Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = asymmetric rotor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5575 KiB  
Article
Structural Optimization and Experimental Validation of a Composite Engine Mount Designed for VTOL UAV
by Milica Milić, Jelena Svorcan, Toni Ivanov, Ivana Atanasovska, Dejan Momčilović, Željko Flajs and Boško Rašuo
Aerospace 2025, 12(3), 178; https://doi.org/10.3390/aerospace12030178 - 24 Feb 2025
Viewed by 260
Abstract
Unmanned air vehicles (UAVs) with vertical take-off and landing (VTOL) capabilities, equipped with rotors, have been gaining popularity in recent years for their numerous applications. Through joint efforts, engineers and researchers try to make these novel aircraft more maneuverable and reliable, but also [...] Read more.
Unmanned air vehicles (UAVs) with vertical take-off and landing (VTOL) capabilities, equipped with rotors, have been gaining popularity in recent years for their numerous applications. Through joint efforts, engineers and researchers try to make these novel aircraft more maneuverable and reliable, but also lighter, more efficient and quieter. This paper presents the optimization of one of the vital aircraft parts, the composite engine mount, based on the genetic algorithm (GA) combined with the defined finite element (FE) parameterized model. The mount structure is assumed as a layered carbon composite whose lay-up sequence, defined by layer thicknesses and orientations, is being optimized with the goal of achieving its minimal mass with respect to different structural constraints (failure criteria or maximal strain). To achieve a sufficiently reliable structure, a worst-case scenario, representing a sudden impact, is assumed by introducing forces at one end, while the mount is structurally constrained at the places where it is connected to wings. The defined optimization methodology significantly facilitated and accelerated the mount design process, after which it was manufactured and experimentally tested. Static forces representing the two thrust forces generated by the propellers connected to electric engines (at 100% throttle and the asymmetric case where one engine is at approximately 40% throttle and the other at 100%) and loads from the tail surfaces were introduced by weights, while the strain was measured at six different locations. Satisfactory comparison between numerical and experimental results is achieved, while slight inconsistencies can be attributed to manufacturing errors and idealizations of the FE model. Full article
Show Figures

Figure 1

17 pages, 3674 KiB  
Article
Intelligent Performance Degradation Prediction of Light-Duty Gas Turbine Engine Based on Limited Data
by Chunyan Hu, Keqiang Miao, Mingyang Zhou, Yafeng Shen and Jiaxian Sun
Symmetry 2025, 17(2), 277; https://doi.org/10.3390/sym17020277 - 11 Feb 2025
Viewed by 387
Abstract
The health monitoring system has been the main technological approach to extending the life of gas turbine engines and reducing maintenance costs resulting from performance degradation caused by asymmetric factors like carbon deposition, damage, or deformation. One of the most critical techniques within [...] Read more.
The health monitoring system has been the main technological approach to extending the life of gas turbine engines and reducing maintenance costs resulting from performance degradation caused by asymmetric factors like carbon deposition, damage, or deformation. One of the most critical techniques within the health monitoring system is performance degradation prediction. At present, most research on degradation prediction is carried out using NASA’s open dataset, C-MAPSS, without considering that monitoring measurements are not always available, as in the ideal dataset. This limitation makes fault diagnosis algorithms and remaining useful life prediction methods difficult to apply to real gas turbine engines. Therefore, to solve the problem of performance degradation prediction in light-duty gas turbine engines, a prediction diagram is proposed based on Long Short-Term Memory (LSTM). Various types of onboard signals are taken into consideration among the experimental data. Only accumulated usage time, total temperature and total pressure before the inlet, low-pressure rotor speed, high-pressure rotor speed, fuel flow rate, exhaust temperature, and thrust are used in the training process, which is indispensable for an aero-engine. A genetic algorithm (GA) is introduced into the training process to optimize the hyperparameters of LSTM. The performance degradation prediction modeled with the GA-LSTM method is validated using experimental data. The maximum prediction error of thrust is 70 daN, and the mean absolute percentage error (MAPE) is less than 0.04. This study provides a practical approach to implementing performance degradation prediction in health monitoring systems to improve gas turbine engine reliability, economy, and environmental performance. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

19 pages, 11955 KiB  
Article
Structural Design and Electromagnetic Performance Analysis of Octupole Active Radial Magnetic Bearing
by Qixuan Zhu, Yujun Lu and Zhongkui Shao
Sensors 2024, 24(24), 8200; https://doi.org/10.3390/s24248200 - 22 Dec 2024
Viewed by 779
Abstract
This study addresses the challenges of magnetic circuit coupling and control complexity in active radial magnetic bearings (ARMBs) by systematically investigating the electromagnetic performance of four magnetic pole configurations (NNSS, NSNS, NNNN, and SSSS). Initially, equivalent magnetic circuit modeling and finite element analysis [...] Read more.
This study addresses the challenges of magnetic circuit coupling and control complexity in active radial magnetic bearings (ARMBs) by systematically investigating the electromagnetic performance of four magnetic pole configurations (NNSS, NSNS, NNNN, and SSSS). Initially, equivalent magnetic circuit modeling and finite element analysis (FEA) were employed to analyze the magnetic circuit coupling phenomena and their effects on the magnetic flux density distribution for each configuration. Subsequently, the air gap flux density and electromagnetic force were quantified under rotor eccentricity caused by unbalanced disturbances, and the dynamic performances of the ARMBs were evaluated for eccentricity along the x-axis and at 45°. Finally, experiments measured the electromagnetic forces acting on the rotor under the NNSS and NSNS configurations during eccentric conditions. The results indicate that the NNSS configuration significantly reduces magnetic circuit coupling, improves the uniformity of electromagnetic force distribution, and offers superior stability and control efficiency under asymmetric conditions. Experimental results deviated by less than 10% from the simulations, confirming the reliability and practicality of the proposed design. These findings provide valuable insights for optimizing ARMB pole configurations and promote their application in high-speed, high-precision industrial fields such as aerospace and power engineering. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 9204 KiB  
Article
Study of Aerodynamic Characteristics of Asymmetrical Blades and a Wind-Driven Power Plant with a Vertical Axis of Rotation
by Muhtar Isataev, Rustem Manatbayev, Zhanibek Seydulla, Birzhan Bektibai and Nurdaulet Kalassov
Appl. Sci. 2024, 14(24), 11654; https://doi.org/10.3390/app142411654 - 13 Dec 2024
Viewed by 773
Abstract
This paper presents the results of wind tunnel experiments, where lift and drag coefficients were studied at various angles of attack and flow speeds, alongside numerical simulations conducted in ANSYS. The main objectives of this study are to investigate the aerodynamic characteristics and [...] Read more.
This paper presents the results of wind tunnel experiments, where lift and drag coefficients were studied at various angles of attack and flow speeds, alongside numerical simulations conducted in ANSYS. The main objectives of this study are to investigate the aerodynamic characteristics and self-starting capabilities of three-bladed Darrieus rotors with asymmetrical blades and assess their efficiency. This study presents results on pressure distribution, velocity contours, and the impact of the angle of attack on pressure and aerodynamic characteristics. The results show that blades with asymmetric shapes achieve maximum values of lift and drag coefficients at angles of attack between 180° and 210°, with peak coefficients of Cx = 1.38 and Cy = 2.84, respectively. These findings indicate high effectiveness of the blades at low wind speeds, making them promising for use in WEIs where good starting characteristics and high power output are especially important. A good correlation was found between experimental data and numerical simulation results. This study contributes to the development of recommendations for optimizing the design and operating parameters of wind-driven powerplants, which in turn can improve their reliability and economic efficiency. Thus, the paper aims to expand the knowledge in the field of wind power engineering and to develop technologies to facilitate a wider adoption of wind-driven powerplants in the energy infrastructure of different regions. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

18 pages, 7285 KiB  
Article
Nonlinear Dynamics of Whirling Rotor with Asymmetrically Supported Snubber Ring
by Heba Hamed El-Mongy, Tamer Ahmed El-Sayed, Vahid Vaziri and Marian Wiercigroch
Machines 2024, 12(12), 897; https://doi.org/10.3390/machines12120897 - 6 Dec 2024
Viewed by 676
Abstract
Rotor–stator whirling is a critical malfunction frequently encountered in rotating machinery, often resulting in severe damages. This study investigates the nonlinear dynamics of a whirling rotor interacting with a snubber ring through numerical simulations that account for the stiffness asymmetries of the snubber [...] Read more.
Rotor–stator whirling is a critical malfunction frequently encountered in rotating machinery, often resulting in severe damages. This study investigates the nonlinear dynamics of a whirling rotor interacting with a snubber ring through numerical simulations that account for the stiffness asymmetries of the snubber ring. A two-degrees-of-freedom (DOF) model is employed to analyse the contact interactions that occurred between the rotor and the snubber ring, assuming a linear elastic contact model. The analysis also incorporates the static offset between the centers of the rotor and the snubber ring. The dynamic behaviour of the whirling system is characterised by pronounced nonlinearity due to transitions between contact and non-contact states. The model is first validated against our prior theoretical and experimental studies. The nonlinear responses of the rotor are analysed to evaluate the effects of stator asymmetry through various techniques, including time-domain waveforms, frequency spectra, rotor orbits, and bifurcation diagrams. Furthermore, the influence of varying system parameters, such as rotational speed and the damping ratio, both with and without stator asymmetry, are systematically analysed. The results demonstrate that the rubbing response is highly sensitive to small variations in system parameters, with stator asymmetry significantly affecting system behaviour, even at low asymmetry levels. Direct stiffness asymmetry is shown to have a more pronounced effect than cross-coupling stiffness. The system exhibits a range of dynamics, including periodic, quasi-periodic, and chaotic responses, with regions of periodic orbits coexisting with chaotic ones. Complex phenomena such as period doubling, period halving, and jump bifurcations are identified, alongside quasi-periodic and period doubling routes to chaos. These findings contribute to a deeper understanding of the nonlinear phenomena associated with rotor–stator whirling and provide valuable insights into the unique characteristics of rubbing faults, which could facilitate fault diagnosis. Full article
(This article belongs to the Special Issue Nonlinear Dynamics of Mechanical Systems and Machines)
Show Figures

Figure 1

17 pages, 9016 KiB  
Article
Optimization of an Asymmetric-Rotor Permanent Magnet-Assisted Synchronous Reluctance Motor for Improved Anti-Demagnetization Performance
by Feng Xing, Jiajia Zhang, Feng Zuo and Yuge Gao
Appl. Sci. 2024, 14(23), 11233; https://doi.org/10.3390/app142311233 - 2 Dec 2024
Viewed by 848
Abstract
Permanent magnet-assisted synchronous reluctance motors (PMA-SynRMs) are widely used in various fields due to their significant advantages, including strong torque output, high efficiency, excellent speed regulation, and low cost. The PMA-SynRM with asymmetric-rotor structure has a weaker anti-demagnetization performance than the conventional PMA-SynRM [...] Read more.
Permanent magnet-assisted synchronous reluctance motors (PMA-SynRMs) are widely used in various fields due to their significant advantages, including strong torque output, high efficiency, excellent speed regulation, and low cost. The PMA-SynRM with asymmetric-rotor structure has a weaker anti-demagnetization performance than the conventional PMA-SynRM due to its multi-layer and thin permanent magnets construction. According to the finite element (FEM) simulation analysis, the anti-demagnetization performance of the asymmetric-rotor PMA-SynRM can be improved by adding bypass magnetic bridges on the ribs of the flux barriers and by changing the positions of the permanent magnets. The rotor structure of the proposed model is globally optimized by combining the two methods. Anti-demagnetization performance is improved as much as possible under the premise of ensuring the torque performance of the basic model. After multi-objective optimization, there is almost no difference between the optimized model and the basic model in terms of no-load air-gap flux density, no-load Back-electromotive force (EMF), and average torque. The maximum demagnetization rate of the optimized model is reduced by 81.44% compared with the basic model, and the anti-demagnetization performance is significantly improved. At the same time, the torque ripple is also reduced by 44.14%, which is obviously reduced. Compared with the basic model, the optimized model has better stability and reliability. Full article
(This article belongs to the Collection Modeling, Design and Control of Electric Machines: Volume II)
Show Figures

Figure 1

23 pages, 2939 KiB  
Article
Study of Unsymmetrical Magnetic Pulling Force and Magnetic Moment in 1000 MW Hydrogenerator Based on Finite Element Analysis
by Jiwen Zhang, Xingxing Huang and Zhengwei Wang
Symmetry 2024, 16(10), 1351; https://doi.org/10.3390/sym16101351 - 12 Oct 2024
Viewed by 890
Abstract
The large dimensions of the 1000 MW hydroelectric generator sets require high mounting accuracy. Small deviations can lead to asymmetry, which in turn triggers unbalanced magnetic pulls and moments. Therefore, symmetry is a central challenge in the installation and operation of giant hydroelectric [...] Read more.
The large dimensions of the 1000 MW hydroelectric generator sets require high mounting accuracy. Small deviations can lead to asymmetry, which in turn triggers unbalanced magnetic pulls and moments. Therefore, symmetry is a central challenge in the installation and operation of giant hydroelectric generators. In this paper, the effects of radial eccentricity, axial offset, and rotor shaft deflection on the unbalanced magnetic pull and moment are investigated by transient finite element analysis of the asymmetric magnetic field. The results of the time-domain and frequency-domain analyses show that asymmetric operation generates unbalanced magnetic forces and moments. These forces and moments increase linearly with increasing offset or deflection rate. When the eccentricity meets the installation criteria, the unbalanced magnetic pull forces are small and within acceptable limits. This study helps to understand the relationship between asymmetry and unbalanced magnetic pulling forces in large hydroelectric generators, and provides a theoretical basis for standardizing installation deviation control. Full article
(This article belongs to the Special Issue Advances in Multi-phase Flow: Symmetry, Asymmetry, and Applications)
Show Figures

Figure 1

20 pages, 12712 KiB  
Article
Experimental Research on Pressure Pulsation and Flow Structures of the Low Specific Speed Centrifugal Pump
by Weiling Lv, Yang Zhang, Wenbin Zhang, Ping Ni, Changjiang Li, Jiaqing Chen and Bo Gao
Energies 2024, 17(18), 4730; https://doi.org/10.3390/en17184730 - 23 Sep 2024
Viewed by 1005
Abstract
The low specific speed centrifugal pump plays a crucial role in industrial applications, and ensuring its efficient and stable operation is extremely important for the safety of the whole system. The pump must operate with an extremely high head, an extremely low flow [...] Read more.
The low specific speed centrifugal pump plays a crucial role in industrial applications, and ensuring its efficient and stable operation is extremely important for the safety of the whole system. The pump must operate with an extremely high head, an extremely low flow rate, and a very fast speed. The internal flow structure is complex and there is a strong interaction between dynamic and static components; consequently, the hydraulic excitation force produced becomes a significant factor that triggers abnormal vibrations in the pump. Therefore, this study focuses on a low specific speed centrifugal pump and uses a single-stage model pump to conduct PIV and pressure pulsation tests. The findings reveal that the PIV tests successfully captured the typical jet-wake structure at the outlet of the impeller, as well as the flow separation structure at the leading edge of the guide vanes and the suction surface. On the left side of the discharge pipe, large-scale flow separation and reverse flow happen as a result of the flow-through effect, producing a strong vortex zone. The flow field on the left side of the pressure chamber is relatively uniform, and the low-speed region on the suction surface of the guide vanes is reduced due to the reverse flow. The results of the pressure pulsation test showed that the energy of pressure pulsation in the flow passage of the guide vane occurs at the fBPF and its harmonics, and the interaction between the rotor and stator is significant. Under the same operating condition, the RMS value distribution and amplitude at fBPF of each measurement point are asymmetric in the circumferential direction. The amplitude of fBPF near the discharge pipe is lower, while the RMS value is higher. A complex flow structure is shown by the larger amplitude and RMS value of the fBPF on the left side of the pressure chamber. With the flow rate increasing, the energy at fBPF of each measurement point increases first and then decreases, while the RMS value decreases, indicating a more uniform flow field inside the pump. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

14 pages, 4775 KiB  
Article
A Micromachined Silicon-on-Glass Accelerometer with an Optimized Comb Finger Gap Arrangement
by Jiacheng Li, Rui Feng, Xiaoyi Wang, Huiliang Cao, Keru Gong and Huikai Xie
Micromachines 2024, 15(9), 1173; https://doi.org/10.3390/mi15091173 - 22 Sep 2024
Viewed by 1311
Abstract
This paper reports the design, fabrication, and characterization of a MEMS capacitive accelerometer with an asymmetrical comb finger arrangement. By optimizing the ratio of the gaps of a rotor finger to its two adjacent stator fingers, the sensitivity of the accelerometer is maximized [...] Read more.
This paper reports the design, fabrication, and characterization of a MEMS capacitive accelerometer with an asymmetrical comb finger arrangement. By optimizing the ratio of the gaps of a rotor finger to its two adjacent stator fingers, the sensitivity of the accelerometer is maximized for the same comb finger area. With the fingers’ length, width, and depth at 120 μm, 4 μm, and 45 μm, respectively, the optimized finger gap ratio is 2.5. The area of the proof mass is 750 μm × 560 μm, which leads to a theoretical thermomechanical noise of 9 μg/√Hz. The accelerometer has been fabricated using a modified silicon-on-glass (SOG) process, in which a groove is pre-etched into the glass to hold the metal electrode. This SOG process greatly improves the silicon-to-glass bonding yield. The measurement results show that the resonant frequency of the accelerometer is about 2.05 kHz, the noise floor is 28 μg/√Hz, and the nonlinearity is less than 0.5%. Full article
(This article belongs to the Special Issue MEMS Sensors and Actuators: Design, Fabrication and Applications)
Show Figures

Figure 1

19 pages, 10252 KiB  
Article
Design and Multi-Objective Optimization of an Asymmetric-Rotor Permanent-Magnet-Assisted Synchronous Reluctance Motor for Improved Torque Performance
by Feng Xing, Jiajia Zhang, Mingming Zhang and Caiyan Qin
Appl. Sci. 2024, 14(15), 6734; https://doi.org/10.3390/app14156734 - 1 Aug 2024
Cited by 1 | Viewed by 1579
Abstract
Permanent-magnet-assisted synchronous reluctance motors (PMA-SynRMs) are widely used in modern industry as a kind of electromagnetic energy conversion device with high output torque, high power density, high efficiency, and excellent speed regulation. In this paper, an asymmetric-rotor PMA-SynRM combined with a Halbach array [...] Read more.
Permanent-magnet-assisted synchronous reluctance motors (PMA-SynRMs) are widely used in modern industry as a kind of electromagnetic energy conversion device with high output torque, high power density, high efficiency, and excellent speed regulation. In this paper, an asymmetric-rotor PMA-SynRM combined with a Halbach array is proposed based on the conventional PMA-SynRM without modifying the amount of permanent magnet. With the finite element no-load analysis, it is proven that the permanent magnet arrangement of this method can achieve better flux focusing effect and magnetic-axis-shift (MAS) effect. A significant increase and shift of the air-gap magnetic density has also been observed. Meanwhile, the load simulation demonstrated that the proposed model possesses higher utilization of permanent magnet torque and reluctance torque compared to the conventional model. In addition, a multi-objective optimization has been performed for the rotor structure of the proposed model, and the optimized model improved the average torque by 25.32% and reduced the torque ripple by 76.92% compared to the conventional model. Finally, the constant power speed range (CPSR) performance and anti-demagnetization performance have been analyzed for the three models. The results showed that the proposed and optimized models performed better on constant power speed range, and all three models of permanent magnets had good anti-demagnetization performance. The maximum demagnetization rate of the optimized model is reduced by 13.84% compared to the proposed model at an operating condition of 200 °C and nine times the rated current. Full article
Show Figures

Figure 1

22 pages, 7167 KiB  
Article
Harmonic Sequence Component Model-Based Small-Signal Stability Analysis in Synchronous Machines during Asymmetrical Faults
by Oscar C. Zevallos, Yandi A. Gallego Landera, Lesyani León Viltre and Jaime Addin Rohten Carrasco
Energies 2024, 17(15), 3634; https://doi.org/10.3390/en17153634 - 24 Jul 2024
Viewed by 975
Abstract
Power systems are complex and often subject to faults, requiring accurate mathematical models for a thorough analysis. Traditional time-domain models are employed to evaluate the dynamic response of power system elements during transmission system faults. However, only the positive sequence components are considered [...] Read more.
Power systems are complex and often subject to faults, requiring accurate mathematical models for a thorough analysis. Traditional time-domain models are employed to evaluate the dynamic response of power system elements during transmission system faults. However, only the positive sequence components are considered for unbalanced faults, so the small-signal stability analysis is no longer accurate when assuming balanced conditions for asymmetrical faults. The dynamic phasor approach extends traditional models by representing synchronous machines with harmonic sequence components, making it suitable for an unbalanced condition analysis and revealing dynamic couplings not evident in conventional methods. By modeling electrical and mechanical equations with harmonic sequence components, the study implements an eigenvalue sensitivity analysis and participation factor analysis to identify the variable with significant participation in the critical modes and consequently in the dynamic response of synchronous machines during asymmetric faults, thereby control strategies can be proposed to improve system stability. The article validates the dynamic phasor model through simulations of a single-phase short circuit, demonstrating its accuracy and effectiveness in representing the transient and dynamic behavior of synchronous machines, and correctly identifies the harmonic sequence component with significant participation in the critical modes identified by the eigenvalue sensitivity to the rotor angular velocity and rotor angle. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

15 pages, 4989 KiB  
Article
Numerical Investigation of the Excitation Characteristics of Contaminated Nozzle Rings
by Michaela R. Beierl, Damian M. Vogt, Magnus Fischer, Tobias R. Müller and Kwok Kai So
Int. J. Turbomach. Propuls. Power 2024, 9(2), 21; https://doi.org/10.3390/ijtpp9020021 - 4 Jun 2024
Viewed by 1606
Abstract
The deposition of combustion residues in the nozzle ring (NR) of a turbocharger turbine stage changes the NR geometry significantly in a random manner. The resultant complex and highly asymmetric geometry induces low engine order (LEO) excitation, which may lead to resonance excitation [...] Read more.
The deposition of combustion residues in the nozzle ring (NR) of a turbocharger turbine stage changes the NR geometry significantly in a random manner. The resultant complex and highly asymmetric geometry induces low engine order (LEO) excitation, which may lead to resonance excitation of rotor blades and high cycle fatigue (HCF) failure. Therefore, a suitable prediction workflow is of great importance for the design and validation phases. The prediction of LEO excitation is, however, computationally expensive as high-fidelity, full annulus CFD models are required. Previous investigations showed that a steady-state computational model consisting of the volute, the NR, and a radial extension is suitable to reduce the computational costs massively and to qualitatively predict the level of LEO forced response. In the current paper, the aerodynamic excitation of 69 real contaminated NRs is analyzed using this simplified approach. The results obtained by the simplified simulation model are used to select 13 contaminated NR geometries, which are then simulated with a model of the entire turbine stage, including the rotor, in a transient time-marching manner to provide high-fidelity simulation results for the verification of the simplified approach. Furthermore, two contamination patterns are analyzed in a more detailed manner regarding their aerodynamic excitation. It is found that the simplified model can be used to identify and classify contamination patterns that lead to high blade vibration amplitudes. In cases where transient effects occurring in the rotor alter the harmonic pressure field significantly, the ability of the simplified approach to predict the LEO excitation is not sufficient. Full article
Show Figures

Figure 1

18 pages, 17861 KiB  
Article
Investigation of Torque and Reduction of Torque Ripples through Assisted-Poles in Low-Speed, High-Torque Density Spoke-Type PMSMs
by Sayyed Haleem Shah, Yun-Chong Wang, Dan Shi and Jian-Xin Shen
Machines 2024, 12(5), 327; https://doi.org/10.3390/machines12050327 - 10 May 2024
Cited by 1 | Viewed by 1451
Abstract
In this article, rotor designs utilizing assisted-poles are investigated for a high-torque density spoke-type permanent magnet synchronous machine (PMSM) with fractional slot concentrated winding (FSCW) to explore the rich air-gap magnetic field harmonics and torque generation mechanism. Due to their higher average torque [...] Read more.
In this article, rotor designs utilizing assisted-poles are investigated for a high-torque density spoke-type permanent magnet synchronous machine (PMSM) with fractional slot concentrated winding (FSCW) to explore the rich air-gap magnetic field harmonics and torque generation mechanism. Due to their higher average torque output, spoke-type PMSMs with FSCW are increasingly used in high-torque density applications. However, slot harmonics generate torque ripples that are difficult to eliminate in FSCW spoke-type PMSMs. Removing slot harmonics from the stator or winding results in a large drop in torque since their winding factors are identical to those of the main harmonic. Therefore, rotor designs having assisted-poles (symmetrical and asymmetrical) are investigated in this work to mitigate slot harmonics and minimize torque ripples. Firstly, the air-gap flux density is analyzed for the machines having assisted-poles, and a model of interaction between the stator and rotor-MMF harmonics is created and validated through Finite element analysis (FEA) to analyze the torque production mechanism. In addition, an analytical relationship between the assisted-poles’ dimensions and the generated torque harmonics is proposed. Furthermore, a generalized torque ripple reduction concept for the FSCW spoke-type PMSM having asymmetrically designed assisted-poles is presented. The proposed design and optimization method are validated through analytical calculations and FEA simulations, and a brief comparative analysis is presented for the analyzed machine prototypes. It has been established that the machine designed by applying the proposed asymmetrical assisted-poles can achieve a reduction in torque ripples while also significantly lowering cogging torque in comparison to the conventional spoke-type PMSMs and other spoke-type PMSMs with rotor having symmetrical assisted-poles. Full article
Show Figures

Figure 1

14 pages, 7957 KiB  
Article
Analysis of Unsteady Internal Flow and Its Induced Structural Response in a Circulating Water Pump
by Jinqi Lu, Xueliang Yao, Haixia Zheng, Xiaowei Yan, Houlin Liu and Tianxin Wu
Water 2024, 16(9), 1294; https://doi.org/10.3390/w16091294 - 2 May 2024
Viewed by 1274
Abstract
As critical equipment in nuclear power systems, the stability of circulating water pumps (CWP) directly impacts the efficiency of power plants. To investigate the impact mechanisms of the unsteady flow characteristics and flow-induced forces on the rotation system, numerical simulation methods were employed [...] Read more.
As critical equipment in nuclear power systems, the stability of circulating water pumps (CWP) directly impacts the efficiency of power plants. To investigate the impact mechanisms of the unsteady flow characteristics and flow-induced forces on the rotation system, numerical simulation methods were employed to calculate the internal flow of a volute mixed-flow CWP under different flow rates (0.8Qd, 1.0Qd, 1.2Qd). The flow field results indicate that, under the part-load condition, the flow within the volute is chaotic with high energy losses, while under the over-load condition, there is a significant velocity gradient within the impeller, leading to relatively severe flow losses. Additionally, the rotor–stator interface is a major factor in flow-induced pulsations, and the asymmetric pressure distribution within the volute results in radial force imbalance. The finite element method (FEM) results indicate that the position of maximum stress on the pump shaft is closely related to the ratio of radial and axial force. Increasing the flow rate appropriately has been noted to be advantageous in reducing flow-induced forces and their amplitude, consequently diminishing the forces on the rotation system and improving the long-term operational stability of the CWP. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

16 pages, 5327 KiB  
Article
Control and Analysis of a Hybrid-Rotor Bearingless Switched Reluctance Motor with One-Phase Full-Period Suspension
by Zeyuan Liu, Xingcheng Wu, Wenfeng Zhang, Yan Yang and Chengzi Liu
Symmetry 2024, 16(3), 369; https://doi.org/10.3390/sym16030369 - 18 Mar 2024
Viewed by 1285
Abstract
In the traditional control scheme of a 12/8-pole bearingless switched reluctance motor (BSRM), radial force and torque are usually controlled as a compromise due to the conflict between their effective output areas. Additionally, each phase requires individual power circuits and is excited in [...] Read more.
In the traditional control scheme of a 12/8-pole bearingless switched reluctance motor (BSRM), radial force and torque are usually controlled as a compromise due to the conflict between their effective output areas. Additionally, each phase requires individual power circuits and is excited in turn to produce a continuous levitation force, resulting in high power device requirements and high controller costs. This paper discusses a 12/8-pole single-winding hybrid-rotor bearingless switched reluctance motor (HBSRM) with a hybrid rotor consisting of cylindrical and salient-pole lamination segments. The asymmetric rotor of the HBSRM slightly increases the complexity of its structure and magnetic circuit, but makes it possible to generate the desired radial force at any rotor angular position. A control scheme for the HBSRM is developed to utilize the independent excitation of the four windings in one phase to generate the desired levitation force at any rotor angular position, and it requires only half the number of power circuits used in the conventional control scheme of a 12/8-pole single-winding BSRM. Different from the average torque chosen to be controlled in traditional methods, this scheme directly regulates the instantaneous total torque produced by all excited phases together and presents a current algorithm to optimize the torque contribution of each phase so as to reduce torque pulsation, and the improved performance of this bearingless motor is finally validated by simulation analysis. Full article
(This article belongs to the Special Issue Research on Motor and Special Electromagnetic Device of Symmetry II)
Show Figures

Figure 1

Back to TopTop