 10(8), 246; https://doi.org/10.3390/info10080246 - 24 Jul 2019
Cited by 2 | Viewed by 4278
Abstract
Given its generality in applications and its high time-efficiency on big data-sets, in recent years, the technique of text filtering through pattern matching has been attracting increasing attention from the field of information retrieval and Natural language Processing (NLP) research communities at large. [...] Read more.
Given its generality in applications and its high time-efficiency on big data-sets, in recent years, the technique of text filtering through pattern matching has been attracting increasing attention from the field of information retrieval and Natural language Processing (NLP) research communities at large. That being the case, however, it has yet to be seen how this technique and its algorithms, (e.g., Wu–Manber, which is also considered in this paper) can be applied and adopted properly and effectively to Uyghur, a low-resource language that is mostly spoken by the ethnic Uyghur group with a population of more than eleven-million in Xinjiang, China. We observe that technically, the challenge is mainly caused by two factors: (1) Vowel weakening and (2) mismatching in semantics between affixes and stems. Accordingly, in this paper, we propose Wu–Manber–Uy, a variant of an improvement to Wu–Manber, dedicated particularly for working on the Uyghur language. Wu–Manber–Uy implements a stem deformation-based pattern expansion strategy, specifically for reducing the mismatching of patterns caused by vowel weakening and spelling errors. A two-way strategy that applies invigilation and control on the change of lexical meaning of stems during word-building is also used in Wu–Manber–Uy. Extra consideration with respect to Word2vec and the dictionary are incorporated into the system for processing Uyghur. The experimental results we have obtained consistently demonstrate the high performance of Wu–Manber–Uy. Full article
(This article belongs to the Special Issue Computational Linguistics for Low-Resource Languages)
Show Figures

Figure 1

1268 KiB  
Article
A Malicious Pattern Detection Engine for Embedded Security Systems in the Internet of Things
by Doohwan Oh, Deokho Kim and Won Woo Ro
Sensors 2014, 14(12), 24188-24211; https://doi.org/10.3390/s141224188 - 16 Dec 2014
Cited by 99 | Viewed by 9965
Abstract
With the emergence of the Internet of Things (IoT), a large number of physical objects in daily life have been aggressively connected to the Internet. As the number of objects connected to networks increases, the security systems face a critical challenge due to [...] Read more.
With the emergence of the Internet of Things (IoT), a large number of physical objects in daily life have been aggressively connected to the Internet. As the number of objects connected to networks increases, the security systems face a critical challenge due to the global connectivity and accessibility of the IoT. However, it is difficult to adapt traditional security systems to the objects in the IoT, because of their limited computing power and memory size. In light of this, we present a lightweight security system that uses a novel malicious pattern-matching engine. We limit the memory usage of the proposed system in order to make it work on resource-constrained devices. To mitigate performance degradation due to limitations of computation power and memory, we propose two novel techniques, auxiliary shifting and early decision. Through both techniques, we can efficiently reduce the number of matching operations on resource-constrained systems. Experiments and performance analyses show that our proposed system achieves a maximum speedup of 2.14 with an IoT object and provides scalable performance for a large number of patterns. Full article
(This article belongs to the Special Issue Wireless Sensor Networks and the Internet of Things)
Show Figures

675 KiB  
Article
A Distributed Signature Detection Method for Detecting Intrusions in Sensor Systems
by Ilkyu Kim, Doohwan Oh, Myung Kuk Yoon, Kyueun Yi and Won Woo Ro
Sensors 2013, 13(4), 3998-4016; https://doi.org/10.3390/s130403998 - 25 Mar 2013
Cited by 13 | Viewed by 6787
Abstract
Sensor nodes in wireless sensor networks are easily exposed to open and unprotected regions. A security solution is strongly recommended to prevent networks against malicious attacks. Although many intrusion detection systems have been developed, most systems are difficult to implement for the sensor [...] Read more.
Sensor nodes in wireless sensor networks are easily exposed to open and unprotected regions. A security solution is strongly recommended to prevent networks against malicious attacks. Although many intrusion detection systems have been developed, most systems are difficult to implement for the sensor nodes owing to limited computation resources. To address this problem, we develop a novel distributed network intrusion detection system based on theWu–Manber algorithm. In the proposed system, the algorithm is divided into two steps; the first step is dedicated to a sensor node, and the second step is assigned to a base station. In addition, the first step is modified to achieve efficient performance under limited computation resources. We conduct evaluations with random string sets and actual intrusion signatures to show the performance improvement of the proposed method. The proposed method achieves a speedup factor of 25.96 and reduces 43.94% of packet transmissions to the base station compared with the previously proposed method. The system achieves efficient utilization of the sensor nodes and provides a structural basis of cooperative systems among the sensors. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Back to TopTop