Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (158)

Search Parameters:
Keywords = airborne- and ground-based remote sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
55 pages, 13798 KiB  
Review
A Review of Satellite-Based CO2 Data Reconstruction Studies: Methodologies, Challenges, and Advances
by Kai Hu, Ziran Liu, Pengfei Shao, Keyu Ma, Yao Xu, Shiqian Wang, Yuanyuan Wang, Han Wang, Li Di, Min Xia and Youke Zhang
Remote Sens. 2024, 16(20), 3818; https://doi.org/10.3390/rs16203818 (registering DOI) - 14 Oct 2024
Viewed by 252
Abstract
Carbon dioxide is one of the most influential greenhouse gases affecting human life. CO2 data can be obtained through three methods: ground-based, airborne, and satellite-based observations. However, ground-based monitoring is typically composed of sparsely distributed stations, while airborne monitoring has limited coverage [...] Read more.
Carbon dioxide is one of the most influential greenhouse gases affecting human life. CO2 data can be obtained through three methods: ground-based, airborne, and satellite-based observations. However, ground-based monitoring is typically composed of sparsely distributed stations, while airborne monitoring has limited coverage and spatial resolution; they cannot fully reflect the spatiotemporal distribution of CO2. Satellite remote sensing plays a crucial role in monitoring the global distribution of atmospheric CO2, offering high observation accuracy and wide coverage. However, satellite remote sensing still faces spatiotemporal constraints, such as interference from clouds (or aerosols) and limitations from satellite orbits, which can lead to significant data loss. Therefore, the reconstruction of satellite-based CO2 data becomes particularly important. This article summarizes methods for the reconstruction of satellite-based CO2 data, including interpolation, data fusion, and super-resolution reconstruction techniques, and their advantages and disadvantages, it also provides a comprehensive overview of the classification and applications of super-resolution reconstruction techniques. Finally, the article offers future perspectives, suggesting that ideas like image super-resolution reconstruction represent the future trend in the field of satellite-based CO2 data reconstruction. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

24 pages, 1824 KiB  
Article
Challenges Facing the Use of Remote Sensing Technologies in the Construction Industry: A Review
by Abdulmohsen S. Almohsen
Buildings 2024, 14(9), 2861; https://doi.org/10.3390/buildings14092861 - 10 Sep 2024
Viewed by 1218
Abstract
Remote sensing is essential in construction management by providing valuable information and insights throughout the project lifecycle. Due to the rapid advancement of remote sensing technologies, their use has been increasingly adopted in the architecture, engineering, and construction industries. This review paper aims [...] Read more.
Remote sensing is essential in construction management by providing valuable information and insights throughout the project lifecycle. Due to the rapid advancement of remote sensing technologies, their use has been increasingly adopted in the architecture, engineering, and construction industries. This review paper aims to advance the understanding, knowledge base, and practical implementation of remote sensing technologies in the construction industry. It may help support the development of robust methodologies, address challenges, and pave the way for the effective integration of remote sensing into construction management processes. This paper presents the results of a comprehensive literature review, focusing on the challenges faced in using remote sensing technologies in construction management. One hundred and seventeen papers were collected from eight relevant journals, indexed in Web of Science, and then categorized by challenge type. The results of 44 exemplary studies were reported in the three types of remote sensing platforms (satellite, airborne, and ground-based remote sensing). The paper provides construction professionals with a deeper understanding of remote sensing technologies and their applications in construction management. The challenges of using remote sensing in construction were collected and classified into eleven challenges. According to the number of collected documents, the critical challenges were shadow, spatial, and temporal resolution issues. The findings emphasize the use of unmanned airborne systems (UASs) and satellite remote sensing, which have become increasingly common and valuable for tasks such as preconstruction planning, progress tracking, safety monitoring, and environmental management. This knowledge allows for informed decision-making regarding integrating remote sensing into construction projects, leading to more efficient and practical project planning, design, and execution. Full article
Show Figures

Figure 1

15 pages, 11454 KiB  
Article
Accurate Characterization of Soil Moisture in Wheat Fields with an Improved Drought Index from Unmanned Aerial Vehicle Observations
by Minghan Cheng, Xintong Lu, Zhangxin Liu, Guanshuo Yang, Lili Zhang, Binqian Sun, Zhian Wang, Zhengxian Zhang, Ming Shang and Chengming Sun
Agronomy 2024, 14(8), 1783; https://doi.org/10.3390/agronomy14081783 - 14 Aug 2024
Viewed by 723
Abstract
Soil moisture content is a crucial indicator for understanding the water requirements of crops. The effective monitoring of soil moisture content can provide support for irrigation decision-making and agricultural water management. Traditional ground-based measurement methods are time-consuming and labor-intensive, and point-scale monitoring cannot [...] Read more.
Soil moisture content is a crucial indicator for understanding the water requirements of crops. The effective monitoring of soil moisture content can provide support for irrigation decision-making and agricultural water management. Traditional ground-based measurement methods are time-consuming and labor-intensive, and point-scale monitoring cannot effectively represent the heterogeneity of soil moisture in the field. Unmanned aerial vehicle (UAV) remote sensing technology offers an efficient and convenient way to monitor soil moisture content in large fields, but airborne multispectral data are prone to spectral saturation effects, which can further affect the accuracy of monitoring soil moisture content. Therefore, we aim to construct effective drought indices for the accurate characterization of soil moisture content in winter wheat fields by utilizing unmanned aerial vehicles (UAVs) equipped with LiDAR, thermal infrared, and multispectral sensors. Initially, we estimated wheat plant height using airborne LiDAR sensors and improved traditional spectral indices in a structured manner based on crop height. Subsequently, we constructed the normalized land surface temperature–structured normalized difference vegetation index (NLST-SNDVI) space by combining the SNDVI with land surface temperature and calculated the improved Temperature–Vegetation Drought Index (iTVDI). The results are summarized as follows: (1) the structured spectral indices exhibit better resistance to spectral saturation, making the NLST-SNDVI space closer to expectations than the NLST-NDVI space, with higher fitting accuracy for wet and dry edges; (2) the iTVDI calculated based on the NLST-SNDVI space can effectively characterize soil moisture content, showing a significant correlation with measured surface soil moisture content; (3) the global Moran’s I calculated based on iTVDI deviations ranges between 0.18 and 0.30, all reaching significant levels, indicating that iTVDI has good spatial applicability. In conclusion, this study proved the effectiveness of the drought index based on a structured vegetation index, and the results can provide support for crop moisture monitoring and irrigation decision-making in the field. Full article
(This article belongs to the Special Issue Unmanned Farms in Smart Agriculture)
Show Figures

Figure 1

20 pages, 4368 KiB  
Article
Performance Analysis of an Aerial Remote Sensing Platform Based on Real-Time Satellite Communication and Its Application in Natural Disaster Emergency Response
by Xiangli He, Chong Xu, Shengquan Tang, Yuandong Huang, Wenwen Qi and Zikang Xiao
Remote Sens. 2024, 16(15), 2866; https://doi.org/10.3390/rs16152866 - 5 Aug 2024
Viewed by 1072
Abstract
The frequency of natural disasters has increased recently, posing a huge threat to human society. Rapid, accurate, authentic, and comprehensive acquisition and transmission of disaster information are crucial in emergency response. In this paper, we propose a design scheme for an aerial remote [...] Read more.
The frequency of natural disasters has increased recently, posing a huge threat to human society. Rapid, accurate, authentic, and comprehensive acquisition and transmission of disaster information are crucial in emergency response. In this paper, we propose a design scheme for an aerial remote sensing platform based on real-time satellite communication. This platform mainly includes a civilian heavy-duty unmanned aerial vehicle, ground observation system with the self-developed orthographic image stabilization device, wireless communication system with an airborne mobile communication device using Ku band, ground satellite information receiving station, and data processing and application analysis system. The image stabilization capability of the ground observation system and the communication capability of the wireless communication system were verified through ground and flight tests respectively. The results showed that the stability accuracy of the platform was better than the theoretical threshold, the system transmission rate was not less than 2 M bandwidth, the data packet loss rate was low, and the time delay was not more than 2 s. The images captured in the experiment were clear, with a resolution of less than 1cm and an overlap rate of more than 70%. These all results meet the emergency observation requirement, which indicates that the aerial remote sensing platform based on real-time satellite communication has great potential for application in natural disaster emergency response. Full article
(This article belongs to the Topic Geotechnics for Hazard Mitigation)
Show Figures

Figure 1

18 pages, 15289 KiB  
Article
An OVR-FWP-RF Machine Learning Algorithm for Identification of Abandoned Farmland in Hilly Areas Using Multispectral Remote Sensing Data
by Liangsong Wang, Qian Li, Youhan Wang, Kun Zeng and Haiying Wang
Sustainability 2024, 16(15), 6443; https://doi.org/10.3390/su16156443 - 27 Jul 2024
Viewed by 828
Abstract
Serious farmland abandonment in hilly areas, and the resolution of commonly used satellite-borne remote sensing images are insufficient to meet the needs of identifying abandoned farmland in such regions. Furthermore, addressing the problem of identifying abandoned farmland in hilly areas with a certain [...] Read more.
Serious farmland abandonment in hilly areas, and the resolution of commonly used satellite-borne remote sensing images are insufficient to meet the needs of identifying abandoned farmland in such regions. Furthermore, addressing the problem of identifying abandoned farmland in hilly areas with a certain level of accuracy is a crucial issue in the research of extracting information on abandoned farmland patches from remote sensing images. Taking a typical hilly village as an example, this study utilizes airborne multispectral remote sensing images, incorporating various feature factors such as spectral characteristics and texture features. Aiming at the issue of identifying abandoned farmland in hilly areas, a method for extracting abandoned farmland based on the OVR-FWP-RF algorithm is proposed. Furthermore, two machine learning algorithms, Random Forest (RF) and XGBoost, are also utilized for comparison. The results indicate that the overall accuracy (OA) of the OVR-FWP-RF, Random Forest, and XGboost classification algorithms have reached 92.66%, 90.55%, and 90.75%, respectively, with corresponding Kappa coefficients of 0.9064, 0.8796, and 0.8824. Therefore, by combining spectral features, texture features, and vegetation factors, the use of machine learning methods can improve the accuracy of identifying ground objects. Moreover, the OVR-FWP-RF algorithm outperforms the Random Forest and XGboost. Specifically, when using the OVR-FWP-RF algorithm to identify abandoned farmland, its producer accuracy (PA) is 3.22% and 0.71% higher than Random Forest and XGboost, respectively, while the user accuracy (UA) is also 5.27% and 6.68% higher, respectively. Therefore, OVR-FWP-RF can significantly improve the accuracy of abandoned farmland identification and other land use type recognition in hilly areas, providing a new method for abandoned farmland identification and other land type classification in hilly areas, as well as a useful reference for abandoned farmland identification research in other similar areas. Full article
Show Figures

Figure 1

21 pages, 3978 KiB  
Article
Application and Evaluation of the AI-Powered Segment Anything Model (SAM) in Seafloor Mapping: A Case Study from Puck Lagoon, Poland
by Łukasz Janowski and Radosław Wróblewski
Remote Sens. 2024, 16(14), 2638; https://doi.org/10.3390/rs16142638 - 18 Jul 2024
Viewed by 916
Abstract
The digital representation of seafloor, a challenge in UNESCO’s Ocean Decade initiative, is essential for sustainable development support and marine environment protection, aligning with the United Nations’ 2030 program goals. Accuracy in seafloor representation can be achieved through remote sensing measurements, including acoustic [...] Read more.
The digital representation of seafloor, a challenge in UNESCO’s Ocean Decade initiative, is essential for sustainable development support and marine environment protection, aligning with the United Nations’ 2030 program goals. Accuracy in seafloor representation can be achieved through remote sensing measurements, including acoustic and laser sources. Ground truth information integration facilitates comprehensive seafloor assessment. The current seafloor mapping paradigm benefits from the object-based image analysis (OBIA) approach, managing high-resolution remote sensing measurements effectively. A critical OBIA step is the segmentation process, with various algorithms available. Recent artificial intelligence advancements have led to AI-powered segmentation algorithms development, like the Segment Anything Model (SAM) by META AI. This paper presents the SAM approach’s first evaluation for seafloor mapping. The benchmark remote sensing dataset refers to Puck Lagoon, Poland and includes measurements from various sources, primarily multibeam echosounders, bathymetric lidar, airborne photogrammetry, and satellite imagery. The SAM algorithm’s performance was evaluated on an affordable workstation equipped with an NVIDIA GPU, enabling CUDA architecture utilization. The growing popularity and demand for AI-based services predict their widespread application in future underwater remote sensing studies, regardless of the measurement technology used (acoustic, laser, or imagery). Applying SAM in Puck Lagoon seafloor mapping may benefit other seafloor mapping studies intending to employ AI technology. Full article
(This article belongs to the Special Issue Advanced Remote Sensing Technology in Geodesy, Surveying and Mapping)
Show Figures

Figure 1

17 pages, 781 KiB  
Review
Assessment of Carbon Sink and Carbon Flux in Forest Ecosystems: Instrumentation and the Influence of Seasonal Changes
by Dangui Lu, Yuan Chen, Zhongke Feng and Zhichao Wang
Remote Sens. 2024, 16(13), 2293; https://doi.org/10.3390/rs16132293 - 23 Jun 2024
Viewed by 1191
Abstract
Accurate measurement and estimation of forest carbon sinks and fluxes are essential for developing effective national and global climate strategies aimed at reducing atmospheric carbon concentrations and mitigating climate change. Various errors arise during forest monitoring, especially measurement instability due to seasonal variations, [...] Read more.
Accurate measurement and estimation of forest carbon sinks and fluxes are essential for developing effective national and global climate strategies aimed at reducing atmospheric carbon concentrations and mitigating climate change. Various errors arise during forest monitoring, especially measurement instability due to seasonal variations, which require to be adequately addressed in forest ecosystem research and applications. Seasonal fluctuations in temperature, precipitation, aerosols, and solar radiation can significantly impact the physical observations of mapping equipment or platforms, thereby reducing the data’s accuracy. Here, we review the technologies and equipment used for monitoring forest carbon sinks and carbon fluxes across different remote sensing platforms, including ground-based, airborne, and spaceborne remote sensing. We further investigate the uncertainties introduced by seasonal variations to the observing equipment, compare the strengths and weaknesses of various monitoring technologies, and propose the corresponding solutions and recommendations. We aim to gain a comprehensive understanding of the impact of seasonal variations on the accuracy of forest map data, thereby improving the accuracy of forest carbon sinks and fluxes. Full article
Show Figures

Figure 1

27 pages, 4669 KiB  
Review
GNSS Reflectometry-Based Ocean Altimetry: State of the Art and Future Trends
by Tianhe Xu, Nazi Wang, Yunqiao He, Yunwei Li, Xinyue Meng, Fan Gao and Ernesto Lopez-Baeza
Remote Sens. 2024, 16(10), 1754; https://doi.org/10.3390/rs16101754 - 15 May 2024
Viewed by 1275
Abstract
For the past 20 years, Global Navigation Satellite System reflectometry (GNSS-R) technology has successfully shown its potential for remote sensing of the Earth’s surface, including ocean and land surfaces. It is a multistatic radar that uses the GNSS signals reflected from the Earth’s [...] Read more.
For the past 20 years, Global Navigation Satellite System reflectometry (GNSS-R) technology has successfully shown its potential for remote sensing of the Earth’s surface, including ocean and land surfaces. It is a multistatic radar that uses the GNSS signals reflected from the Earth’s surface to extract land and ocean characteristics. Because of its numerous advantages such as low cost, multiple signal sources, and all-day/weather and high-spatiotemporal-resolution observations, this new technology has attracted the attention of many researchers. One of its most promising applications is GNSS-R ocean altimetry, which can complement existing techniques such as tide gauging and radar satellite altimetry. Since this technology for ocean altimetry was first proposed in 1993, increasing progress has been made including diverse methods for processing reflected signals (such as GNSS interferometric reflectometry, conventional GNSS-R, and interferometric GNSS-R), different instruments (such as an RHCP antenna with one geodetic receiver, a linearly polarized antenna, and a system of simultaneously used RHCP and LHCP antennas with a dedicated receiver), and different platform applications (such as ground-based, air-borne, or space-borne). The development of multi-mode and multi-frequency GNSS, especially for constructing the Chinese BeiDou Global Navigation Satellite System (BDS-3), has enabled more free signals to be used to further promote GNSS-R applications. The GNSS has evolved from its initial use of GPS L1 and L2 signals to include other GNSS bands and multi-GNSS signals. Using more advanced, multi-frequency, and multi-mode signals will bring new opportunities to develop GNSS-R technology. In this paper, studies of GNSS-R altimetry are reviewed from four perspectives: (1) classifications according to different data processing methods, (2) different platforms, (3) development of different receivers, and (4) our work. We overview the current status of GNSS-R altimetry and describe its fundamental principles, experiments, recent applications to ocean altimetry, and future directions. Full article
(This article belongs to the Special Issue SoOP-Reflectometry or GNSS-Reflectometry: Theory and Applications)
Show Figures

Graphical abstract

26 pages, 20736 KiB  
Article
Estimation of Soil-Related Parameters Using Airborne-Based Hyperspectral Imagery and Ground Data in the Fenwei Plain, China
by Chenchen Jiang, Huazhong Ren, Zian Wang, Hui Zeng, Yuanjian Teng, Hongqin Zhang, Xixuan Liu, Dingjian Jin, Mengran Wang, Rongyuan Liu, Baozhen Wang and Jinshun Zhu
Remote Sens. 2024, 16(7), 1129; https://doi.org/10.3390/rs16071129 - 23 Mar 2024
Viewed by 1062
Abstract
Hyperspectral remote sensing technology is an advanced and powerful tool that enables fine identification of the numerous soil reflectance spectrum characteristics. Heavy metal(loid)s (HMs) are the primary pollutants affecting the soil biodiversity and ecosystem services. Estimating HMs’ concentrations in soils using hyperspectral data [...] Read more.
Hyperspectral remote sensing technology is an advanced and powerful tool that enables fine identification of the numerous soil reflectance spectrum characteristics. Heavy metal(loid)s (HMs) are the primary pollutants affecting the soil biodiversity and ecosystem services. Estimating HMs’ concentrations in soils using hyperspectral data is an effective method but is challenging due to the effects of varied soil properties and measurement-related errors inflicted by atmospheric effects. This study focused on typical mining areas in the Fenwei Plain (FWP), China. Soil-related data were collected by leveraging airborne- and ground-based integrated remote sensing observations. The concentrations of eight HMs, namely copper (Cu), lead (Pb), zinc (Zn), nickel (Ni), chromium (Cr), cadmium (Cd), arsenic (As), and mercury (Hg), were measured by laboratory analysis from 100 in situ soil samples. Soil reflectance spectra were processed based on resampling and envelope methods. The combination datasets of the concentrations and optimal soil reflectance spectra were used to build the soil-related parameter retrieval models using three machine learning (ML) methods, and the feasibility of applying the high-performance retrieval model to estimate the HM concentrations in mining areas was evaluated and explored. Spectral analysis results show that four hundred and twenty-eight bands of five wavelength ranges are of high quality and obviously demonstrate the spectral characteristics selected to build the soil-related parameter models. The evaluation results of eight combination data subsets and three methods show that the preprocessing of spectral data (ground- and airborne-based reflectance) and soil samples with the random forest (RF) method can obtain higher accuracy than support vector machine (SVM) and partial least squares (PLS) methods, denoted as the AER-ACS-RF and GER-GCS-RF models (the average RMSE values of eight HMs were 2.61 and 2.53 mg/kg, respectively). The highest R2 values were observed in Cd and As, with an equal value of 0.98, followed by that of Pb (R2 = 0.97). The relative prediction deviation (RPD) values of Cu and AS were greater than 1.9. Moreover, the airborne-based AER-ACS-RF model presents a good mapping effect about the concentrations (mg/kg) of eight HMs in mining areas, ranging from 21.65 to 31.25 (Cu), 16.38 to 30.45 (Pb), 62.02 to 109.48 (Zn), 23.33 to 32.47 (Ni), 49.81 to 66.56 (Cr), 0.09 to 0.23 (Cd), 7.31 to 12.24 (As), and 0.03 to 0.17 (Hg), respectively. Full article
Show Figures

Figure 1

19 pages, 11920 KiB  
Article
Mapping Leaf Area Index at Various Rice Growth Stages in Southern India Using Airborne Hyperspectral Remote Sensing
by Mathyam Prabhakar, Kodigal A. Gopinath, Nakka Ravi Kumar, Merugu Thirupathi, Uppu Sai Sravan, Golla Srasvan Kumar, Gutti Samba Siva, Pebbeti Chandana and Vinod Kumar Singh
Remote Sens. 2024, 16(6), 954; https://doi.org/10.3390/rs16060954 - 8 Mar 2024
Cited by 2 | Viewed by 1717
Abstract
Globally, rice is one of the most important staple food crops. The most significant metric for evaluating the rice growth and productivity is the Leaf Area Index (LAI), which can be effectively monitored using remote sensing data. Hyperspectral remote sensing provides contiguous bands [...] Read more.
Globally, rice is one of the most important staple food crops. The most significant metric for evaluating the rice growth and productivity is the Leaf Area Index (LAI), which can be effectively monitored using remote sensing data. Hyperspectral remote sensing provides contiguous bands at narrow wavelengths for mapping LAI at various rice phenological stages, and it is functionally related to canopy spectral reflectance. Hyperspectral signatures for different phases of rice crop growth was recorded using Airborne Visible Near-Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) along with corresponding ground based observations. Ground-based hyperspectral canopy spectral reflectance measurements were recorded with FieldSpec 3 Hi-Res spectroradiometer (ASD Inc., Forsyth County, GA, USA; spectral range: 350–2500 nm) and LAI data from 132 farmer’s fields in Southern India. Among 29 hyperspectral vegetation indices tested, 8 were found promising for mapping rice LAI at various phenological stages. Among all the growth stages, the elongation stage was the most accurately estimated using vegetation indices that exhibited a significant correlation with the airborne hyperspectral reflectance. The validation of hyperspectral vegetation indices revealed that the best fit model for estimating rice LAI was mND705 (red-edge, blue, and NIR bands) at seedling and elongation, SAVI (red and NIR bands) at tillering and WDRVI (red and NIR bands) at booting stage. Full article
(This article belongs to the Special Issue Application of Satellite and UAV Data in Precision Agriculture)
Show Figures

Graphical abstract

14 pages, 3066 KiB  
Review
Remote Sensing Applications in Monitoring Poplars: A Review
by Morena J. Mapuru, Sifiso Xulu and Michael Gebreslasie
Forests 2023, 14(12), 2301; https://doi.org/10.3390/f14122301 - 23 Nov 2023
Viewed by 1355
Abstract
Given the ability of remote sensing to detect distinctive plant traits, it has emerged in recent decades as a useful and attractive research tool for forest trees such as poplars. Although poplars have been extensively studied using remote sensing over the past thirty [...] Read more.
Given the ability of remote sensing to detect distinctive plant traits, it has emerged in recent decades as a useful and attractive research tool for forest trees such as poplars. Although poplars have been extensively studied using remote sensing over the past thirty years, no reviews have been conducted to understand the results of multiple applications. Here, we present a review and synthesis of poplar studies in this regard. We searched the Scopus, Google Scholar, and Science Direct databases and found 266 published articles, of which 148 were eligible and analyzed. Our results show a rapid increase in remote sensing-based poplar publications over the period of 1991–2022, with airborne platforms, particularly LiDAR, being predominantly used, followed by satellite and ground-based sensors. Studies are widespread in the Global North, accounting for more than two-thirds of studies. The studies took place mainly in agricultural landscapes, followed by forest areas and riparian areas, with a few in mountain and urban areas. Commonly studied biophysical parameters were mostly obtained from LiDAR data. On the other hand, spectral indicators have been widely used to monitor the health and vitality of poplar trees, integrating various machine learning algorithms. Overall, remote sensing has been widely used in poplar studies, and the increasing use of free satellite data and processing platforms is expected to pave the way for data-poor countries to monitor poplar in the Global South, where resources are mainly limited. Full article
Show Figures

Figure 1

20 pages, 10786 KiB  
Article
A Binary Fast Image Registration Method Based on Fusion Information
by Huaidan Liang, Chenglong Liu, Xueguang Li and Lina Wang
Electronics 2023, 12(21), 4475; https://doi.org/10.3390/electronics12214475 - 31 Oct 2023
Cited by 1 | Viewed by 1054
Abstract
In the field of airborne aerial imaging, image stitching is often used to expand the field of view. Registration is the foundation of aerial image stitching and directly affects its success and quality. This article develops a fast binary image registration method based [...] Read more.
In the field of airborne aerial imaging, image stitching is often used to expand the field of view. Registration is the foundation of aerial image stitching and directly affects its success and quality. This article develops a fast binary image registration method based on the characteristics of airborne aerial imaging. This method first integrates aircraft parameters and calculates the ground range of the image for coarse registration. Then, based on the characteristics of FAST (Features from Accelerated Segment Test), a new sampling method, named Weighted Angular Diffusion Radial Sampling (WADRS), and matching method are designed. The method proposed in this article can achieve fast registration while ensuring registration accuracy, with a running speed that is approximately four times faster than SURF (Speed Up Robust Features). Additionally, there is no need to manually select any control points before registration. The results indicate that the proposed method can effectively complete remote sensing image registration from different perspectives. Full article
Show Figures

Figure 1

15 pages, 1014 KiB  
Article
The Michigan–Ontario Ozone Source Experiment (MOOSE): An Overview
by Eduardo P. Olaguer, Yushan Su, Craig A. Stroud, Robert M. Healy, Stuart A. Batterman, Tara I. Yacovitch, Jiajue Chai, Yaoxian Huang and Matthew T. Parsons
Atmosphere 2023, 14(11), 1630; https://doi.org/10.3390/atmos14111630 - 30 Oct 2023
Viewed by 1422
Abstract
The Michigan–Ontario Ozone Source Experiment (MOOSE) is an international air quality field study that took place at the US–Canada Border region in the ozone seasons of 2021 and 2022. MOOSE addressed binational air quality issues stemming from lake breeze phenomena and transboundary transport, [...] Read more.
The Michigan–Ontario Ozone Source Experiment (MOOSE) is an international air quality field study that took place at the US–Canada Border region in the ozone seasons of 2021 and 2022. MOOSE addressed binational air quality issues stemming from lake breeze phenomena and transboundary transport, as well as local emissions in southeast Michigan and southern Ontario. State-of-the-art scientific techniques applied during MOOSE included the use of multiple advanced mobile laboratories equipped with real-time instrumentation; high-resolution meteorological and air quality models at regional, urban, and neighborhood scales; daily real-time meteorological and air quality forecasts; ground-based and airborne remote sensing; instrumented Unmanned Aerial Vehicles (UAVs); isotopic measurements of reactive nitrogen species; chemical fingerprinting; and fine-scale inverse modeling of emission sources. Major results include characterization of southeast Michigan as VOC-limited for local ozone formation; discovery of significant and unaccounted formaldehyde emissions from industrial sources; quantification of methane emissions from landfills and leaking natural gas pipelines; evaluation of solvent emission impacts on local and regional ozone; characterization of the sources of reactive nitrogen and PM2.5; and improvements to modeling practices for meteorological, receptor, and chemical transport models. Full article
(This article belongs to the Special Issue The Michigan-Ontario Ozone Source Experiment (MOOSE))
Show Figures

Figure 1

18 pages, 13591 KiB  
Article
Remotely Sensing the Invisible—Thermal and Magnetic Survey Data Integration for Landscape Archaeology
by Jegor K. Blochin, Elena A. Pavlovskaia, Timur R. Sadykov and Gino Caspari
Remote Sens. 2023, 15(20), 4992; https://doi.org/10.3390/rs15204992 - 17 Oct 2023
Cited by 1 | Viewed by 1486
Abstract
Archaeological landscapes can be obscured by environmental factors, rendering conventional visual interpretation of optical data problematic. The absence of evidence can lead to seemingly empty locations and isolated monuments. This, in turn, influences the cultural–historical interpretation of archaeological sites. Here, we assess the [...] Read more.
Archaeological landscapes can be obscured by environmental factors, rendering conventional visual interpretation of optical data problematic. The absence of evidence can lead to seemingly empty locations and isolated monuments. This, in turn, influences the cultural–historical interpretation of archaeological sites. Here, we assess the potential of integrating thermal and magnetic remote sensing methods in the detection and mapping of buried archaeological structures. The area of interest in an alluvial plain in Tuva Republic makes the application of standard methods like optical remote sensing and field walking impractical, as natural vegetation features effectively hide anthropogenic structures. We combined drone-based aerial thermography and airborne and ground-based magnetometry to establish an approach to reliably identifying stone structures concealed within alluvial soils. The data integration led to the discovery of nine buried archaeological structures in proximity to an Early Iron Age royal tomb, shedding light on ritual land use continuity patterns. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Cultural Heritage Research II)
Show Figures

Figure 1

53 pages, 3854 KiB  
Review
Can Yield Prediction Be Fully Digitilized? A Systematic Review
by Nicoleta Darra, Evangelos Anastasiou, Olga Kriezi, Erato Lazarou, Dionissios Kalivas and Spyros Fountas
Agronomy 2023, 13(9), 2441; https://doi.org/10.3390/agronomy13092441 - 21 Sep 2023
Cited by 9 | Viewed by 3045
Abstract
Going beyond previous work, this paper presents a systematic literature review that explores the deployment of satellites, drones, and ground-based sensors for yield prediction in agriculture. It covers multiple aspects of the topic, including crop types, key sensor platforms, data analysis techniques, and [...] Read more.
Going beyond previous work, this paper presents a systematic literature review that explores the deployment of satellites, drones, and ground-based sensors for yield prediction in agriculture. It covers multiple aspects of the topic, including crop types, key sensor platforms, data analysis techniques, and performance in estimating yield. To this end, datasets from Scopus and Web of Science were analyzed, resulting in the full review of 269 out of 1429 retrieved publications. Our study revealed that China (93 articles, >1800 citations) and the USA (58 articles, >1600 citations) are prominent contributors in this field; while satellites were the primary remote sensing platform (62%), followed by airborne (30%) and proximal sensors (27%). Additionally, statistical methods were used in 157 articles, and model-based approaches were utilized in 60 articles, while machine learning and deep learning were employed in 142 articles and 62 articles, respectively. When comparing methods, machine learning and deep learning methods exhibited high accuracy in crop yield prediction, while other techniques also demonstrated success, contingent on the specific crop platform and method employed. The findings of this study serve as a comprehensive roadmap for researchers and farmers, enabling them to make data-driven decisions and optimize agricultural practices, paving the way towards a fully digitized yield prediction. Full article
Show Figures

Figure 1

Back to TopTop