Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = acoustic beacon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2129 KiB  
Article
A Novel Positional Calibration Method for an Underwater Acoustic Beacon Array Based on the Equivalent Virtual Long Baseline Positioning Model
by Ge Zhang, Guoxing Yi, Zhennan Wei, Yangguang Xie and Ziyang Qi
J. Mar. Sci. Eng. 2024, 12(5), 825; https://doi.org/10.3390/jmse12050825 - 15 May 2024
Viewed by 638
Abstract
The performance of long baseline (LBL) positioning systems is significantly impacted by the distribution and positional calibration accuracy of underwater acoustic beacon arrays. In previous calibration methods for beacon arrays based on autonomous underwater vehicle (AUV) platforms, the slant range information of each [...] Read more.
The performance of long baseline (LBL) positioning systems is significantly impacted by the distribution and positional calibration accuracy of underwater acoustic beacon arrays. In previous calibration methods for beacon arrays based on autonomous underwater vehicle (AUV) platforms, the slant range information of each beacon was processed independently, and each beacon was calibrated one at a time. This approach not only decreases the calibration efficiency but also leaves the positional calibration accuracy of each beacon highly susceptible to the navigation trajectory of the AUV. To overcome these limitations, an equivalent virtual LBL (EVLBL) positioning model is introduced in this paper. This model operates by adjusting the positions of each beacon according to the dead reckoning increments computed during the AUV’s reception of positioning signals, effectively forming a virtual beacon array. Consequently, the AUV is capable of mitigating LBL positioning errors that arise from its motion by simultaneously receiving positioning signals from all beacons. Additionally, an overall calibration method for beacon arrays based on particle swarm optimization (PSO) is proposed. In this approach, the minimization of the deviation between the EVLBL trajectory and the dead reckoning trajectory is set as the optimization objective, and the coordinates of each beacon are iteratively optimized. The simulation results demonstrate that the proposed EVLBL-based PSO algorithm (EVPSO) significantly enhanced the calibration efficiency and positional accuracy of the beacon array. Compared with conventional methods, the estimation error of the beacon positions was reduced from 6.40 m to within 1.00 m. After compensating for the beacon array positions, the positioning error of the LBL system decreased from approximately 5.00 m (with conventional methods) to around 1.00 m (with EVPSO), demonstrating the effectiveness of the proposed approach. Full article
(This article belongs to the Special Issue Navigation and Detection Fusion for Autonomous Underwater Vehicles)
Show Figures

Figure 1

18 pages, 5117 KiB  
Article
Accurate Identification for CW Direct Signal in Underwater Acoustic Ranging
by Jing Li, Jin Fu and Nan Zou
J. Mar. Sci. Eng. 2024, 12(3), 454; https://doi.org/10.3390/jmse12030454 - 5 Mar 2024
Viewed by 902
Abstract
The underwater channel is bilateral, heterogeneous, uncertain, and exhibits multipath transmission, sound line curvature, etc. These properties complicate the structure of the received pulse, causing great challenges in direct signal identification for ranging purposes and impacts on back-end data processing, even accurate acoustic [...] Read more.
The underwater channel is bilateral, heterogeneous, uncertain, and exhibits multipath transmission, sound line curvature, etc. These properties complicate the structure of the received pulse, causing great challenges in direct signal identification for ranging purposes and impacts on back-end data processing, even accurate acoustic positioning. Machine learning (ML) combined with underwater acoustics has emerged as a prominent area of research in recent years. From a statistical perspective, ML can be viewed as an optimization strategy. Nevertheless, the existing ML-based direct-signal discrimination approaches rely on independent assessment, utilizing a single sensor (beacon or buoy), which is still insufficient for adapting to the complex underwater environment. Thus, discrimination accuracy decreases. To address the above issues, an accurate CW direct signal detection approach is performed using the decision tree algorithm, which belongs to ML. Initially, the pulse parameter characteristics in the underwater multipath channel are investigated and the parameter models are built. Then, based on multi-sensor localization performance feedback, fusion characteristics for diverse pulse are created. Next, the pulse parameter characteristics are preprocessed to mitigate the impact of varying magnitudes and units of magnitude on data processing. Then, the decision tree is built to obtain the desired output results and realize accurate recognition of the ranging direct signals. Finally, the feasibility and reliability of this paper’s method are verified by computer simulation and field testing. Full article
(This article belongs to the Special Issue Applications of Underwater Acoustics in Ocean Engineering)
Show Figures

Figure 1

21 pages, 2476 KiB  
Article
Accurate and Low-Power Ultrasound–Radiofrequency (RF) Indoor Ranging Using MEMS Loudspeaker Arrays
by Chesney Buyle, Lieven De Strycker and Liesbet Van der Perre
Sensors 2023, 23(18), 7997; https://doi.org/10.3390/s23187997 - 20 Sep 2023
Viewed by 1364
Abstract
Accurately positioning energy-constrained devices in indoor environments is of great interest to many professional, care, and personal applications. Hybrid RF–acoustic ranging systems have shown to be a viable technology in this regard, enabling accurate distance measurements at ultra-low energy costs. However, they often [...] Read more.
Accurately positioning energy-constrained devices in indoor environments is of great interest to many professional, care, and personal applications. Hybrid RF–acoustic ranging systems have shown to be a viable technology in this regard, enabling accurate distance measurements at ultra-low energy costs. However, they often suffer from self-interference due to multipaths in indoor environments. We replace the typical single loudspeaker beacons used in these systems with a phased loudspeaker array to promote the signal-to-interference-plus-noise ratio towards the tracked device. Specifically, we optimize the design of a low-cost uniform planar array (UPA) through simulation to achieve the best ranging performance using ultrasonic chirps. Furthermore, we compare the ranging performance of this optimized UPA configuration to a traditional, single-loudspeaker system. Simulations show that vertical phased-array configurations guarantee the lowest ranging errors in typical shoe-box environments, having a limited height with respect to their length and width. In these cases, a P50 ranging error of around 3 cm and P95 ranging error below 30 cm were achieved. Compared to a single-speaker system, a 10 × 2 vertical phased array was able to lower the P80 and P95 up to an order of magnitude. Full article
(This article belongs to the Special Issue Advanced Technology in Acoustic Signal Processing)
Show Figures

Figure 1

23 pages, 28213 KiB  
Article
A Distributed Intelligent Buoy System for Tracking Underwater Vehicles
by Mengzhuo Liu, Jifeng Zhu, Xiaohe Pan, Guolin Wang, Jun Liu, Zheng Peng and Jun-Hong Cui
J. Mar. Sci. Eng. 2023, 11(9), 1661; https://doi.org/10.3390/jmse11091661 - 24 Aug 2023
Viewed by 1445
Abstract
Underwater vehicles play a crucial role in various underwater applications, such as data collection in underwater sensor networks, target detection and tracking, and underwater pipeline monitoring. Real-time acquisition of their states, particularly their location and velocity, is vital for their operation and navigation. [...] Read more.
Underwater vehicles play a crucial role in various underwater applications, such as data collection in underwater sensor networks, target detection and tracking, and underwater pipeline monitoring. Real-time acquisition of their states, particularly their location and velocity, is vital for their operation and navigation. Consequently, the development of a remote tracking system to monitor these states is essential. In this paper, we propose a system that can track the underwater vehicle’s location and velocity. We take a systematic approach that encompasses the system architecture, system composition, signal processing, and mobility state estimation. We present the system architecture and define its components, along with their relationships and interfaces. The beacon signal employed in the system features dual-hyperbolic-frequency-modulated (HFM) waveform and an OFDM symbol with cyclic prefix (CP). Based on this beacon signal, we demonstrate how signal processing techniques are utilized to precisely determine the time of arrival and reduce false alarm rates in underwater acoustic channels affected by impulsive noise. Additionally, we explain how the CP-OFDM symbol is used to measure the Doppler scaling factor and transmit essential information for localization and velocity estimation purposes. Utilizing the measurements obtained through signal processing, least squares estimators are used for estimating both the location and velocity. To validate the effectiveness of our approach, we implement the system and conduct field trials. Two separate experiments were conducted in which the diagonal lengths of the square topology were designed to be 1000 m and 800 m. The minimum/maximum root mean square error of localization in the first and second experiment is 2.36/2.91 m and 1.47/2.49 m, respectively. And the minimum/maximum root mean square error of velocity estimation in the first and second experiment is 0.16/0.47 m/s and 0.21/0.76 m/s, respectively. Results confirm the effectiveness of the proposed method in estimating the location and velocity of the underwater vehicle. Overall, this paper provides a practical and effective design of a system to track the location and velocity of underwater vehicles. By leveraging the proposed system, signal processing, and mobility state estimation methods, our work offers a systematic solution. And, the successful field experiment serves as evidence of the feasibility and effectiveness of the proposed system, making it a valuable contribution to the field of tracking underwater vehicles. Full article
(This article belongs to the Special Issue Underwater Wireless Communications: Recent Advances and Challenges)
Show Figures

Figure 1

15 pages, 3421 KiB  
Article
Underwater Wireless Sensor Networks with RSSI-Based Advanced Efficiency-Driven Localization and Unprecedented Accuracy
by Kaveripakam Sathish, Ravikumar Chinthaginjala, Wooseong Kim, Anbazhagan Rajesh, Juan M. Corchado and Mohamed Abbas
Sensors 2023, 23(15), 6973; https://doi.org/10.3390/s23156973 - 5 Aug 2023
Cited by 9 | Viewed by 1572
Abstract
Deep-sea object localization by underwater acoustic sensor networks is a current research topic in the field of underwater communication and navigation. To find a deep-sea object using underwater wireless sensor networks (UWSNs), the sensors must first detect the signals sent by the object. [...] Read more.
Deep-sea object localization by underwater acoustic sensor networks is a current research topic in the field of underwater communication and navigation. To find a deep-sea object using underwater wireless sensor networks (UWSNs), the sensors must first detect the signals sent by the object. The sensor readings are then used to approximate the object’s position. A lot of parameters influence localization accuracy, including the number and location of sensors, the quality of received signals, and the algorithm used for localization. To determine position, the angle of arrival (AOA), time difference of arrival (TDoA), and received signal strength indicator (RSSI) are used. The UWSN requires precise and efficient localization algorithms because of the changing underwater environment. Time and position are required for sensor data, especially if the sensor is aware of its surroundings. This study describes a critical localization strategy for accomplishing this goal. Using beacon nodes, arrival distance validates sensor localization. We account for the fact that sensor nodes are not in perfect temporal sync and that sound speed changes based on the medium (water, air, etc.) in this section. Our simulations show that our system can achieve high localization accuracy by accounting for temporal synchronisation, measuring mean localization errors, and forecasting their variation. The suggested system localization has a lower mean estimation error (MEE) while using RSSI. This suggests that measurements based on RSSI provide more precision and accuracy during localization. Full article
Show Figures

Figure 1

24 pages, 7430 KiB  
Article
Sensor Placement in an Irregular 3D Surface for Improving Localization Accuracy Using a Multi-Objective Memetic Algorithm
by Paula A. Graça, José C. Alves and Bruno M. Ferreira
Sensors 2023, 23(14), 6316; https://doi.org/10.3390/s23146316 - 11 Jul 2023
Cited by 1 | Viewed by 1333
Abstract
Accurate localization is a critical task in underwater navigation. Typical localization methods use a set of acoustic sensors and beacons to estimate relative position, whose geometric configuration has a significant impact on the localization accuracy. Although there is much effort in the literature [...] Read more.
Accurate localization is a critical task in underwater navigation. Typical localization methods use a set of acoustic sensors and beacons to estimate relative position, whose geometric configuration has a significant impact on the localization accuracy. Although there is much effort in the literature to define optimal 2D or 3D sensor placement, the optimal sensor placement in irregular and constrained 3D surfaces, such as autonomous underwater vehicles (AUVs) or other structures, is not exploited for improving localization. Additionally, most applications using AUVs employ commercial acoustic modems or compact arrays, therefore the optimization of the placement of spatially independent sensors is not a considered issue. This article tackles acoustic sensor placement optimization in irregular and constrained 3D surfaces, for inverted ultra-short baseline (USBL) approaches, to improve localization accuracy. The implemented multi-objective memetic algorithm combines an evaluation of the geometric sensor’s configuration, using the Cramer-Rao Lower Bound (CRLB), with the incidence angle of the received signal. A case study is presented over a simulated homing and docking scenario to demonstrate the proposed optimization algorithm. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

26 pages, 1768 KiB  
Article
Tightly Coupled INS/APS Passive Single Beacon Navigation
by Zhuoyang Zou, Wenrui Wang, Bin Wu, Lingyun Ye and Washington Yotto Ochieng
Remote Sens. 2023, 15(7), 1854; https://doi.org/10.3390/rs15071854 - 30 Mar 2023
Cited by 2 | Viewed by 1461
Abstract
Unlike aerial or terrestrial navigation, the global navigation satellite system (GNSS) is not available underwater. This is a big challenge for underwater navigation. The inertial navigation system (INS) aided by the single-beacon acoustic positioning system (APS) provides one solution, but the long-range case [...] Read more.
Unlike aerial or terrestrial navigation, the global navigation satellite system (GNSS) is not available underwater. This is a big challenge for underwater navigation. The inertial navigation system (INS) aided by the single-beacon acoustic positioning system (APS) provides one solution, but the long-range case is limited by low-SNR conditions. Inspired by passive synthetic aperture detection, we proposed a new tightly coupled navigation algorithm based on spatial synthesis and one-way-travel-time (OWTT) range measurement. We design two estimators: the DOA/range estimator using the model-based method and the tightly coupled INS/APS navigation estimator. Based on the improved UKF, all information is combined. Simulation is carried out in MATLAB. Compared with range-only tightly coupled INS/APS navigation, synthetic long baseline (SLBL) algorithm and Doppler velocity logger (DVL) aided centralized extended Kalman filter (CEKF) based single beacon INS/OWTT navigation, the proposed method’s performance is proven. The main contributions of this work are: (1). Propose a new architecture of underwater integrated navigation; (2). Apply the passive acoustic detecting method in the navigation to improve accuracy. (3). Apply the tightly coupled method to improve availability. Full article
Show Figures

Figure 1

25 pages, 5452 KiB  
Article
Trust-Based Beacon Node Localization Algorithm for Underwater Networks by Exploiting Nature Inspired Meta-Heuristic Strategies
by Umar Draz, Muhammad Hasanain Chaudary, Tariq Ali, Abid Sohail, Muhammad Irfan and Grzegorz Nowakowski
Electronics 2022, 11(24), 4131; https://doi.org/10.3390/electronics11244131 - 11 Dec 2022
Cited by 3 | Viewed by 1415
Abstract
Conventional underwater technologies were not able to provide authentication and proper visualization of unexplored ocean areas to accommodate a wide range of applications. The aforesaid technologies face several challenges including decentralization, beacon node localization (for identification of nodes), authentication of Internet of Underwater [...] Read more.
Conventional underwater technologies were not able to provide authentication and proper visualization of unexplored ocean areas to accommodate a wide range of applications. The aforesaid technologies face several challenges including decentralization, beacon node localization (for identification of nodes), authentication of Internet of Underwater Things (IoUTs) objects and unreliable beacon node communication between purpose oriented IoT-enabled networks. Recently, new technologies such as blockchain (BC) and the IoUTs have been used to reduce the issues but there are still some research gaps; for example, unreliable beacon messages for node acquisition have significant impacts on node identification and localization and many constrained node resources, etc. Further, the uncertainty of acoustic communication and the environment itself become problems when designing a trust-based framework for the IoUTs. In this research, a trust-based hybrid BC-enabled beacon node localization (THBNL) framework is proposed to employ a secure strategy for beacon node localization (BNL) to mine the underwater localized nodes via the hybrid blockchain enabled beacon node localization (HB2NL) algorithm. This framework helps to merge two disciplines; it is hybrid because it follows the nature and bio inspired meta heuristics algorithms for scheduling the beacon nodes. The performance of the proposed approach is also evaluated for different factors such as node losses, packet delivery ratios, residual and energy consumption and waiting time analysis, etc. These findings show that the work done so far has been successful in achieving the required goals while remaining within the system parameters. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

28 pages, 12579 KiB  
Article
Hydrology and Dynamics in the Gulf of Naples during Spring of 2016: In Situ and Model Data
by Luigi Gifuni, Paola de Ruggiero, Daniela Cianelli, Enrico Zambianchi and Stefano Pierini
J. Mar. Sci. Eng. 2022, 10(11), 1776; https://doi.org/10.3390/jmse10111776 - 18 Nov 2022
Cited by 1 | Viewed by 2017
Abstract
The hydrology and circulation in the northwestern part of the Gulf of Naples are analyzed during the transition period from spring to summer (April–June) 2016 through numerical simulations and in situ observations. The simulations were performed with the high-resolution sigma-coordinate Campania Regional Ocean [...] Read more.
The hydrology and circulation in the northwestern part of the Gulf of Naples are analyzed during the transition period from spring to summer (April–June) 2016 through numerical simulations and in situ observations. The simulations were performed with the high-resolution sigma-coordinate Campania Regional Ocean Model (CROM) encompassing the wider Campania coastal system. Temperature, salinity and density were measured at the Long Term Ecological Research Program Mare-Chiara sampling site located two miles from the coast, while current intensity and direction were measured in situ by an acoustic Doppler current profiler connected to an elastic beacon anchored at a short distance from the city of Naples. The modeled circulation scenarios and the marine hydrology provided by the model on a regular grid allow interpreting the observational data during the selected period. In turn, the model-data comparison clarifies the model performance in reproducing the nearshore marine dynamics, which goes beyond the actual model resolution. Full article
(This article belongs to the Special Issue Dynamics in Coastal Areas)
Show Figures

Figure 1

22 pages, 4251 KiB  
Article
A Combined Measurement Method for the Seafloor Positioning, Navigation, and Timing Network
by Jinye Ma and Jianhu Zhao
J. Mar. Sci. Eng. 2022, 10(11), 1664; https://doi.org/10.3390/jmse10111664 - 4 Nov 2022
Cited by 3 | Viewed by 1528
Abstract
The idea of constructing the “GNSS-like” seafloor geodetic network for underwater positioning, navigation, and timing (PNT) has been proposed by many countries. Based on this idea, this paper introduces the principle of the seafloor PNT network and provides a combined measurement method, including [...] Read more.
The idea of constructing the “GNSS-like” seafloor geodetic network for underwater positioning, navigation, and timing (PNT) has been proposed by many countries. Based on this idea, this paper introduces the principle of the seafloor PNT network and provides a combined measurement method, including the absolute positioning and the relative positioning. Experimental results show that the positioning difference between the proposed method and circle-sailing positioning is approximately 10 cm, and the observation efficiency is higher than the existing measurement in the seafloor PNT network. In addition, a model is derived to determine the optimal configuration of the unit network (the basic component of the seafloor PNT network), considering the ranging capability of acoustic beacons, which is helpful to balance the side length of the unit network and the number of observation sessions in the relative positioning. Finally, a chain coordinate transfer strategy in the whole seafloor PNT network is proposed, and the positions where the absolute positioning should be carried out in the whole network are derived based on the conditional adjustment model. Based on this strategy, the design schemes of a seafloor PNT network with centimeter, decimeter, and meter positioning accuracy when the acoustic velocity measuring accuracy is 0.02 m/s and the time measuring accuracy is 10−5 s, are given in the experimental section. Full article
Show Figures

Figure 1

30 pages, 13742 KiB  
Article
A Compact Monopole Antenna for Underwater Acoustic Monitoring Beacons
by Stefania Bucuci, Andreea Constantin, Mirel Paun, Marius N. Pastorcici, Razvan D. Tamas, Alin Danisor and Rodica Constantinescu
Sensors 2022, 22(21), 8392; https://doi.org/10.3390/s22218392 - 1 Nov 2022
Cited by 2 | Viewed by 2003
Abstract
Protected wetlands such as deltas, lakes or rivers provide a sanctuary for many endangered species. In order to protect these areas from illegal human interventions, it is necessary to monitor the unauthorized entrance of motor boats. In order to mitigate such an impact, [...] Read more.
Protected wetlands such as deltas, lakes or rivers provide a sanctuary for many endangered species. In order to protect these areas from illegal human interventions, it is necessary to monitor the unauthorized entrance of motor boats. In order to mitigate such an impact, we have developed a network of floating beacons for underwater acoustic monitoring, using LoRa communication modules operating at 433 MHz. Such beacons should be equipped with compact antennas. In this paper, we use a genetic algorithm approach to design the compact, monopole antennas required for the beacons; size constraints would apply not only to the radiating element but also to the ground plane. Although the antenna input is unbalanced, such a small ground plane may yield common mode currents on the antenna feeder, which distort the radiation pattern of the antenna. In order to investigate the effect of the common mode currents, we developed a distance averaging method, while, for characterizing the antenna, we used a single-antenna method. For the experimental validation of the system in real conditions, a continuous monitoring of the lake was carried out. During the monitoring, multiple events generated by incursions of motor boats were successfully detected and recorded. Full article
(This article belongs to the Special Issue Antennas for Integrated Sensors Systems)
Show Figures

Figure 1

25 pages, 3314 KiB  
Article
Behavioural Responses of Common Dolphins Delphinus delphis to a Bio-Inspired Acoustic Device for Limiting Fishery By-Catch
by Loïc Lehnhoff, Hervé Glotin, Serge Bernard, Willy Dabin, Yves Le Gall, Eric Menut, Eleonore Meheust, Hélène Peltier, Alain Pochat, Krystel Pochat, Thomas Rimaud, Quiterie Sourget, Jérôme Spitz, Olivier Van Canneyt and Bastien Mérigot
Sustainability 2022, 14(20), 13186; https://doi.org/10.3390/su142013186 - 14 Oct 2022
Cited by 2 | Viewed by 2717
Abstract
By-catch is the most direct threat to marine mammals globally. Acoustic repellent devices (pingers) have been developed to reduce dolphin by-catch. However, mixed results regarding their efficiency have been reported. Here, we present a new bio-inspired acoustic beacon, emitting returning echoes from the [...] Read more.
By-catch is the most direct threat to marine mammals globally. Acoustic repellent devices (pingers) have been developed to reduce dolphin by-catch. However, mixed results regarding their efficiency have been reported. Here, we present a new bio-inspired acoustic beacon, emitting returning echoes from the echolocation clicks of a common dolphin ‘Delphinus delphis’ from a fishing net, to inform dolphins of its presence. Using surface visual observations and the automatic detection of echolocation clicks, buzzes, burst-pulses and whistles, we assessed wild dolphins’ behavioural responses during sequential experiments (i.e., before, during and after the beacon’s emission), with or without setting a net. When the device was activated, the mean number of echolocation clicks and whistling time of dolphins significantly increased by a factor of 2.46 and 3.38, respectively (p < 0.01). Visual surface observations showed attentive behaviours of dolphins, which kept a distance of several metres away from the emission source before calmly leaving. No differences were observed among sequences for buzzes/burst-pulses. Our results highlight that this prototype led common dolphins to echolocate more and communicate differently, and it would favour net detection. Complementary tests of the device during the fishing activities of professional fishermen should further contribute to assessment of its efficiency. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

18 pages, 7559 KiB  
Article
An Underwater Acoustic Network Positioning Method Based on Spatial-Temporal Self-Calibration
by Chao Wang, Pengyu Du, Zhenduo Wang and Zhongkang Wang
Sensors 2022, 22(15), 5571; https://doi.org/10.3390/s22155571 - 26 Jul 2022
Cited by 1 | Viewed by 2002
Abstract
The emergence of underwater acoustic networks has greatly improved the potential capabilities of marine environment detection. In underwater acoustic network applications, node location is a basic and important task, and node location information is the guarantee for the completion of various underwater tasks. [...] Read more.
The emergence of underwater acoustic networks has greatly improved the potential capabilities of marine environment detection. In underwater acoustic network applications, node location is a basic and important task, and node location information is the guarantee for the completion of various underwater tasks. Most of the current underwater positioning models do not consider the influence of the uneven underwater medium or the uncertainty of the position of the network beacon modem, which will reduce the accuracy of the positioning results. This paper proposes an underwater acoustic network positioning method based on spatial-temporal self-calibration. This method can automatically calibrate the space position of the beacon modem using only the GPS position and depth sensor information obtained in real-time. Under the asynchronous system, the influence of the inhomogeneity of the underwater medium is analyzed, and the unscented Kalman algorithm is used to estimate the position of underwater mobile nodes. Finally, the effectiveness of this method is verified by simulation and sea trials. Full article
(This article belongs to the Collection Underwater Sensor Networks and Internet of Underwater Things)
Show Figures

Figure 1

26 pages, 74826 KiB  
Article
A Novel Feature-Based Detector for Underwater Acoustic Beacon Signals Using Superimposed Envelope Spectrum of Multi-Pulses
by Shuai Yao and Yinjia Liu
J. Mar. Sci. Eng. 2021, 9(12), 1337; https://doi.org/10.3390/jmse9121337 - 28 Nov 2021
Cited by 1 | Viewed by 1904
Abstract
For tackling the challenge of in-time searching a sea-crashed plane, it is critical to develop a convenient and reliable detector for the underwater beacon signal. In the application of signal detection, a conventional detector such as linear correlation (LC) is used based on [...] Read more.
For tackling the challenge of in-time searching a sea-crashed plane, it is critical to develop a convenient and reliable detector for the underwater beacon signal. In the application of signal detection, a conventional detector such as linear correlation (LC) is used based on the assumption of Gaussian white noise, but it has turned out to be a poor choice in a sophisticated underwater environment. To address this issue, a novel feature-based detector using superimposed envelope spectrum (SES) of multi-pulses is proposed in this paper. The proposed detector firstly extracts the envelopes of the received multi-pulse signals and superimposes the envelopes according to the known period. Then, the harmonic features of the SES are derived and utilized in the feature judgment to make the final decision. The proposed method is evaluated together with several existing state-of-the-art detectors, including the matched filter (MF), the generalized likelihood ratio test (GRLT) detector, and the periodogram of the directly dislocation superposition (PDDS) detectors with constant false alarm probability. Compared with the conventional detectors, it is found that the proposed SES detector is more robust against the colored noise, the random phase, and the channel distortions caused by the sophisticated underwater environment. Simulation results show that, given a detection probability value of 90% and a false alarm probability value of 1%, the proposed detector shows a gain of 3–12 dB compared with the best one of the MF, GRLT, and the PDDS detectors under distorted channels in terms of signal-to-noise ratio (SNR) requirements, respectively. Experimental results based on lake trial data have also verified the validity and feasibility of the proposed feature-based detector. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 5489 KiB  
Article
Dynamic Adjustment of Weighted GCC-PHAT for Position Estimation in an Ultrasonic Local Positioning System
by José Manuel Villadangos, Jesús Ureña, Juan Jesús García-Domínguez, Ana Jiménez-Martín, Álvaro Hernández and Mª Carmen Pérez-Rubio
Sensors 2021, 21(21), 7051; https://doi.org/10.3390/s21217051 - 24 Oct 2021
Cited by 5 | Viewed by 3304
Abstract
Ultrasonic local positioning systems (ULPS) have been brought to the attention of researchers as one of the possibilities that can be used for indoor localization. Acoustic systems combine a suitable trade-off between precision, ease of development, and cost. This work proposes a method [...] Read more.
Ultrasonic local positioning systems (ULPS) have been brought to the attention of researchers as one of the possibilities that can be used for indoor localization. Acoustic systems combine a suitable trade-off between precision, ease of development, and cost. This work proposes a method for measuring the time of arrival of encoded emissions from a set of ultrasonic beacons, which are used to implement an accurate ULPS. This method uses the generalized cross-correlation technique with PHAT filter and weighting factor β (GCC-PHAT-β). To improve the performance of the GCC-PHAT-β in encoded emission detection, the employment is proposed of mixed-medium multiple-access techniques, based on code division and time division multiplexing of beacon emissions (CDMA and TDMA respectively), and to dynamically adjust the PHAT filter weighting factor. The receiver position is obtained by hyperbolic multilateration from the time differences of arrival (TDoA) between a reference beacon and the rest, thus avoiding the need for receiver synchronization. The results show how the dynamic adaptation of the weighting factor significantly reduces positioning errors from 20 cm to 2 cm in 80% of measurements. The simulated and real experiments prove that the proposed algorithms improve the performance of the ULPS in situations with lower signal-to-noise ratios (SNR) than 0 dB and in environments where the multipath effect makes it difficult to correctly detect the encoded ultrasonic emissions. Full article
(This article belongs to the Special Issue Section “Sensor Networks”: 10th Anniversary)
Show Figures

Figure 1

Back to TopTop