Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (836)

Search Parameters:
Keywords = apigenin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1877 KiB  
Article
Evaluation of Resistance Induction Promoted by Bioactive Compounds of Pseudomonas aeruginosa LV Strain against Asian Soybean Rust
by André Riedi Barazetti, Mickely Liuti Dealis, Kawany Roque Basso, Maria Clara Davis Silva, Leonardo da Cruz Alves, Maria Eugênia Alcântara Parra, Ane Stéfano Simionato, Martha Viviana Torres Cely, Arthur Ladeira Macedo, Denise Brentan Silva and Galdino Andrade
Microorganisms 2024, 12(8), 1576; https://doi.org/10.3390/microorganisms12081576 (registering DOI) - 2 Aug 2024
Viewed by 176
Abstract
Pseudomonas are known as higher producers of secondary metabolites with antimicrobial properties and plant growth promoters, including resistance induction. These mechanisms should be an alternative to pesticide use in crop production. Phakopsora pachyrhizi causes Asian soybean rust, representing a high loss of yield [...] Read more.
Pseudomonas are known as higher producers of secondary metabolites with antimicrobial properties and plant growth promoters, including resistance induction. These mechanisms should be an alternative to pesticide use in crop production. Phakopsora pachyrhizi causes Asian soybean rust, representing a high loss of yield around the world. The objective of this paper was to evaluate the application of secondary metabolites produced by Pseudomonas aeruginosa LV strain from the semi-purified fraction F4A in soybean plants to induce plant resistance against P. pachyrhizi in field conditions. The experimental design was performed in randomized blocks with three replicates using two F4A doses (1 and 10 μg mL−1) combined or not with fungicides (Unizeb Gold® or Sphere Max®). The control treatment, with Uni + Sph, saponins, flavonoids, and sphingolipids, showed higher intensities in the plants. In contrast, plants treated with the F4A fraction mainly exhibited fatty acid derivatives and some non-identified compounds with nitrogen. Plants treated with Sphere Max®, with or without F4A10, showed higher intensities of glycosylated flavonoids, such as kaempferol, luteolin, narigenin, and apigenin. Plants treated with F4A showed higher intensities of genistein and fatty acid derivatives. These increases in flavonoid compound biosynthesis and antioxidant properties probably contribute to the protection against reactive oxygen species (ROS). Full article
(This article belongs to the Special Issue Research on Natural Products against Pathogens)
Show Figures

Figure 1

15 pages, 2694 KiB  
Article
Phenolic Profiles in Olive Leaves from Different Cultivars in Tuscany and Their Use as a Marker of Varietal and Geographical Origin on a Small Scale
by Francesca Borghini, Gabriella Tamasi, Steven Arthur Loiselle, Michele Baglioni, Stefano Ferrari, Flavia Bisozzi, Sara Costantini, Cristiana Tozzi, Angelo Riccaboni and Claudio Rossi
Molecules 2024, 29(15), 3617; https://doi.org/10.3390/molecules29153617 - 31 Jul 2024
Viewed by 278
Abstract
Olive leaves are a rich source of polyphenols with healthful properties and represent one of the most abundant waste products of olive oil production. The aims of this study were to explore the phenolic composition of olive leaves from the three main Tuscan [...] Read more.
Olive leaves are a rich source of polyphenols with healthful properties and represent one of the most abundant waste products of olive oil production. The aims of this study were to explore the phenolic composition of olive leaves from the three main Tuscan cultivars (Leccino, Moraiolo and Frantoio) collected in Siena and Grosseto provinces and to investigate the possible use of these compounds as varietal and geographic origin markers. Discriminant factorial analysis (DFA) was used for distinguishing between different cultivars and locations. Apigenin and caffeoyl-secologanoside showed significant differences between cultivars. DFA showed that ligstroside, apigenin and luteolin have the most influence in determining the differences between sites, whereas total polyphenols, olacein and hydroxytyrosol acetate allowed for separation between leaves from the same province. The results of the present study indicate that concentrations of phenolic compounds, measured through high-resolution mass spectrometry, can be used as a marker for both the cultivar and of geographical origin of olive leaves, and possibly of olive-related products, as well as across small geographic scales (less than 50 km distance between sites). Full article
Show Figures

Figure 1

21 pages, 8226 KiB  
Article
Optimization of Phenolic Compounds Extraction from Aerial Parts of Fabiana punensis S. C. Arroyo by Ultrasound- and Microwave-Assisted Extraction
by Daniela Alejandra González, José Martínez Chamás, María Eugenia Orqueda, Mariana Leal, Agostina Conta, María Inés Mercado, María Inés Isla and Iris Catiana Zampini
Molecules 2024, 29(15), 3578; https://doi.org/10.3390/molecules29153578 - 29 Jul 2024
Viewed by 355
Abstract
Fabiana punensis S. C. Arroyo is a subshrub or shrub that is indigenous to the arid and semiarid region of northern Argentina and is known to possess several medicinal properties. The objective of this study was to optimize the extraction conditions so as [...] Read more.
Fabiana punensis S. C. Arroyo is a subshrub or shrub that is indigenous to the arid and semiarid region of northern Argentina and is known to possess several medicinal properties. The objective of this study was to optimize the extraction conditions so as to maximize the yield of bioactive total phenolic compound (TPC) and flavonoids (F) of F. punensis’ aerial parts by using non-conventional extraction methods, namely ultrasound-assisted extraction, UAE, and microwave-assisted extraction, MAE, and to compare the biological activities and toxicity of optimized extracts vs. conventional extracts, i.e., those gained by maceration. Response Surface Methodology (RSM) was used to apply factorial designs to optimize the parameters of extraction: solid-to-liquid ratio, extraction time, ultrasound amplitude, and microwave power. The experimental values for TPC and F and antioxidant activity under the optimal extraction conditions were not significantly different from the predicted values, demonstrating the accuracy of the mathematical models. Similar HPLC-DAD patterns were found between conventional and UAE- and MAE-optimized extracts. The main constituents of the extracts correspond to phenolic compounds (flavonoids and phenolic acids) and apigenin was identified. All extracts showed high scavenger capacity on ABTS•+, O2•− and H2O2, enabling the inhibition of the pro-inflammatory enzymes xanthine oxidase (XO) and lipoxygenase (LOX). They also showed an antimutagenic effect in Salmonella Typhimurium assay and cytotoxic/anti-proliferative activity on human melanoma cells (SKMEL-28). Toxicological evaluation indicates its safety. The results of this work are important in the development of efficient and sustainable methods for obtaining bioactive compounds from F. punensis for the prevention of chronic degenerative diseases associated with oxidative stress, inflammation, and DNA damage. Full article
(This article belongs to the Special Issue Chemical Analyses and Therapeutic Properties of Plant Extracts)
Show Figures

Figure 1

16 pages, 5889 KiB  
Article
LC-MS/MS-QTOF Identification of Phenolic Compounds of Sideritis Species Cultivated in Greece
by Eleftheria H. Kaparakou, Charalabos D. Kanakis, Maroula G. Kokotou, Georgios Papadopoulos and Petros A. Tarantilis
Separations 2024, 11(8), 229; https://doi.org/10.3390/separations11080229 - 26 Jul 2024
Viewed by 855
Abstract
Phenolic compounds are plant secondary metabolites, one of the most common and widespread groups of substances in plants, as well as a major group of phytochemicals present in medicinal and aromatic plants. The phytochemical composition of the hydroalcoholic extracts from S. raeseri, [...] Read more.
Phenolic compounds are plant secondary metabolites, one of the most common and widespread groups of substances in plants, as well as a major group of phytochemicals present in medicinal and aromatic plants. The phytochemical composition of the hydroalcoholic extracts from S. raeseri, S. scardica and S. syriaca was determined by LC-MS/MS-QTOF analysis. A total amount of 23 secondary metabolites were identified, including 17 flavonoids (Fs), 4 phenylethanoid glycosides (PEGs), 1 phenolic acid (PA) and 1 fatty acid (FA). Among the three species, the constituents that have been detected in all of nine samples were: verbascocide/isoverbascoside (PEG), apigenin 7-O- glucoside (F), isoscutellarein 7-O-[6″-O-acetyl]-allosyl(1→2)-glucoside (F) and apigenin 7-(4″-p-coumaroylglucoside) (F). This study contributes to the phytochemical characterization of the Sideritis spp. by providing a comparative study of bioactive compounds present in three different Sideritis species, S. raeseri, S. scardica and S. syriaca, which are widely used as a herbal medicine in Mediterranean region and Balkan Peninsula. Full article
(This article belongs to the Special Issue Isolation and Identification of Biologically Active Natural Compounds)
Show Figures

Figure 1

12 pages, 2110 KiB  
Article
Apigenin and Phloretin Combination for Skin Aging and Hyperpigmentation Regulation
by Alfredo Martínez-Gutiérrez, Javier Sendros, Teresa Noya and Mari Carmen González
Cosmetics 2024, 11(4), 128; https://doi.org/10.3390/cosmetics11040128 - 26 Jul 2024
Viewed by 356
Abstract
Melasma is a pathology with multifactorial causes that results in hyperpigmentation of sun-exposed areas, particularly facial skin. New treatments targeting the different factors regulating this condition need to be effective with and have limited adverse effects. Here, we describe a novel combination of [...] Read more.
Melasma is a pathology with multifactorial causes that results in hyperpigmentation of sun-exposed areas, particularly facial skin. New treatments targeting the different factors regulating this condition need to be effective with and have limited adverse effects. Here, we describe a novel combination of two natural compounds (apigenin and phloretin) that has synergistic effects regulating melanogenesis in vitro. Both compounds inhibit Wnt-stimulated melanogenesis and induce autophagy in melanocytes. Apigenin induces DKK1, a Wnt pathway inhibitor, and reduces VEGF, a melanogenesis and proangiogenic factor, in fibroblasts. Moreover, apigenin induces miR-675, a melanogenesis inhibitor miRNA that is reduced in melasma skin in melanocytes. Both compounds showed senomorphic effects by regulating extracellular-matrix-related genes in senescent fibroblasts. Topical application of the compounds also showed significant melanin reduction in a reconstructed human epidermis after 7 days. Thus, the combination of apigenin and phloretin shows promising results as an effective topical treatment of skin hyperpigmentation conditions. Full article
(This article belongs to the Special Issue Application of Plant-Based Molecules and Materials in Cosmetics)
Show Figures

Graphical abstract

20 pages, 2695 KiB  
Article
High-Throughput Molecular Modeling and Evaluation of the Anti-Inflammatory Potential of Açaí Constituents against NLRP3 Inflammasome
by Elaine Cristina Medeiros da Rocha, João Augusto Pereira da Rocha, Renato Araújo da Costa, Andreia do Socorro Silva da Costa, Edielson dos Santos Barbosa, Luiz Patrick Cordeiro Josino, Luciane do Socorro Nunes dos Santos Brasil, Laura Fernanda Osmari Vendrame, Alencar Kolinski Machado, Solange Binotto Fagan and Davi do Socorro Barros Brasil
Int. J. Mol. Sci. 2024, 25(15), 8112; https://doi.org/10.3390/ijms25158112 - 25 Jul 2024
Viewed by 340
Abstract
The search for bioactive compounds in natural products holds promise for discovering new pharmacologically active molecules. This study explores the anti-inflammatory potential of açaí (Euterpe oleracea Mart.) constituents against the NLRP3 inflammasome using high-throughput molecular modeling techniques. Utilizing methods such as molecular [...] Read more.
The search for bioactive compounds in natural products holds promise for discovering new pharmacologically active molecules. This study explores the anti-inflammatory potential of açaí (Euterpe oleracea Mart.) constituents against the NLRP3 inflammasome using high-throughput molecular modeling techniques. Utilizing methods such as molecular docking, molecular dynamics simulation, binding free energy calculations (MM/GBSA), and in silico toxicology, we compared açaí compounds with known NLRP3 inhibitors, MCC950 and NP3-146 (RM5). The docking studies revealed significant interactions between açaí constituents and the NLRP3 protein, while molecular dynamics simulations indicated structural stabilization. MM/GBSA calculations demonstrated favorable binding energies for catechin, apigenin, and epicatechin, although slightly lower than those of MCC950 and RM5. Importantly, in silico toxicology predicted lower toxicity for açaí compounds compared to synthetic inhibitors. These findings suggest that açaí-derived compounds are promising candidates for developing new anti-inflammatory therapies targeting the NLRP3 inflammasome, combining efficacy with a superior safety profile. Future research should include in vitro and in vivo validation to confirm the therapeutic potential and safety of these natural products. This study underscores the value of computational approaches in accelerating natural product-based drug discovery and highlights the pharmacological promise of Amazonian biodiversity. Full article
Show Figures

Figure 1

15 pages, 3143 KiB  
Article
Differential Interactions of Flavonoids with the Aryl Hydrocarbon Receptor In Silico and Their Impact on Receptor Activity In Vitro
by Monique Reis de Santana, Ylanna Bonfim dos Santos, Késsia Souza Santos, Manoelito Coelho Santos Junior, Mauricio Moraes Victor, Gabriel dos Santos Ramos, Ravena Pereira do Nascimento and Silvia Lima Costa
Pharmaceuticals 2024, 17(8), 980; https://doi.org/10.3390/ph17080980 - 24 Jul 2024
Viewed by 292
Abstract
The molecular mechanisms underlying the observed anticancer effects of flavonoids remain unclear. Increasing evidence shows that the aryl hydrocarbon receptor (AHR) plays a crucial role in neoplastic disease progression, establishing it as a potential drug target. This study evaluated the potential of hydroxy [...] Read more.
The molecular mechanisms underlying the observed anticancer effects of flavonoids remain unclear. Increasing evidence shows that the aryl hydrocarbon receptor (AHR) plays a crucial role in neoplastic disease progression, establishing it as a potential drug target. This study evaluated the potential of hydroxy flavonoids, known for their anticancer properties, to interact with AHR, both in silico and in vitro, aiming to understand the mechanisms of action and identify selective AHR modulators. A PAS-B domain homology model was constructed to evaluate in silico interactions of chrysin, naringenin, quercetin apigenin and agathisflavone. The EROD activity assay measured the effects of flavonoids on AHR’s activity in human breast cancer cells (MCF7). Simulations showed that chrysin, apigenin, naringenin, and quercetin have the highest AHR binding affinity scores (−13.14 to −15.31), while agathisflavone showed low scores (−0.57 and −5.14). All tested flavonoids had the potential to inhibit AHR activity in a dose-dependent manner in the presence of an agonist (TCDD) in vitro. This study elucidates the distinct modulatory effects of flavonoids on AHR, emphasizing naringenin’s newly described antagonistic potential. It underscores the importance of understanding flavonoid’s molecular mechanisms, which is crucial for developing novel cancer therapies based on these molecules. Full article
(This article belongs to the Special Issue Therapeutic Agents for the Treatment of Tumors in the CNS)
Show Figures

Graphical abstract

16 pages, 1135 KiB  
Article
Saponin and Phenolic Composition and Assessment of Biological Activities of Saponaria officinalis L. Root Extracts
by Despina Charalambous, Michalis Christoforou, Krystallo Christou, Melina Christou, Antonis Ververis, Marios Andreou, Kyproula Christodoulou, Andrie Koutsoulidou, Christoforos Papachrysostomou and Maria Pantelidou
Plants 2024, 13(14), 1982; https://doi.org/10.3390/plants13141982 - 19 Jul 2024
Viewed by 605
Abstract
The purpose of this study was to identify the saponin and phenolic components in root extracts of Saponaria officinalis, a widespread species, found in Cyprus. A total of six major saponins, including gypsogenin and gypsogenic acid derivatives, as well as saponariosides C, [...] Read more.
The purpose of this study was to identify the saponin and phenolic components in root extracts of Saponaria officinalis, a widespread species, found in Cyprus. A total of six major saponins, including gypsogenin and gypsogenic acid derivatives, as well as saponariosides C, D, and E, were identified using UHPLC/Q-TOF-MS analysis, with gypsogenin derivatives being the most common saponins detected through quantitative analysis. A total of six phenolic compounds were also identified, including rutin, quercetin galactoside, syringic acid, apigenin, protocatechuic, and vanillic acid. In addition to their saponin and phenolic contents, the root extracts were prepared through different extraction methods, and their biological activity was assessed. All samples demonstrated antioxidant capacity, as well as antibacterial activity, against four bacterial strains (Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and Salmonella enteritidis), with the acetone extract presenting higher susceptibility. The evaluation of anticancer activity in A375 (human malignant melanoma), HeLa (human cervical epithelioid carcinoma), and HaCaT (healthy human keratinocytes) cell lines revealed that the acetone extract of S. officinalis extract demonstrated a significant inhibitory effect on the proliferation of A375 cells in a concentration-dependent manner. None of the extracts demonstrated anti-neurotoxic potential against Aβ25–35 cytotoxic peptides. The results of this study support previous findings that reveal that the Saponaria species are an excellent natural source of biologically active compounds with antioxidant, antimicrobial, and anticancer properties. Full article
(This article belongs to the Special Issue Isoprenoids: Metabolic Mechanisms, Bioactivity and Application)
Show Figures

Figure 1

20 pages, 3121 KiB  
Article
Simultaneous High-Performance Recovery and Extended Acid-Catalyzed Hydrolysis of Oleuropein and Flavonoid Glycosides of Olive (Olea europaea) Leaves: Hydrothermal versus Ethanol Organosolv Treatment
by Hela Refai, Feyrouz Derwiche, Spyros Grigorakis and Dimitris P. Makris
Int. J. Mol. Sci. 2024, 25(14), 7820; https://doi.org/10.3390/ijms25147820 - 17 Jul 2024
Viewed by 315
Abstract
Olive leaves (OLLs) are an exceptional bioresource of natural polyphenols with proven antioxidant activity, yet the applicability of OLL extracts is constrained by the relatively high polarity of the major polyphenols, which occur as glycosides. To overcome this limitation, OLLs were subjected to [...] Read more.
Olive leaves (OLLs) are an exceptional bioresource of natural polyphenols with proven antioxidant activity, yet the applicability of OLL extracts is constrained by the relatively high polarity of the major polyphenols, which occur as glycosides. To overcome this limitation, OLLs were subjected to both hydrothermal and ethanol organosolv treatments, fostered by acid catalysis to solicit in parallel increased polyphenol recovery and polyphenol modification into simpler, lower-polarity substances. After an initial screening of natural organic acids, oxalic acid (OxAc) was found to be the highest-performing catalyst. The extraction behavior using OxAc-catalyzed hydrothermal and ethanol organosolv treatments was appraised using kinetics, while treatment optimization was accomplished by deploying response-surface methodology. The comparative assessment of the composition extracts produced under optimal conditions of residence time and temperature was performed with liquid chromatography–tandem mass spectrometry and revealed that OLLs treated with 50% ethanol/1.5% HCl suffered extensive oleuropein and flavone glycoside hydrolysis, affording almost 23.4 mg hydroxytyrosol and 2 mg luteolin per g dry weight. On the other hand, hydrothermal treatment with 5% OxAc provided 20.2 and 0.12 mg of hydroxytyrosol and luteolin, respectively. Apigenin was in all cases a minor extract constituent. The study presented herein demonstrated for the first time the usefulness of using a natural, food-grade organic acid to perform such a task, yet further investigation is needed to maximize the desired effect. Full article
Show Figures

Graphical abstract

28 pages, 5239 KiB  
Article
Comparative Analysis of Acetylated Flavonoids’ Chemopreventive Effects in Different Cancer Cell Lines
by Daigo Urakawa, Yuki Shioiridani, Shinya Igata, De-Xing Hou and Kozue Sakao
Int. J. Mol. Sci. 2024, 25(14), 7689; https://doi.org/10.3390/ijms25147689 - 13 Jul 2024
Viewed by 453
Abstract
Flavonoids, a class of natural compounds with anticancer activity, exhibit varying biological activities and potencies based on their structural differences. Acylation, including acetylation of flavonoids, generally increases their structural diversity, which is closely related to the diversity of bioactivity within this group of [...] Read more.
Flavonoids, a class of natural compounds with anticancer activity, exhibit varying biological activities and potencies based on their structural differences. Acylation, including acetylation of flavonoids, generally increases their structural diversity, which is closely related to the diversity of bioactivity within this group of compounds. However, it remains largely unknown how acetylation affects the bioactivity of many flavonoids. Based on our previous findings that O-acetylation enhances quercetin’s bioactivity against various cancer cells, we synthesized 12 acetylated flavonoids, including seven novel compounds, to investigate their anticancer activities in the MDA-MB-231, HCT-116, and HepG2 cell lines. Our results showed that acetylation notably enhanced the cell proliferation inhibitory effect of quercetin and kaempferol across all cancer cell lines tested. Interestingly, while the 5,7,4′-O-triacetate apigenin (3Ac-A) did not show an enhanced the effect of inhibition of cell proliferation through acetylation, it exhibited significantly strong anti-migration activity in MDA-MB-231 cells. In contrast, the 7,4′-O-diacetate apigenin (2Ac-Q), which lacks acetylation at the 5-position hydroxy group, showed enhanced cell proliferation inhibitory effect but had weaker anti-migration effects compared to 3Ac-A. These results indicated that acetylated flavonoids, especially quercetin, kaempferol, and apigenin derivatives, are promising for anticancer applications, with 3Ac-A potentially having unique anti-migration pathways independent of apoptosis induction. This study highlights the potential application of flavonoids in novel chemopreventive strategies for their anti-cancer activity. Full article
Show Figures

Figure 1

36 pages, 9172 KiB  
Article
Anti-Inflammatory and Cancer-Preventive Potential of Chamomile (Matricaria chamomilla L.): A Comprehensive In Silico and In Vitro Study
by Assia I. Drif, Rümeysa Yücer, Roxana Damiescu, Nadeen T. Ali, Tobias H. Abu Hagar, Bharati Avula, Ikhlas A. Khan and Thomas Efferth
Biomedicines 2024, 12(7), 1484; https://doi.org/10.3390/biomedicines12071484 - 5 Jul 2024
Viewed by 755
Abstract
Background and aim: Chamomile tea, renowned for its exquisite taste, has been appreciated for centuries not only for its flavor but also for its myriad health benefits. In this study, we investigated the preventive potential of chamomile (Matricaria chamomilla L.) towards cancer [...] Read more.
Background and aim: Chamomile tea, renowned for its exquisite taste, has been appreciated for centuries not only for its flavor but also for its myriad health benefits. In this study, we investigated the preventive potential of chamomile (Matricaria chamomilla L.) towards cancer by focusing on its anti-inflammatory activity. Methods and results: A virtual drug screening of 212 phytochemicals from chamomile revealed β-amyrin, β-eudesmol, β-sitosterol, apigenin, daucosterol, and myricetin as potent NF-κB inhibitors. The in silico results were verified through microscale thermophoresis, reporter cell line experiments, and flow cytometric determination of reactive oxygen species and mitochondrial membrane potential. An oncobiogram generated through comparison of 91 anticancer agents with known modes of action using the NCI tumor cell line panel revealed significant relationships of cytotoxic chamomile compounds, lupeol, and quercetin to microtubule inhibitors. This hypothesis was verified by confocal microscopy using α-tubulin-GFP-transfected U2OS cells and molecular docking of lupeol and quercetin to tubulins. Both compounds induced G2/M cell cycle arrest and necrosis rather than apoptosis. Interestingly, lupeol and quercetin were not involved in major mechanisms of resistance to established anticancer drugs (ABC transporters, TP53, or EGFR). Performing hierarchical cluster analyses of proteomic expression data of the NCI cell line panel identified two sets of 40 proteins determining sensitivity and resistance to lupeol and quercetin, further pointing to the multi-specific nature of chamomile compounds. Furthermore, lupeol, quercetin, and β-amyrin inhibited the mRNA expression of the proinflammatory cytokines IL-1β and IL6 in NF-κB reporter cells (HEK-Blue Null1). Moreover, Kaplan–Meier-based survival analyses with NF-κB as the target protein of these compounds were performed by mining the TCGA-based KM-Plotter repository with 7489 cancer patients. Renal clear cell carcinomas (grade 3, low mutational rate, low neoantigen load) were significantly associated with shorter survival of patients, indicating that these subgroups of tumors might benefit from NF-κB inhibition by chamomile compounds. Conclusion: This study revealed the potential of chamomile, positioning it as a promising preventive agent against inflammation and cancer. Further research and clinical studies are recommended. Full article
(This article belongs to the Special Issue Anticancer Activity and Metabolic Pathways of Natural Products 2.0)
Show Figures

Figure 1

9 pages, 543 KiB  
Article
Phytochemistry, Anti-Tyrosinase, and Anti-Diabetes Studies of Extracts and Chemical Constituents of Dicerothamnus rhinocerotis Leaves
by Olusola Ifedolapo Watti, Masande Yalo, Rajan Sharma, Masixole Makhaba, Ahmed A. Hussein and Wilfred T. Mabusela
Chemistry 2024, 6(4), 546-554; https://doi.org/10.3390/chemistry6040032 - 2 Jul 2024
Viewed by 549
Abstract
Dicerothamnus rhinocerotis (L.f.) Koekemoer, also known as rhinoceros bush and previously called Elytropappus rhinocerotis (L.f.) Less., is from the Asteraceae plant family. The plant is traditionally used to treat indigestion, stomach ulcers, influenza, and diarrhea. This study was aimed at investigating the phytochemistry, [...] Read more.
Dicerothamnus rhinocerotis (L.f.) Koekemoer, also known as rhinoceros bush and previously called Elytropappus rhinocerotis (L.f.) Less., is from the Asteraceae plant family. The plant is traditionally used to treat indigestion, stomach ulcers, influenza, and diarrhea. This study was aimed at investigating the phytochemistry, anti-glucosidase, anti-amylase, and anti-tyrosinase effects of D. rhinocerotis as research in this area is limited. The air-dried plant materials were macerated in 80% methanol (MeOH) and fractionated between hexane, dichloromethane (DCM), ethyl acetate (EtOAc), and butanol (BuOH). Column chromatography on silica gel was employed for the isolation of the compounds. A total of six compounds (16) were isolated from the fractions viz. acacetin (1), 15-hydroxy-cis-clerodan-3-ene-18-oic-acid (2), acacetin-7-glucoside (3), pinitol (4), apigenin (5), and β-sitosterol-3-O-glycoside (6). Compounds 24 and 6 are reported for the first time from this plant. Among the different fractions, the BuOH and EtOAc fractions had strong tyrosinase inhibitory activities with IC50 values of 13.7 ± 1.71 and 11.6 ± 2.68 µg/mL, respectively, while among the isolated compounds, apigenin (5) had the strongest inhibitory activity, with an IC50 of 14.58 µM, which competes favorably with Kojic acid (17.26 µM). The anti-glucosidase assay showed good activity in three of the fractions and compound 5, while the anti-amylase assays did not show significant inhibition activity. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Graphical abstract

20 pages, 1434 KiB  
Review
Chemopreventive Agents from Nature: A Review of Apigenin, Rosmarinic Acid, and Thymoquinone
by Reem Fawaz Abutayeh, Maram Altah, Amani Mehdawi, Israa Al-Ataby and Adel Ardakani
Curr. Issues Mol. Biol. 2024, 46(7), 6600-6619; https://doi.org/10.3390/cimb46070393 - 27 Jun 2024
Viewed by 563
Abstract
Cancer, a major challenge to global health and healthcare systems, requires the study of alternative and supportive treatments due to the limitations of conventional therapies. This review examines the chemopreventive potential of three natural compounds: rosmarinic acid, apigenin, and thymoquinone. Derived from various [...] Read more.
Cancer, a major challenge to global health and healthcare systems, requires the study of alternative and supportive treatments due to the limitations of conventional therapies. This review examines the chemopreventive potential of three natural compounds: rosmarinic acid, apigenin, and thymoquinone. Derived from various plants, these compounds have demonstrated promising chemopreventive properties in in vitro, in vivo, and in silico studies. Specifically, they have been shown to inhibit cancer cell growth, induce apoptosis, and modulate key signaling pathways involved in cancer progression. The aim of this review is to provide a comprehensive overview of the current research on these phytochemicals, elucidating their mechanisms of action, therapeutic efficacy, and potential as adjuncts to traditional cancer therapies. This information serves as a valuable resource for researchers and healthcare providers interested in expanding their knowledge within the field of alternative cancer therapies. Full article
(This article belongs to the Special Issue Phytochemicals in Cancer Chemoprevention and Treatment)
Show Figures

Figure 1

16 pages, 5365 KiB  
Article
Changes in Polyphenols and Antioxidant Activity in Fermentation Substrate during Maotai-Flavored Liquor Processing
by Derang Ni, Chao Chen, Yubo Yang, Jinhu Tian, Huabin Tu, Fan Yang and Xingqian Ye
Foods 2024, 13(12), 1928; https://doi.org/10.3390/foods13121928 - 19 Jun 2024
Viewed by 1575
Abstract
To investigate the changes in phenols and antioxidant capacity in fermented grains during different stages of the fermentation process (Xiasha, Zaosha, and single-round stages) of Maotai-flavored liquor, the total phenolic contents of 61 samples, collected in different stages, were analyzed via the Folin–Ciocalteu [...] Read more.
To investigate the changes in phenols and antioxidant capacity in fermented grains during different stages of the fermentation process (Xiasha, Zaosha, and single-round stages) of Maotai-flavored liquor, the total phenolic contents of 61 samples, collected in different stages, were analyzed via the Folin–Ciocalteu method, and the phenolic compounds were then identified by high-performance liquid chromatography (HPLC). Subsequently, the antioxidant activities were determined using the DPPH free radical scavenging rate and ABTS and FRAP antioxidant capacities. The correlations among the total phenolic contents, individual phenolics, and three antioxidant activities of the samples were analyzed. The results show that the total phenolic contents of the fermented samples did not change significantly in the Xiasha and Zaosha stages but showed an upward trend in the single-round stage. A total of 12 phenol acids were identified in the fermented grains, including 5 phenolic acids (e.g., ferulic acid and caffeic acid), 4 flavonoids (e.g., luteolin and apigenin), and 3 proanthocyanidins (e.g., apigeninidin), for which the DPPH free radical scavenging rates and ABTS and FRAP antioxidant capacities of all of the fermented grain samples ranged from 78.91 ± 4.09 to 98.57 ± 1.52%, 3.23 ± 0.72 to 13.69 ± 1.40 mM Trolox, and 5.06 ± 0.36 to 14.10 ± 0.69 mM FeSO4, respectively. The total phenolic contents of the fermented grain samples were significantly and positively correlated with the ABTS and FRAP (p ≤ 0.05), while no significant correlations were found between total phenolic content and DPPH. In general, the total phenolic content, phenolic substances, and antioxidant capacity of the fermented grains exhibited changes during the fermentation process in liquor production, and the phenolic components contributed more to the antioxidant properties of the fermented grains. The present study provides a theoretical reference for analyzing the dynamic changes and antioxidant properties of functional phenolic components in fermented grains. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

39 pages, 3853 KiB  
Review
Apigenin: A Bioflavonoid with a Promising Role in Disease Prevention and Treatment
by Khaled S. Allemailem, Ahmad Almatroudi, Hajed Obaid A. Alharbi, Naif AlSuhaymi, Mahdi H. Alsugoor, Fahad M. Aldakheel, Amjad Ali Khan and Arshad Husain Rahmani
Biomedicines 2024, 12(6), 1353; https://doi.org/10.3390/biomedicines12061353 - 18 Jun 2024
Cited by 1 | Viewed by 818
Abstract
Apigenin is a powerful flavone compound found in numerous fruits and vegetables, and it offers numerous health-promoting benefits. Many studies have evidenced that this compound has a potential role as an anti-inflammatory and antioxidant compound, making it a promising candidate for reducing the [...] Read more.
Apigenin is a powerful flavone compound found in numerous fruits and vegetables, and it offers numerous health-promoting benefits. Many studies have evidenced that this compound has a potential role as an anti-inflammatory and antioxidant compound, making it a promising candidate for reducing the risk of pathogenesis. It has also been found to positively affect various systems in the body, such as the respiratory, digestive, immune, and reproductive systems. Apigenin is effective in treating liver, lung, heart, kidney, neurological diseases, diabetes, and maintaining good oral and skin health. Multiple studies have reported that this compound is capable of suppressing various types of cancer through the induction of apoptosis and cell-cycle arrest, suppressing cell migration and invasion, reduction of inflammation, and inhibiting angiogenesis. When used in combination with other drugs, apigenin increases their efficacy, reduces the risk of side effects, and improves the response to chemotherapy. This review broadly analyzes apigenin’s potential in disease management by modulating various biological activities. In addition, this review also described apigenin’s interaction with other compounds or drugs and the potential role of nanoformulation in different pathogeneses. Further extensive research is needed to explore the mechanism of action, safety, and efficacy of this compound in disease prevention and treatment. Full article
(This article belongs to the Special Issue Bioactive Natural Products for Treatment of Human Disease)
Show Figures

Figure 1

Back to TopTop