Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,604)

Search Parameters:
Keywords = alumina

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5351 KiB  
Article
Deactivation and Regeneration Studies of Molybdenum-Based Catalysts in the Oxidative Desulfurization of Marine Fuel Oil
by Teddy Roy, Joy Alakari, Christine Lancelot, Pascal Blanchard, Line Poinel and Carole Lamonier
Catalysts 2024, 14(11), 823; https://doi.org/10.3390/catal14110823 (registering DOI) - 15 Nov 2024
Abstract
The oxidative desulfurization (ODS) of heavy fuel oil (HFO) offers a promising solution for desulfurizing marine fuels under mild conditions, in line with current environmental regulations. While most studies focus on model or light fuels, explaining deactivation through leaching or sulfone adsorption, the [...] Read more.
The oxidative desulfurization (ODS) of heavy fuel oil (HFO) offers a promising solution for desulfurizing marine fuels under mild conditions, in line with current environmental regulations. While most studies focus on model or light fuels, explaining deactivation through leaching or sulfone adsorption, the deactivation mechanisms of catalysts in HFO remain poorly understood. In this work, Mo-based catalysts supported on alumina were extensively characterized before and after catalytic reactions, and regeneration through air calcination was considered. Techniques such as XRD, Raman spectroscopy, XRF, and TGA, alongside catalytic testing with H2O2 as an oxidant, revealed that Mo surface speciation significantly impacted both activity and deactivation. Contrary to well-dispersed polymolybdates, crystalline MoO3 induced low activity and hindered regeneration. No leaching of the active phase was demonstrated during the reaction. Sulfone adsorption had minimal impact on deactivation, while non-sulphur compounds appeared to be the key contributors. Regeneration outcomes were found to be molybdenum content-dependent: 10Mo/Al recovered its activity, while 20Mo/Al formed inactive phases, like Al2(MoO4)3. Using an organic oxidant (tBHP) during ODS influenced the regeneration, as it prevented Al2(MoO4)3 formation and redispersed crystalline MoO3, enhancing performance. These findings advance understanding of catalyst deactivation and suggest strategies to extend catalyst life in the ODS of HFO. Full article
Show Figures

Graphical abstract

21 pages, 7048 KiB  
Article
Statistical Analysis of AC Breakdown Performance of Epoxy/Al2O3 Micro-Composites for High-Voltage Applications
by Changyeong Cheon, Dongmin Seo and Myungchin Kim
Appl. Sci. 2024, 14(22), 10506; https://doi.org/10.3390/app142210506 - 14 Nov 2024
Abstract
Thanks to the performance improvement introduced by micro sized functional fillers, application of epoxy composites for electrical insulation purposes has become popular. This paper investigates the dielectric properties of epoxy micro-composites filled with alumina (Al2O3). In particular, measurements of [...] Read more.
Thanks to the performance improvement introduced by micro sized functional fillers, application of epoxy composites for electrical insulation purposes has become popular. This paper investigates the dielectric properties of epoxy micro-composites filled with alumina (Al2O3). In particular, measurements of relative permittivity, dissipation factor, and electrical breakdown are performed, and a comprehensive statistical analysis on dielectric properties was conducted. AC breakdown strength (AC-BDS) was analyzed for normal distribution using four methods (Anderson–Darling, Shapiro–Wilk, Ryan–Joiner, and Kolmogorov–Smirnov). In addition, the AC-BDS was analyzed at risk probabilities of 1%, 5%, 10%, and 50% using Weibull distribution functions. Both normal and Weibull distributions were evaluated using the Anderson–Darling (A-D) statistic and p-value. Additionally, the log-normal, gamma, and exponential distributions of AC-BDS were examined by A-D goodness-of-fit test. The hypothesis test results of AC-BDS were fit by normal and Weibull distributions, and the compliance was evaluated by p-value and each method statistics. In addition, the experimental results of AC-BDS were fit by log-normal and gamma distributions, and the goodness-of-fit was evaluated by p-value and A-D testing. On the other hand, exponential distribution was not suitable for p-value and A-D testing. The results showed that the distributions of AC-BDS were the best using log-normal distribution. Meanwhile, statistical analysis results verified the apparent effect of temperature on dielectric properties using a paired t-test. The analysis results of this paper not only contribute to better characterization of epoxy/Al2O3 micro-composites but also introduce a comprehensive approach for performing statistical analysis for electrical insulation materials. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

14 pages, 3032 KiB  
Article
Recovery of Titanium from Red Mud Using Carbothermic Reduction and High Pressure Leaching of the Slag in an Autoclave
by Srecko Stopic, Duško Kostić, Richard Schneider, Magnus Sievers, Florian Wegmann, Elif Emil Kaya, Mitar Perušić and Bernd Friedrich
Minerals 2024, 14(11), 1151; https://doi.org/10.3390/min14111151 - 13 Nov 2024
Viewed by 251
Abstract
Red mud is a by-product of alumina production, which is largely stored in landfills that can endanger the environment. Red mud, or bauxite residue, is a mixture of inorganic compounds of iron, aluminum, sodium, titanium, calcium and silicon mostly, as well as a [...] Read more.
Red mud is a by-product of alumina production, which is largely stored in landfills that can endanger the environment. Red mud, or bauxite residue, is a mixture of inorganic compounds of iron, aluminum, sodium, titanium, calcium and silicon mostly, as well as a large number of rare earth elements in small quantities. Although certain methods of using red mud already exist, none of them have been widely implemented on a large scale. This paper proposes a combination of two methods for the utilization of red mud, first by carbothermic reduction and then, by leaching under high pressure in an autoclave in order to extract useful components from it with a focus on titanium. In the first part of the work, the red mud was reduced with carbon at 1600 °C in an electric arc furnace, with the aim of removing as much iron as possible using magnetic separation. After separation, the slag is leached in an autoclave at different parameters in order to obtain the highest possible yield of titanium, aiming for the formation of titanium oxysulfate and avoiding silica gel formation. A maximal leaching efficiency of titanium of 95% was reached at 150 °C using 5 mol/L sulfuric acid with 9 bar oxygen in 2 h. We found that high-pressure conditions enabled avoiding the formation of silica gel during leaching of the slag using 5 mol/L sulfuric acid, which is a big problem at atmospheric pressure. Previously silica gel formation was prevented using the dry digestion process with 12 mol/L sulfuric acid under atmospheric pressure. Full article
Show Figures

Figure 1

12 pages, 2155 KiB  
Article
Mullite Synthesis Using Porous 3D Structures Consisting of Nanofibrils of Aluminum Oxyhydroxide Chemically Modified with Ethoxysilanes
by Anatole Khodan, Thi Hang Nga Nguyen and Andrei Kanaev
J. Compos. Sci. 2024, 8(11), 469; https://doi.org/10.3390/jcs8110469 - 12 Nov 2024
Viewed by 450
Abstract
Nanocrystalline mullite was synthetized by annealing a highly porous 3D structure consisting of nanofibrous aluminum oxyhydroxides treated with ethoxysilanes. The chemical, structural, and phase transformations in the aluminosilicate nanosystem were studied in the temperature range between 100 and 1600 °C. The features of [...] Read more.
Nanocrystalline mullite was synthetized by annealing a highly porous 3D structure consisting of nanofibrous aluminum oxyhydroxides treated with ethoxysilanes. The chemical, structural, and phase transformations in the aluminosilicate nanosystem were studied in the temperature range between 100 and 1600 °C. The features of the solid-phase synthesis of mullite at the interface of crystalline alumina with a liquid silica layer are discussed. It was established that chemical modification of the alumina surface with ethoxysilanes significantly limits the interphase mass transport and delays the phase transformation of the amorphous oxide into γ-Al2O3, which begins at temperatures above 1000 °C, while the basic structural nanofibrils are already crystallized at ~850 °C. The formation of mullite was completed at temperatures ≥ 1200 °C, where the fraction of γ-Al2O3 sharply decreased. Full article
Show Figures

Figure 1

11 pages, 1566 KiB  
Article
Waste Bauxite Residue Valorization as Trace Metal Sorbent: Application to Acid Mine Drainage Remediation
by Arnaud Gauthier, Brenda Omana, Fouad Amin and Philipe Le Coustumer
Water 2024, 16(22), 3255; https://doi.org/10.3390/w16223255 - 12 Nov 2024
Viewed by 284
Abstract
With an output of more than two million tons of alumina per year, Venezuela is an important producer. As observed, this mining extraction activity generates a large number of by-products poorly valorized for many reasons (economic, technical, and due to environmental standards and [...] Read more.
With an output of more than two million tons of alumina per year, Venezuela is an important producer. As observed, this mining extraction activity generates a large number of by-products poorly valorized for many reasons (economic, technical, and due to environmental standards and regulations) Venezuela production generates wastes (more than 15 million of m3) called red muds, which are dumped in old lagoons near the Orinoco river or stored. This sludge has a high alkalinity (pH between 10 and 13) and a chemical composition containing some heavy metals (40 ppm Cr, 107 ppm La, 178 ppm Ce) that means it is considered environmentally problematic waste. However, their mineralogical, textural and structural characteristics make them adsorption materials. So, the aim of the study presented here was to investigate the sorption properties of these residues in the case of treatment of water from acid mine drainage. In fact, with an important reactive surface, their capacities to trap by adsorption trace elements such as cadmium, lead or zinc has been studied. Batch sorption tests revealed significant retention of contaminants such as Pb, Zn and As. These retention processes were interpreted using the Langmuir isotherm model. The promising first results indicate that the red mud named Venezuelan bauxite residue (VBR) reveals its great potential as a sorbent of inorganic pollutants. The sorption process is chemically dependent and efficient for certain pH and IS ranges. In addition, the material showed a strong affinity for the adsorption of arsenate (As5+). This was observed during post adsorption chemical speciation experiments, through the very high affinity of this element for the least mobile fractions, including oxyhydroxides mobile fractions, including Fe oxyhydroxides (amorphous). Nevertheless, these mining by-products could be considered as valuable absorbent materials. Despite this promising results, further studies are required to evaluate their potential in different conditions (dynamic tests, pH, IS, inorganic and organic contaminants, concentration and time effect). Full article
(This article belongs to the Special Issue Impact of Mining Activities on the Groundwater Resources)
Show Figures

Figure 1

14 pages, 3543 KiB  
Article
Research on the Adsorption Performance of Zeolites for Dimethyl Ether
by Xiaoqing Nie, Zhaoteng Xue, Wenqian Jiao, Jing Dong, Su Liu and Dongsen Mao
Minerals 2024, 14(11), 1141; https://doi.org/10.3390/min14111141 - 11 Nov 2024
Viewed by 304
Abstract
The purification and removal of polar impurities in olefin feedstocks is crucial for downstream deep processing, and adsorption is the main method for deep purification of such impurities. This article takes dimethyl ether, a typical oxygen-containing compound impurity in MTOs, as a polar [...] Read more.
The purification and removal of polar impurities in olefin feedstocks is crucial for downstream deep processing, and adsorption is the main method for deep purification of such impurities. This article takes dimethyl ether, a typical oxygen-containing compound impurity in MTOs, as a polar impurity molecule, and LTA and FAU topological zeolites as research objects. The influence of zeolite topology, morphology, skeleton silicon–aluminum (Si/Al) ratio, and ion type on the adsorption and removal of trace dimethyl ether was investigated by XRD, SEM, XRF, and nitrogen adsorption–desorption methods. The FAU topological zeolites show a better adsorption performance for dimethyl ether owing to their larger specific surface area and unobstructed pores compared with LTA zeolites. Among FAU topological zeolites, the NaX zeolite a with lower framework silica–alumina ratio has the highest adsorption capacity for dimethyl ether. Magnesium ion exchange on NaX zeolites (MgNaX) reduce the specific surface area and adsorption capacity of the NaX zeolite. However, after forming with alumina as a binder, the adsorption capacity of the MgNaX–Al2O3 adsorbent is about 13% higher than that of the NaX–Al2O3 adsorbent without Mg ion exchange. This may be due to the decomposition of residual organic Mg salts in the Mg ion exchange samples during high-temperature calcination, resulting in a larger specific surface area for the formed adsorbent. Further characterization of NH3–TPD and CO2–TPD shows that Mg ion exchange weakens the acid–base active sites on the adsorbent surface. The reduction in acid–base sites reduces the occurrence of side reactions such as polymerization and isomerization caused by the exothermic adsorption of olefins on adsorbents. Repeated adsorption data show that the formed adsorbent has excellent regeneration–adsorption performance. Full article
Show Figures

Figure 1

16 pages, 15943 KiB  
Article
Cu-Based Praseodymium-Modified γ-Al2O3 Oxygen Carrier for Chemical Looping Combustion Process Optimization
by Muhammad Qasim, Noridah Binti Osman, Muhammad Ayoub and Aqsha Aqsha
Catalysts 2024, 14(11), 801; https://doi.org/10.3390/catal14110801 - 8 Nov 2024
Viewed by 348
Abstract
Chemical looping combustion (CLC) emerges as a cost-effective CO2 capture technology, demonstrating high competitiveness for both industrial and energy applications. This study explores the synthesis of a Cu-based, praseodymium (Pr)-modified gamma-alumina-supported (20CuPA) oxygen carrier (OC) through the wet impregnation method and investigates [...] Read more.
Chemical looping combustion (CLC) emerges as a cost-effective CO2 capture technology, demonstrating high competitiveness for both industrial and energy applications. This study explores the synthesis of a Cu-based, praseodymium (Pr)-modified gamma-alumina-supported (20CuPA) oxygen carrier (OC) through the wet impregnation method and investigates its performance in CLC. The characteristics of the synthesized OC were investigated using field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, temperature-programmed reduction analysis, and X-ray diffraction analysis. The CLC of methane gas was performed in a thermogravimetric analyzer (TA-Q50). The oxygen transport capacity (OTC) of the 20CuPA-based OC was investigated for 10 redox cycles. The impact of temperature and time as process variables in determining the OTC of OCs was studied. The TGA results indicated that the most important factor influencing the optimization of the OTC of OCs was time. In comparison to time, temperature had less of an impact on the OTC of 20CuPA-OC. The maximum OTC of 20CuPA-OC, which was 0.0546 mg of O2/mg of OC, was reached using optimized process variables, including a temperature of 800 °C and a time of 3 min. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

20 pages, 2728 KiB  
Review
Contribution of Copper Slag to Water Treatment and Hydrogen Production by Photocatalytic Mechanisms in Aqueous Solutions: A Mini Review
by Susana I. Leiva-Guajardo, Norman Toro, Edward Fuentealba, Mauricio J. Morel, Álvaro Soliz, Carlos Portillo and Felipe M. Galleguillos Madrid
Materials 2024, 17(22), 5434; https://doi.org/10.3390/ma17225434 - 7 Nov 2024
Viewed by 817
Abstract
Hydrogen has emerged as a promising energy carrier, offering a viable solution to meet our current global energy demands. Solar energy is recognised as a primary source of renewable power, capable of producing hydrogen using solar cells. The pursuit of efficient, durable, and [...] Read more.
Hydrogen has emerged as a promising energy carrier, offering a viable solution to meet our current global energy demands. Solar energy is recognised as a primary source of renewable power, capable of producing hydrogen using solar cells. The pursuit of efficient, durable, and cost-effective photocatalysts is essential for the advancement of solar-driven hydrogen generation. Copper slag, a by-product of copper smelting and refining processes, primarily consists of metal oxides such as hematite, silica, and alumina. This composition makes it an attractive secondary resource for use as a photocatalyst, thereby diverting copper slag from landfills and generating 0.113 μmol/g h of hydrogen, as noted by Montoya. This review aims to thoroughly examine copper slag as a photocatalytic material, exploring its chemical, physical, photocatalytic, and electrochemical properties. Additionally, it evaluates its suitability for water treatment and its potential as an emerging material for large-scale solar hydrogen production. Full article
Show Figures

Graphical abstract

32 pages, 1410 KiB  
Article
Modeling the Production of Nanoparticles via Detonation—Application to Alumina Production from ANFO Aluminized Emulsions
by Pedro M. S. Santos, Belmiro P. M. Duarte, Nuno M. C. Oliveira, Ricardo A. L. Mendes, José L. S. A. Campos and João M. C. Silva
Modelling 2024, 5(4), 1642-1673; https://doi.org/10.3390/modelling5040086 - 7 Nov 2024
Viewed by 382
Abstract
This paper investigates the production of nanoparticles via detonation. To extract valuable knowledge regarding this route, a phenomenological model of the process is developed and simulated. This framework integrates the mathematical description of the detonation with a model representing the particulate phenomena. The [...] Read more.
This paper investigates the production of nanoparticles via detonation. To extract valuable knowledge regarding this route, a phenomenological model of the process is developed and simulated. This framework integrates the mathematical description of the detonation with a model representing the particulate phenomena. The detonation process is simulated using a combination of a thermochemical code to determine the Chapman–Jouguet (C-J) conditions, coupled with an approximate spatially homogeneous model that describes the radial expansion of the detonation matrix. The conditions at the C-J point serve as initial conditions for the detonation dynamic model. The Mie–Grüneisen Equation of State (EoS) is used, with the “cold curve” represented by the Jones–Wilkins–Lee Equation of State. The particulate phenomena, representing the formation of metallic oxide nanoparticles from liquid droplets, are described by a Population Balance Equation (PBE) that accounts for the coalescence and coagulation mechanisms. The variables associated with detonation dynamics interact with the kernels of both phenomena. The numerical approach employed to handle the PBE relies on spatial discretization based on a fixed-pivot scheme. The dynamic solution of the models representing both processes is evolved with time using a Differential-Algebraic Equation (DAE) implicit solver. The strategy is applied to simulate the production of alumina nanoparticles from Ammonium Nitrate Fuel Oil aluminized emulsions. The results show good agreement with the literature and experience-based knowledge, demonstrating the tool’s potential in advancing understanding of the detonation route. Full article
Show Figures

Figure 1

18 pages, 3031 KiB  
Article
Synergistic Effects of Nonthermal Plasma and Solid Acid Catalysts in Thermo-Catalytic Glycerol Dehydration
by Lu Liu, Fei Yu, Siqun Wang and Xiaofei Philip Ye
Catalysts 2024, 14(11), 790; https://doi.org/10.3390/catal14110790 - 6 Nov 2024
Viewed by 339
Abstract
To enhance the bio-based synthesis of acrolein from glycerol, a hybrid approach combining in situ nonthermal plasma (NTP) with thermo-catalytic dehydration was employed. This study investigated the impact of the reaction temperature and NTP discharge field strength on glycerol conversion, acrolein selectivity, byproduct [...] Read more.
To enhance the bio-based synthesis of acrolein from glycerol, a hybrid approach combining in situ nonthermal plasma (NTP) with thermo-catalytic dehydration was employed. This study investigated the impact of the reaction temperature and NTP discharge field strength on glycerol conversion, acrolein selectivity, byproduct formation, and coke deposition using two catalysts of silicotungstic acid supported on mesoporous alumina and silica. The results revealed that, while the reaction temperature and NTP field strength exhibited complex interactions, the in situ application of NTP markedly improved both glycerol conversion and acrolein selectivity when optimized for specific temperature–NTP field strength combinations. Additionally, the reaction mechanisms of glycerol dehydration with the two catalysts, in the presence and absence of NTP, were systematically analyzed and discussed based on the experimental data. Full article
Show Figures

Graphical abstract

35 pages, 8559 KiB  
Article
Robust Adaptive Control System of Variable Sampling Period for Cement Raw Mix Quality Control
by Dimitris Tsamatsoulis
ChemEngineering 2024, 8(6), 113; https://doi.org/10.3390/chemengineering8060113 - 5 Nov 2024
Viewed by 341
Abstract
The advanced quality control of the raw mix remains a priority for the cement industry, particularly in recent years, where large quantities of alternative fuels and raw materials are used in clinker production, aiming to reduce the CO2 footprint. This study presents [...] Read more.
The advanced quality control of the raw mix remains a priority for the cement industry, particularly in recent years, where large quantities of alternative fuels and raw materials are used in clinker production, aiming to reduce the CO2 footprint. This study presents an adaptive control system with a variable sampling period for regulating raw mix quality in the raw mill (RM) output in a process with four independent inputs and four outputs: the lime saturation factor (LSF), silica modulus (SM), alumina modulus (AM), and SO3. The three pillars of the system are (1) mill dynamics calculation using exclusively industrial data, (2) the design of the controllers to meet robustness criteria, and (3) performance enhancement through simulators. Our technique periodically adjusts the gains of the controllers based on the mill’s dynamic parameters, which are computed from raw mix laboratory analyses. The presented results correspond to more than 14,000 h of mill operation. The standard deviation of the LSF at the mill outlet ranged from 1.5 to 3, which is equivalent to 1 to 2 standard deviations of LSF reproducibility. The standard deviation of the other moduli was close to the corresponding reproducibility of each. The presented adaptive gain-scheduling controller for LSF can be applicable to a broad range of raw meal grinding systems. Full article
Show Figures

Figure 1

19 pages, 10339 KiB  
Article
The Effect of DLC Surface Coatings on Microabrasive Wear of Ti-22Nb-6Zr Obtained by Powder Metallurgy
by Silvio José Gobbi, Jorge Luiz de Almeida Ferreira, José Alexander Araújo, Paul André, Vinicius André Rodrigues Henriques, Vladimir Jesus Trava Airoldi and Cosme Roberto Moreira da Silva
Coatings 2024, 14(11), 1396; https://doi.org/10.3390/coatings14111396 - 4 Nov 2024
Viewed by 449
Abstract
Titanium alloys have a high cost of production and exhibit low resistance to abrasive wear. The objective of this work was to carry out diamond-like carbon (DLC) coating, with dissimilar thicknesses, on Ti-22Nb-6Zr titanium alloys produced by powder metallurgy, and to evaluate its [...] Read more.
Titanium alloys have a high cost of production and exhibit low resistance to abrasive wear. The objective of this work was to carry out diamond-like carbon (DLC) coating, with dissimilar thicknesses, on Ti-22Nb-6Zr titanium alloys produced by powder metallurgy, and to evaluate its microabrasive wear resistance. The samples were compacted, cold pressed, and sintered, producing substrates for coating. The DLC coatings were carried out by PECVD (plasma-enhanced chemical vapor deposition). Free sphere microabrasive wear tests were performed using alumina (Al2O3) abrasive suspension. The DLC-coated samples were characterized by scanning electron microscopy (SEM), Vickers microhardness, coatings adhesion tests, confocal laser microscopy, atomic force microscopy (AFM), and Raman spectroscopy. The coatings did not show peeling-off or delamination in adhesion tests. The PECVD deposition was effective, producing sp2 and sp3 mixed carbon compounds characteristic of diamond-like carbon. The coatings provided good structural quality, homogeneity in surface roughness, excellent coating-to-substrate adhesion, and good tribological performance in microabrasive wear tests. The low wear coefficients obtained in this work demonstrate the excellent potential of DLC coatings to improve the tribological behavior of biocompatible titanium alloy parts (Ti-22Nb-6Zr) produced with a low modulus of elasticity (closer to the bone) and with near net shape, given by powder metallurgy processing. Full article
Show Figures

Figure 1

11 pages, 5008 KiB  
Article
Study on High-Temperature Activated Products and Hydration Properties of Aga Soil in Tibet for Cement Concrete
by Lihui Li, Kaiming Niu, Jianrui Ji, Panpan Zhang and Jilin Zhang
Materials 2024, 17(21), 5364; https://doi.org/10.3390/ma17215364 - 1 Nov 2024
Viewed by 382
Abstract
In order to impart the properties of cementitious material to the Tibetan Agar soil, two high-temperature activation mechanisms (HTMA, HTMB) were designed in this study, and the products and hydration-hardening properties of Tibetan Agar soil high-temperature activation mechanism were analyzed by means of [...] Read more.
In order to impart the properties of cementitious material to the Tibetan Agar soil, two high-temperature activation mechanisms (HTMA, HTMB) were designed in this study, and the products and hydration-hardening properties of Tibetan Agar soil high-temperature activation mechanism were analyzed by means of SEM, XRD, and XRF. The results show that the main components of Tibetan Aga soil are calcite and quartz; Aga soil is activated by HTMA high-temperature activation, forming the main products of CaO, C2S, CaSiO3, and CaAl2Si2O8, and its products have both air-hardening and water-hardening characteristics; Aga soil is activated by HTMB high-temperature activation, and when the temperature reaches 1250 °C when the clinker is not found in the CaO, the generation of C2S, C3S, C3A, C4AF, and Mg2SiO4 minerals with good water-hardening cementitious properties occurs when the temperature rises to 1350 °C, although the formation of some inert minerals that do not have the cementitious properties, but this temperature activation products of the thermodynamic properties of the best; Enhancing the value of lime saturation degree (KH) and silicon rate (SM) can promote the formation of the products of the C2S and C3S, increase the reactivity of the Aga soil activation products, and increase the hydration heat as well as compressive and flexural strength, combined with the results of the hydration heat and mechanical test, KH is recommended to be 0.9~0.94, SM is recommended to be 1.8~2.4, and alumina ratio (IM) is recommended to be 1.8~2.4 when Aga soil is used with raw materials. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 4812 KiB  
Article
Electrical and Dielectrical Properties of Composites Based on Alumina and Cyclic Olefin Copolymers
by Eusebiu Ilarian Ionete, Artur Visse, Radu Dorin Andrei, Mirela Irina Petreanu, Stefan Ionut Spiridon and Roxana Elena Ionete
Materials 2024, 17(21), 5349; https://doi.org/10.3390/ma17215349 - 31 Oct 2024
Viewed by 365
Abstract
Understanding the performance of polymer dielectrics at different temperatures is becoming increasingly important due to the rapid development of electric cars, electromagnetic devices, and new energy production solutions. Cyclic olefin copolymers (COCs) are an attractive material due to their low water absorption, good [...] Read more.
Understanding the performance of polymer dielectrics at different temperatures is becoming increasingly important due to the rapid development of electric cars, electromagnetic devices, and new energy production solutions. Cyclic olefin copolymers (COCs) are an attractive material due to their low water absorption, good electrical insulation, long-term stability of surface treatments, and resistance to a wide range of acids and solvents. This work focused on the dielectric and electrical properties of cyclic olefin copolymer (COC)/Al2O3 composites over a wide range of temperature and frequency domains, from room temperature to cryogenic temperatures (around 125 K). Permittivity, electrical conductivity, and electrical modulus are given consideration. A composite of up to 50% Al2O3 mixed with COC was prepared via a conventional melt-blending method. The final samples were formed in sheets and processed using injection and extrusion moldings. It was found that formulations with Al2O3 concentrations ranging from 10 to 50% resulted in higher electrical conductivity while maintaining the viscosity of the composite at a level acceptable for polymer-processing machinery. Our data show that COC/alumina composites present substantial potential as materials for high-frequency applications, even at the regime of cryogenic temperatures. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

16 pages, 5382 KiB  
Article
Evaluation of the Mechanical Properties and Fatigue Resistance of the ZrO2CeYAl2O3 Composite
by Marcio Paulo de Araújo Mafra, Nélio Silva Júnior, Claudinei dos Santos, Jorge Luiz de Almeida Ferreira, José Alexander Araújo and Cosme Roberto Moreira da Silva
Ceramics 2024, 7(4), 1600-1615; https://doi.org/10.3390/ceramics7040103 - 31 Oct 2024
Viewed by 493
Abstract
This work aimed to evaluate the fatigue limit of the zirconia ceramic composite stabilized with yttria and ceria reinforced with alumina platelets (ZrO2CeYAl2O3) and characterize the mechanical properties of sintered specimens. Bar-shaped specimens were compacted by uniaxial [...] Read more.
This work aimed to evaluate the fatigue limit of the zirconia ceramic composite stabilized with yttria and ceria reinforced with alumina platelets (ZrO2CeYAl2O3) and characterize the mechanical properties of sintered specimens. Bar-shaped specimens were compacted by uniaxial pressing in a rigid die and sintered at 1500 °C-2 h. Subsequent characterizations included quantitative phase analysis by X-ray diffractometry, determination of density, modulus of elasticity, microhardness, fracture toughness, four-point flexural strength, and fatigue limit. Observations of fracture mechanisms were carried out using confocal and scanning electron microscopy (SEM). The sintered samples presented values above 98% of relative density. Complex microstructures with equiaxed, homogeneously distributed submicrometer grains and planar alumina platelets were observed by SEM. The composite samples showed high values of fracture toughness due to the transformation, during the test, from the tetragonal to monoclinic phase, causing an increase in volume and creating compression zones around the crack, making it difficult to propagate. The average flexural strength reached 445.55 MPa, with a Weibull modulus (m = 16.8), revealing low flexural rupture stress data dispersion. In the composite evaluated in this work, the occurrence of the tetragonal → monoclinic transformation that occurs in the Ce-TZP present at the triple points and grain boundaries during cyclic loading produces “crack tip shielding”, that is, a restricted elastic zone (zone shielding) that surrounds the crack tip. This phenomenon leads to a reduction in the stress intensity factor at the tip of the crack and slows down its growth, generating an increase in the fatigue resistance of the composite. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Engineering Ceramics)
Show Figures

Figure 1

Back to TopTop