Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,831)

Search Parameters:
Keywords = backbone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10826 KiB  
Article
CRLNet: A Multimodal Peach Detection Network Based on Cooperative Asymptotic Enhancement and the Fusion of Granularity Refinement
by Jiahao Liu, Chaoying He, Mingfang Wang, Yichu Jiang, Manman Sun, Miying Yan and Mingfang He
Plants 2024, 13(14), 1980; https://doi.org/10.3390/plants13141980 (registering DOI) - 19 Jul 2024
Abstract
Accurate peach detection is essential for automated agronomic management, such as mechanical peach harvesting. However, ubiquitous occlusion makes identifying peaches from complex backgrounds extremely challenging. In addition, it is difficult to capture fine-grained peach features from a single RGB image, which can suffer [...] Read more.
Accurate peach detection is essential for automated agronomic management, such as mechanical peach harvesting. However, ubiquitous occlusion makes identifying peaches from complex backgrounds extremely challenging. In addition, it is difficult to capture fine-grained peach features from a single RGB image, which can suffer from light and noise in scenarios with dense small target clusters and extreme light. To solve these problems, this study proposes a multimodal detector, called CRLNet, based on RGB and depth images. First, YOLOv9 was extended to design a backbone network that can extract RGB and depth features in parallel from an image. Second, to address the problem of information fusion bias, the Rough–Fine Hybrid Attention Fusion Module (RFAM) was designed to combine the advantageous information of different modes while suppressing the hollow noise at the edge of the peach. Finally, a Transformer-based Local–Global Joint Enhancement Module (LGEM) was developed to jointly enhance the local and global features of peaches using information from different modalities in order to enhance the percentage of information about the target peaches and remove the interference of redundant background information. CRLNet was trained on the Peach dataset and evaluated against other state-of-the-art methods; the model achieved an mAP50 of 97.1%. In addition, CRLNet also achieved an mAP50 of 92.4% in generalized experiments, validating its strong generalization capability. These results provide valuable insights for peach and other outdoor fruit multimodal detection. Full article
Show Figures

Figure 1

22 pages, 16539 KiB  
Article
BY-SLAM: Dynamic Visual SLAM System Based on BEBLID and Semantic Information Extraction
by Daixian Zhu, Peixuan Liu, Qiang Qiu, Jiaxin Wei and Ruolin Gong
Sensors 2024, 24(14), 4693; https://doi.org/10.3390/s24144693 (registering DOI) - 19 Jul 2024
Abstract
SLAM is a critical technology for enabling autonomous navigation and positioning in unmanned vehicles. Traditional visual simultaneous localization and mapping algorithms are built upon the assumption of a static scene, overlooking the impact of dynamic targets within real-world environments. Interference from dynamic targets [...] Read more.
SLAM is a critical technology for enabling autonomous navigation and positioning in unmanned vehicles. Traditional visual simultaneous localization and mapping algorithms are built upon the assumption of a static scene, overlooking the impact of dynamic targets within real-world environments. Interference from dynamic targets can significantly degrade the system’s localization accuracy or even lead to tracking failure. To address these issues, we propose a dynamic visual SLAM system named BY-SLAM, which is based on BEBLID and semantic information extraction. Initially, the BEBLID descriptor is introduced to describe Oriented FAST feature points, enhancing both feature point matching accuracy and speed. Subsequently, FasterNet replaces the backbone network of YOLOv8s to expedite semantic information extraction. By using the results of DBSCAN clustering object detection, a more refined semantic mask is obtained. Finally, by leveraging the semantic mask and epipolar constraints, dynamic feature points are discerned and eliminated, allowing for the utilization of only static feature points for pose estimation and the construction of a dense 3D map that excludes dynamic targets. Experimental evaluations are conducted on both the TUM RGB-D dataset and real-world scenarios and demonstrate the effectiveness of the proposed algorithm at filtering out dynamic targets within the scenes. On average, the localization accuracy for the TUM RGB-D dataset improves by 95.53% compared to ORB-SLAM3. Comparative analyses against classical dynamic SLAM systems further corroborate the improvement in localization accuracy, map readability, and robustness achieved by BY-SLAM. Full article
(This article belongs to the Section Navigation and Positioning)
22 pages, 56505 KiB  
Article
Optimizing Slender Target Detection in Remote Sensing with Adaptive Boundary Perception
by Han Zhu and Donglin Jing
Remote Sens. 2024, 16(14), 2643; https://doi.org/10.3390/rs16142643 (registering DOI) - 19 Jul 2024
Abstract
Over the past few years, target detectors that utilize Convolutional Neural Networks have gained extensive application in the domain of remote sensing (RS) imagery. Recently, optimizing bounding boxes has consistently been a hot topic in the research field. However, existing methods often fail [...] Read more.
Over the past few years, target detectors that utilize Convolutional Neural Networks have gained extensive application in the domain of remote sensing (RS) imagery. Recently, optimizing bounding boxes has consistently been a hot topic in the research field. However, existing methods often fail to take into account the interference caused by the shape and orientation changes of RS targets with high aspect ratios during training, leading to challenges in boundary perception when dealing with RS targets that have large aspect ratios. To deal with this challenge, our study introduces the Adaptive Boundary Perception Network (ABP-Net), a novel two-stage approach consisting of pre-training and training phases, which enhances the boundary perception of CNN-based detectors. In the pre-training phase, involving the initialization of our model’s backbone network and the label assignment, the traditional label assignment with a fixed IoU threshold fails to fully cover the critical information of slender targets, resulting in the detector missing lots of high-quality positive samples. To overcome this drawback, we design a Shape-Sensitive (S-S) label assignment strategy that can improve the boundary shape perception by dynamically adjusting the IoU threshold according to the aspect ratios of the targets so that the high-quality samples with critical features can be divided into positive samples. Moreover, during the training phase, minor angle differences of the slender bounding box may cause a significant change in the value of the loss function, producing unstable gradients. Such drastic gradient changes make it difficult for the model to find a stable update direction when optimizing the bounding box parameters, resulting in difficulty with the model convergence. To this end, we propose the Robust–Refined loss function (R-R), which can enhance the boundary localization perception by focusing on low-error samples and suppressing the gradient amplification of difficult samples, thereby improving the model stability and convergence. Experiments on UCAS-AOD and HRSC2016 datasets validate our specialized detector for high-aspect-ratio targets, improving performance, efficiency, and accuracy with straightforward operation and quick deployment. Full article
Show Figures

Figure 1

20 pages, 8422 KiB  
Article
Welding Seam Tracking and Inspection Robot Based on Improved YOLOv8s-Seg Model
by Minghu Zhao, Xinru Liu, Kaihang Wang, Zishen Liu, Qi Dong, Pengfei Wang and Yaoheng Su
Sensors 2024, 24(14), 4690; https://doi.org/10.3390/s24144690 (registering DOI) - 19 Jul 2024
Abstract
A weld is the main connection form of special equipment, and a weld is also the most vulnerable part of special equipment. Therefore, an effective detection of a weld is of great significance to improve the safety of special equipment. The traditional inspection [...] Read more.
A weld is the main connection form of special equipment, and a weld is also the most vulnerable part of special equipment. Therefore, an effective detection of a weld is of great significance to improve the safety of special equipment. The traditional inspection method is not only time-consuming and labor-intensive, but also expensive. The welding seam tracking and inspection robot can greatly improve the inspection efficiency and save on inspection costs. Therefore, this paper proposes a welding seam tracking and inspection robot based on YOLOv8s-seg. Firstly, the MobileNetV3 lightweight backbone network is used to replace the backbone part of YOLOv8s-seg to reduce the model parameters. Secondly, we reconstruct C2f and prune the number of output channels of the new building module C2fGhost. Finally, in order to make up for the precision loss caused by the lightweight model, we add an EMA attention mechanism after each detection layer in the neck part of the model. The experimental results show that the accuracy of weld recognition reaches 97.8%, and the model size is only 4.88 MB. The improved model is embedded in Jetson nano, a robot control system for seam tracking and detection, and TensorRT is used to accelerate the reasoning of the model. The total reasoning time from image segmentation to path fitting is only 54 ms, which meets the real-time requirements of the robot for seam tracking and detection, and realizes the path planning of the robot for inspecting the seam efficiently and accurately. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

26 pages, 1452 KiB  
Review
Charting the Course: Navigating Decarbonisation Pathways in Greece, Germany, The Netherlands, and Spain’s Industrial Sectors
by Alessandro A. Carmona-Martínez, Anatoli Rontogianni, Myrto Zeneli, Panagiotis Grammelis, Olgu Birgi, Rainer Janssen, Benedetta Di Costanzo, Martijn Vis, Bas Davidis, Patrick Reumerman, Asier Rueda and Clara Jarauta-Córdoba
Sustainability 2024, 16(14), 6176; https://doi.org/10.3390/su16146176 (registering DOI) - 19 Jul 2024
Abstract
In the quest for a sustainable future, energy-intensive industries (EIIs) stand at the forefront of Europe’s decarbonisation mission. Despite their significant emissions footprint, the path to comprehensive decarbonisation remains elusive at EU and national levels. This study scrutinises key sectors such as non-ferrous [...] Read more.
In the quest for a sustainable future, energy-intensive industries (EIIs) stand at the forefront of Europe’s decarbonisation mission. Despite their significant emissions footprint, the path to comprehensive decarbonisation remains elusive at EU and national levels. This study scrutinises key sectors such as non-ferrous metals, steel, cement, lime, chemicals, fertilisers, ceramics, and glass. It maps out their current environmental impact and potential for mitigation through innovative strategies. The analysis spans across Spain, Greece, Germany, and the Netherlands, highlighting sector-specific ecosystems and the technological breakthroughs shaping them. It addresses the urgency for the industry-wide adoption of electrification, the utilisation of green hydrogen, biomass, bio-based or synthetic fuels, and the deployment of carbon capture utilisation and storage to ensure a smooth transition. Investment decisions in EIIs will depend on predictable economic and regulatory landscapes. This analysis discusses the risks associated with continued investment in high-emission technologies, which may lead to premature decommissioning and significant economic repercussions. It presents a dichotomy: invest in climate-neutral technologies now or face the closure and offshoring of operations later, with consequences for employment. This open discussion concludes that while the technology for near-complete climate neutrality in EIIs exists and is rapidly advancing, the higher costs compared to conventional methods pose a significant barrier. Without the ability to pass these costs to consumers, the adoption of such technologies is stifled. Therefore, it calls for decisive political commitment to support the industry’s transition, ensuring a greener, more resilient future for Europe’s industrial backbone. Full article
Show Figures

Graphical abstract

18 pages, 6988 KiB  
Article
SAW-YOLO: A Multi-Scale YOLO for Small Target Citrus Pests Detection
by Xiaojiang Wu, Jinzhe Liang, Yiyu Yang, Zhenghao Li, Xinyu Jia, Haibo Pu and Peng Zhu
Agronomy 2024, 14(7), 1571; https://doi.org/10.3390/agronomy14071571 (registering DOI) - 19 Jul 2024
Abstract
Citrus pests pose a major threat to both citrus yield and fruit quality. The early prevention of pests is essential for sustainable citrus cultivation, cost savings, and the reduction of environmental pollution. Despite the increasing application of deep learning techniques in agriculture, the [...] Read more.
Citrus pests pose a major threat to both citrus yield and fruit quality. The early prevention of pests is essential for sustainable citrus cultivation, cost savings, and the reduction of environmental pollution. Despite the increasing application of deep learning techniques in agriculture, the performance of existing models for small target detection of citrus pests is limited, mainly in terms of information bottlenecks that occur during the transfer of information. This hinders its effectiveness in fully automating the detection of citrus pests. In this study, a new approach was introduced to overcome these limitations. Firstly, a comprehensive large-scale dataset named IP-CitrusPests13 was developed, encompassing 13 distinct citrus pest categories. This dataset was amalgamated from IP102 and web crawlers, serving as a fundamental resource for precision-oriented pest detection tasks in citrus farming. Web crawlers can supplement information on various forms of pests and changes in pest size. Using this comprehensive dataset, we employed the SPD Module in the backbone network to preserve fine-grained information and prevent the model from losing important information as the depth increased. In addition, we introduced the AFFD Head detection module into the YOLOv8 architecture, which has two important functions that effectively integrate shallow and deep information to improve the learning ability of the model. Optimizing the bounding box loss function to WIoU v3 (Wise-IoU v3), which focuses on medium-quality anchor frames, sped up the convergence of the network. Experimental evaluation on a test set showed that the proposed SAW-YOLO (SPD Module, AFFD, WIoU v3) model achieved an average accuracy of 90.3%, which is 3.3% higher than the benchmark YOLOv8n model. Without any significant enlargement in the model size, state-of-the-art (SOTA) performance can be achieved in small target detection. To validate the robustness of the model against pests of various sizes, the SAW-YOLO model showed improved detection performance on all three scales of pests, significantly reducing the rate of missed detections. Our experimental results show that the SAW-YOLO model performs well in the detection of multiple pest classes in citrus orchards, helping to advance smart planting practices in the citrus industry. Full article
(This article belongs to the Special Issue AI, Sensors and Robotics for Smart Agriculture—2nd Edition)
Show Figures

Figure 1

21 pages, 5695 KiB  
Article
Requirements and Barriers for Human-Centered SMEs
by Julia Nazarejova, Zuzana Soltysova and Tetiana Rudeichuk
Sensors 2024, 24(14), 4681; https://doi.org/10.3390/s24144681 (registering DOI) - 19 Jul 2024
Abstract
With the advantages of new technologies and rising demand from customers, it is necessary to improve the manufacturing process. This necessity was recognized by the industry; therefore, the concept of Industry 4.0 has been implemented in various areas of manufacturing and services. The [...] Read more.
With the advantages of new technologies and rising demand from customers, it is necessary to improve the manufacturing process. This necessity was recognized by the industry; therefore, the concept of Industry 4.0 has been implemented in various areas of manufacturing and services. The backbone and main aspect of Industry 4.0 is digitalization and the implementation of technologies into processes. While this concept helps manufacturers with the modernization and optimization of many attributes of the processes, Industry 5.0 takes a step further and brings importance to the human factor of industry practice, together with sustainability and resilience. The concept of Industry 5.0 contributes to the idea of creating a sustainable, prosperous, and human-friendly environment within companies. The main focus of the article is to analyze the existing literature regarding what is missing from the successful implementation of human centricity into industry practice, namely in small and medium-sized factories (SMEs). These findings are then presented in the form of requirements and barriers for the implementation of human centricity into SME factories, which can serve as guidelines for implementing human-centered manufacturing using axiomatic design theory in SMEs, which can serve as a roadmap for practitioners. Full article
(This article belongs to the Special Issue Human-Centred Smart Manufacturing - Industry 5.0)
Show Figures

Figure 1

20 pages, 5469 KiB  
Article
Harmonized Pan-European Time Series for Monitoring Soil Sealing
by Christophe Sannier, Eva Ivits, Gergely Maucha, Joachim Maes and Lewis Dijkstra
Land 2024, 13(7), 1087; https://doi.org/10.3390/land13071087 (registering DOI) - 19 Jul 2024
Abstract
The European Copernicus Land Monitoring Service (CLMS) has been producing datasets on imperviousness every 3 years since 2006. However, for 2018, the input for the production of the imperviousness dataset was switched from mixed inputs to the Sentinel constellation. While this led to [...] Read more.
The European Copernicus Land Monitoring Service (CLMS) has been producing datasets on imperviousness every 3 years since 2006. However, for 2018, the input for the production of the imperviousness dataset was switched from mixed inputs to the Sentinel constellation. While this led to an improvement in the spatial detail from 20 m to 10 m, this also resulted in a break in the time series as the 2018 update was not comparable to the previous reference years. In addition, the European CLMS has been producing a new dataset from 2018 onward entitled CLC+ Backbone, which also includes a sealed area thematic class. When comparing both datasets with sampled reference data, it appears that the imperviousness dataset substantially underestimates sealed areas at the European level. However, the CLC+ dataset is only available from 2018 and currently does not include any change layer. To address these issues, a harmonized continental soil sealing combined dataset for Europe was produced for the entire observation period. This new dataset has been validated to be the best current dataset for monitoring soil sealing as a direct input for European policies with an estimated total sealed area of 175,664 km2 over Europe and an increase in sealed areas of 1297 km2 or 0.7% between 2015 and 2018, which is comparable to previous time periods. Finally, recommendations for future updates and the validation of imperviousness degree geospatial products are given. Full article
(This article belongs to the Special Issue Applying Earth Observation Data for Urban Land-Use Change Mapping)
Show Figures

Figure 1

19 pages, 10494 KiB  
Article
RT-DETR-Tomato: Tomato Target Detection Algorithm Based on Improved RT-DETR for Agricultural Safety Production
by Zhimin Zhao, Shuo Chen, Yuheng Ge, Penghao Yang, Yunkun Wang and Yunsheng Song
Appl. Sci. 2024, 14(14), 6287; https://doi.org/10.3390/app14146287 (registering DOI) - 19 Jul 2024
Abstract
The detection of tomatoes is of vital importance for enhancing production efficiency, with image recognition-based tomato detection methods being the primary approach. However, these methods face challenges such as the difficulty in extracting small targets, low detection accuracy, and slow processing speeds. Therefore, [...] Read more.
The detection of tomatoes is of vital importance for enhancing production efficiency, with image recognition-based tomato detection methods being the primary approach. However, these methods face challenges such as the difficulty in extracting small targets, low detection accuracy, and slow processing speeds. Therefore, this paper proposes an improved RT-DETR-Tomato model for efficient tomato detection under complex environmental conditions. The model mainly consists of a Swin Transformer block, a BiFormer module, path merging, multi-scale convolutional layers, and fully connected layers. In this proposed model, Swin Transformer is chosen as the new backbone network to replace ResNet50 because of its superior ability to capture broader global dependency relationships and contextual information. Meanwhile, a lightweight BiFormer block is adopted in Swin Transformer to reduce computational complexity through content-aware flexible computation allocation. Experimental results show that the average accuracy of the final RT-DETR-Tomato model is greatly improved compared to the original model, and the model training time is greatly reduced, demonstrating better environmental adaptability. In the future, the RT-DETR-Tomato model can be integrated with intelligent patrol and picking robots, enabling precise identification of crops and ensuring the safety of crops and the smooth progress of agricultural production. Full article
Show Figures

Figure 1

10 pages, 2123 KiB  
Communication
Cobalt-Catalyzed Reduction of Aldehydes to Alcohols via the Hydroboration Reaction
by Dariusz Lewandowski and Grzegorz Hreczycho
Int. J. Mol. Sci. 2024, 25(14), 7894; https://doi.org/10.3390/ijms25147894 (registering DOI) - 19 Jul 2024
Abstract
A method for the reduction of aldehydes with pinacolborane catalyzed by pincer cobalt complexes based on a triazine backbone is developed in this paper. The presented methodology allows for the transformation of several aldehydes bearing a wide range of electron-withdrawing and electron-donating groups [...] Read more.
A method for the reduction of aldehydes with pinacolborane catalyzed by pincer cobalt complexes based on a triazine backbone is developed in this paper. The presented methodology allows for the transformation of several aldehydes bearing a wide range of electron-withdrawing and electron-donating groups under mild conditions. The presented procedure allows for the direct one-step hydrolysis of the obtained intermediates to the corresponding primary alcohols. A plausible reaction mechanism is proposed. Full article
Show Figures

Graphical abstract

17 pages, 5588 KiB  
Article
Detection of Liquid Retention on Pipette Tips in High-Throughput Liquid Handling Workstations Based on Improved YOLOv8 Algorithm with Attention Mechanism
by Yanpu Yin, Jiahui Lei and Wei Tao
Electronics 2024, 13(14), 2836; https://doi.org/10.3390/electronics13142836 (registering DOI) - 18 Jul 2024
Viewed by 124
Abstract
High-throughput liquid handling workstations are required to process large numbers of test samples in the fields of life sciences and medicine. Liquid retention and droplets hanging in the pipette tips can lead to cross-contamination of samples and reagents and inaccurate experimental results. Traditional [...] Read more.
High-throughput liquid handling workstations are required to process large numbers of test samples in the fields of life sciences and medicine. Liquid retention and droplets hanging in the pipette tips can lead to cross-contamination of samples and reagents and inaccurate experimental results. Traditional methods for detecting liquid retention have low precision and poor real-time performance. This paper proposes an improved YOLOv8 (You Only Look Once version 8) object detection algorithm to address the challenges posed by different liquid sizes and colors, complex situation of test tube racks and multiple samples in the background, and poor global image structure understanding in pipette tip liquid retention detection. A global context (GC) attention mechanism module is introduced into the backbone network and the cross-stage partial feature fusion (C2f) module to better focus on target features. To enhance the ability to effectively combine and process different types of data inputs and background information, a Large Kernel Selection (LKS) module is also introduced into the backbone network. Additionally, the neck network is redesigned to incorporate the Simple Attention (SimAM) mechanism module, generating attention weights and improving overall performance. We evaluated the algorithm using a self-built dataset of pipette tips. Compared to the original YOLOv8 model, the improved algorithm increased [email protected] (mean average precision), F1 score, and precision by 1.7%, 2%, and 1.7%, respectively. The improved YOLOv8 algorithm can enhance the detection capability of liquid-retaining pipette tips, and prevent cross-contamination from affecting the results of sample solution experiments. It provides a detection basis for subsequent automatic processing of solution for liquid retention. Full article
(This article belongs to the Special Issue Advances in Computer Vision and Deep Learning and Its Applications)
Show Figures

Figure 1

12 pages, 2861 KiB  
Article
Deep Learning-Based Automated Cell Detection-Facilitated Meat Quality Evaluation
by Hui Zheng, Nan Zhao, Saifei Xu, Jin He, Ricardo Ospina, Zhengjun Qiu and Yufei Liu
Foods 2024, 13(14), 2270; https://doi.org/10.3390/foods13142270 - 18 Jul 2024
Viewed by 107
Abstract
Meat consumption is increasing globally. The safety and quality of meat are considered important issues for human health. During evaluations of meat quality and freshness, microbiological parameters are often analyzed. Counts of indicator cells can provide important references for meat quality. In order [...] Read more.
Meat consumption is increasing globally. The safety and quality of meat are considered important issues for human health. During evaluations of meat quality and freshness, microbiological parameters are often analyzed. Counts of indicator cells can provide important references for meat quality. In order to eliminate the error of manual operation and improve detection efficiency, this paper proposed a Convolutional Neural Network (CNN) with a backbone called Detect-Cells-Rapidly-Net (DCRNet), which can identify and count stained cells automatically. The DCRNet replaces the single channel of residual blocks with the aggregated residual blocks to learn more features with fewer parameters. The DCRNet combines the deformable convolution network to fit flexible shapes of stained animal cells. The proposed CNN with DCRNet is self-adaptive to different resolutions of images. The experimental results indicate that the proposed CNN with DCRNet achieves an Average Precision of 81.2% and is better than traditional neural networks for this task. The difference between the results of the proposed method and manual counting is less than 0.5% of the total number of cells. The results indicate that DCRNet is a promising solution for cell detection and can be equipped in future meat quality monitoring systems. Full article
Show Figures

Figure 1

20 pages, 5258 KiB  
Article
YOMO-Runwaynet: A Lightweight Fixed-Wing Aircraft Runway Detection Algorithm Combining YOLO and MobileRunwaynet
by Wei Dai, Zhengjun Zhai, Dezhong Wang, Zhaozi Zu, Siyuan Shen, Xinlei Lv, Sheng Lu and Lei Wang
Drones 2024, 8(7), 330; https://doi.org/10.3390/drones8070330 - 18 Jul 2024
Viewed by 111
Abstract
The runway detection algorithm for fixed-wing aircraft is a hot topic in the field of aircraft visual navigation. High accuracy, high fault tolerance, and lightweight design are the core requirements in the domain of runway feature detection. This paper aims to address these [...] Read more.
The runway detection algorithm for fixed-wing aircraft is a hot topic in the field of aircraft visual navigation. High accuracy, high fault tolerance, and lightweight design are the core requirements in the domain of runway feature detection. This paper aims to address these needs by proposing a lightweight runway feature detection algorithm named YOMO-Runwaynet, designed for edge devices. The algorithm features a lightweight network architecture that follows the YOMO inference framework, combining the advantages of YOLO and MobileNetV3 in feature extraction and operational speed. Firstly, a lightweight attention module is introduced into MnasNet, and the improved MobileNetV3 is employed as the backbone network to enhance the feature extraction efficiency. Then, PANet and SPPnet are incorporated to aggregate the features from multiple effective feature layers. Subsequently, to reduce latency and improve efficiency, YOMO-Runwaynet generates a single optimal prediction for each object, eliminating the need for non-maximum suppression (NMS). Finally, experimental results on embedded devices demonstrate that YOMO-Runwaynet achieves a detection accuracy of over 89.5% on the ATD (Aerovista Runway Dataset), with a pixel error rate of less than 0.003 for runway keypoint detection, and an inference speed exceeding 90.9 FPS. These results indicate that the YOMO-Runwaynet algorithm offers high accuracy and real-time performance, providing effective support for the visual navigation of fixed-wing aircraft. Full article
(This article belongs to the Topic Civil and Public Domain Applications of Unmanned Aviation)
Show Figures

Figure 1

16 pages, 8494 KiB  
Article
Identification of a Chimera Mass Spectrum of Isomeric Lipid A Species Using Negative Ion Tandem Mass Spectrometry
by Ágnes Dörnyei, Anikó Kilár and Viktor Sándor
Toxins 2024, 16(7), 322; https://doi.org/10.3390/toxins16070322 - 18 Jul 2024
Viewed by 153
Abstract
The toxic nature of bacterial endotoxins is affected by the structural details of lipid A, including the variety and position of acyl chains and phosphate group(s) on its diglucosamine backbone. Negative-ion mode tandem mass spectrometry is a primary method for the structure elucidation [...] Read more.
The toxic nature of bacterial endotoxins is affected by the structural details of lipid A, including the variety and position of acyl chains and phosphate group(s) on its diglucosamine backbone. Negative-ion mode tandem mass spectrometry is a primary method for the structure elucidation of lipid A, used independently or in combination with separation techniques. However, it is challenging to accurately characterize constitutional isomers of lipid A extracts by direct mass spectrometry, as the elemental composition and molecular mass of these molecules are identical. Thus, their simultaneous fragmentation leads to a composite, so-called chimera mass spectrum. The present study focuses on the phosphopositional isomers of the classical monophosphorylated, hexaacylated Escherichia coli-type lipid A. Collision-induced dissociation (CID) was performed in an HPLC-ESI-QTOF system. Energy-resolved mass spectrometry (ERMS) was applied to uncover the distinct fragmentation profiles of the phosphorylation isomers. A fragmentation strategy applying multi-levels of collision energy has been proposed and applied to reveal sample complexity, whether it contains only a 4′-phosphorylated species or a mixture of 1- and 4′-phosphorylated variants. This comparative fragmentation study of isomeric lipid A species demonstrates the high potential of ERMS-derived information for the successful discrimination of co-ionized phosphorylation isomers of hexaacylated lipid A. Full article
(This article belongs to the Topic Application of Analytical Technology in Metabolomics)
Show Figures

Graphical abstract

24 pages, 10938 KiB  
Article
Segmentation and Coverage Measurement of Maize Canopy Images for Variable-Rate Fertilization Using the MCAC-Unet Model
by Hailiang Gong, Litong Xiao and Xi Wang
Agronomy 2024, 14(7), 1565; https://doi.org/10.3390/agronomy14071565 - 18 Jul 2024
Viewed by 125
Abstract
Excessive fertilizer use has led to environmental pollution and reduced crop yields, underscoring the importance of research into variable-rate fertilization (VRF) based on digital image technology in precision agriculture. Current methods, which rely on spectral sensors for monitoring and prescription mapping, face significant [...] Read more.
Excessive fertilizer use has led to environmental pollution and reduced crop yields, underscoring the importance of research into variable-rate fertilization (VRF) based on digital image technology in precision agriculture. Current methods, which rely on spectral sensors for monitoring and prescription mapping, face significant technical challenges, high costs, and operational complexities, limiting their widespread adoption. This study presents an automated, intelligent, and precise approach to maize canopy image segmentation using the multi-scale attention and Unet model to enhance VRF decision making, reduce fertilization costs, and improve accuracy. A dataset of maize canopy images under various lighting and growth conditions was collected and subjected to data augmentation and normalization preprocessing. The MCAC-Unet model, built upon the MobilenetV3 backbone network and integrating the convolutional block attention module (CBAM), atrous spatial pyramid pooling (ASPP) multi-scale feature fusion, and content-aware reassembly of features (CARAFE) adaptive upsampling modules, achieved a mean intersection over union (mIOU) of 87.51% and a mean pixel accuracy (mPA) of 93.85% in maize canopy image segmentation. Coverage measurements at a height of 1.1 m indicated a relative error ranging from 3.12% to 6.82%, averaging 4.43%, with a determination coefficient of 0.911, meeting practical requirements. The proposed model and measurement system effectively address the challenges in maize canopy segmentation and coverage assessment, providing robust support for crop monitoring and VRF decision making in complex environments. Full article
Show Figures

Figure 1

Back to TopTop