Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,261)

Search Parameters:
Keywords = backpropagation neural network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3328 KiB  
Article
A Novel Chaotic Particle Swarm-Optimized Backpropagation Neural Network PID Controller for Indoor Carbon Dioxide Control
by Suli Zhang, Hui Li and Yiting Chang
Processes 2024, 12(9), 1785; https://doi.org/10.3390/pr12091785 - 23 Aug 2024
Viewed by 233
Abstract
In the continuously evolving landscape of novel smart control strategies, optimization techniques play a crucial role in achieving precise control of indoor air quality. This study aims to enhance indoor air quality by precisely regulating carbon dioxide (CO2) levels through an [...] Read more.
In the continuously evolving landscape of novel smart control strategies, optimization techniques play a crucial role in achieving precise control of indoor air quality. This study aims to enhance indoor air quality by precisely regulating carbon dioxide (CO2) levels through an optimized control system. Prioritizing fast response, short settling time, and minimal overshoot is essential to ensure accurate control. To achieve this goal, chaos optimization is applied. By using the global search capability of the chaos particle swarm optimization (CPSO) algorithm, the initial weights connecting the input layer to the hidden layer and the hidden layer to the output layer of the backpropagation neural network (BPNN) are continuously optimized. The optimized weights are then applied to the BPNN, which employs its self-learning capability to calculate the output error of each neuronal layer, progressing from the output layer backward. Based on these errors, the weights are adjusted accordingly, ultimately tuning the proportional–integral–derivative (PID) controller to its optimal parameters. When comparing simulation results, it is evident that, compared to the baseline method, the enhanced Chaos Particle Swarm Optimization Backpropagation Neural Network PID (CPSO-BPNN-PID) controller proposed in this study exhibits the shortest settling time, approximately 0.125 s, with a peak value of 1, a peak time of 0.2 s, and zero overshoot, demonstrating exceptional control performance. The novelty of this control algorithm lies in the integration of four distinct technologies—chaos optimization, particle swarm optimization (PSO), BPNN, and PID controller—into a novel controller for precise regulation of indoor CO2 concentration. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

16 pages, 5075 KiB  
Article
Pour Point Prediction Method for Mixed Crude Oil Based on Ensemble Machine Learning Models
by Jimiao Duan, Zhi Kou, Huishu Liu, Keyu Lin, Sichen He and Shiming Chen
Processes 2024, 12(9), 1783; https://doi.org/10.3390/pr12091783 - 23 Aug 2024
Viewed by 273
Abstract
Pipelines are the most common way to transport crude oil. The crude oil developed from different fields is mixed first and then transported. The pour point of mixed crude oil is very important for pipeline schemes and ensuring the safe, efficient, and flexible [...] Read more.
Pipelines are the most common way to transport crude oil. The crude oil developed from different fields is mixed first and then transported. The pour point of mixed crude oil is very important for pipeline schemes and ensuring the safe, efficient, and flexible operation of the pipeline. An integrated machine learning model based on XGBoost is identified as optimal to predict the pour point of mixed crude oil by comprehensive comparison among six different types of machine learning models: multiple linear regression, random forest, support vector machine, LightGBM, backpropagation neural network, and XGBoost. A mixed crude oil pour point prediction model with strong engineering adaptability is proposed, focusing on enhancing the flexibility of machine learning model inputs (using density and viscosity instead of component crude oil pour points) and addressing challenges such as data volume and input missing in engineering scenarios. With the inputs of pour point Tg, density ρ, viscosity μ, and ratio Xi in component oils, the mean absolute error of the model prediction estimations after training with 8912 data is 1.12 °C, when the pour point Tg of the component crude oil is missing, the mean absolute error is 1.93 °C and the percentage of the predicted absolute error within 2 °C is 88.0%. This study can provide support for the intelligent control of flow properties of pipeline transport mixed oil. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 4301 KiB  
Article
Load Prediction of Regional Heat Exchange Station Based on Fuzzy Clustering Based on Fourier Distance and Convolutional Neural Network–Bidirectional Long Short-Term Memory Network
by Yuwen You, Zhonghua Wang, Zhihao Liu, Chunmei Guo and Bin Yang
Energies 2024, 17(16), 4190; https://doi.org/10.3390/en17164190 - 22 Aug 2024
Viewed by 217
Abstract
Cogeneration is an important means for heat supply enterprises to obtain heat, and accurate load prediction is particularly crucial. The heat load of a centralized heat supply system is influenced by various factors such as outdoor meteorological parameters, the building envelope structure, and [...] Read more.
Cogeneration is an important means for heat supply enterprises to obtain heat, and accurate load prediction is particularly crucial. The heat load of a centralized heat supply system is influenced by various factors such as outdoor meteorological parameters, the building envelope structure, and regulation control, which exhibit a strong coupling and nonlinearity. It is essential to identify the key variables affecting the heat load at different heating stages through data mining techniques and to use deep learning algorithms to precisely regulate the heating system based on load predictions. In this study, a heat station in a northern Chinese city is taken as the subject of research. We apply the Fuzzy Clustering based on Fourier distance (FCBD-FCM) algorithm to transform the factors influencing the long and short-term load prediction of heat supply from the time domain to the frequency domain. This transformation is used to analyze the degree of their impact on load changes and to extract factors with significant influence as the multifeatured input variables for the prediction model. Five neural network models for load prediction are established, namely, Backpropagation (BP), convolutional neural network (CNN), Long Short-Term Memory (LSTM), CNN-LSTM, and CNN-BiLSTM. These models are compared and analyzed for their performance in long-term, short-term, and ultrashort-term heating load prediction. The findings indicate that the load prediction accuracy is high when multifeatured input variables are based on fuzzy clustering. Furthermore, the CNN-BiLSTM model notably enhances the prediction accuracy and generalization ability compared to other models, with the Mean Absolute Percentage Error (MAPE) averaging within 3%. Full article
Show Figures

Figure 1

15 pages, 2185 KiB  
Article
Cost Estimation and Prediction for Residential Projects Based on Grey Relational Analysis–Lasso Regression–Backpropagation Neural Network
by Lijun Chen and Dejiang Wang
Information 2024, 15(8), 502; https://doi.org/10.3390/info15080502 - 21 Aug 2024
Viewed by 285
Abstract
In the early stages of residential project investment, accurately estimating the engineering costs of residential projects is crucial for cost control and management of the project. However, the current cost estimation of residential engineering in China is primarily carried out by cost personnel [...] Read more.
In the early stages of residential project investment, accurately estimating the engineering costs of residential projects is crucial for cost control and management of the project. However, the current cost estimation of residential engineering in China is primarily carried out by cost personnel based on their own experience. This process is time-consuming and labour-intensive, and it involves subjective judgement, which can lead to significant estimation errors and fail to meet the rapidly developing market demands. Data collection for residential construction projects is challenging, with small sample sizes, numerous attributes, and complexity. This paper adopts a hybrid method combining a grey relational analysis, Lasso regression, and Backpropagation Neural Network (GAR-LASSO-BPNN). This method has significant advantages in handling high-dimensional small samples and multiple correlated variables. The grey relational analysis (GRA) is used to quantitatively identify cost-driving factors, and 14 highly correlated factors are selected as input variables. Then, regularization through Lasso regression (LASSO) is used to filter the final input variables, which are subsequently input into the Backpropagation Neural Network (BPNN) to establish the relationship between the unit cost of residential projects and 12 input variables. Compared to using LASSO and BPNN methods individually, the GAR-LASSO-BPNN hybrid prediction method performs better in terms of error evaluation metrics. The research findings can provide quantitative decision support for cost estimators in the early estimation stages of residential project investment decision-making. Full article
Show Figures

Figure 1

28 pages, 5276 KiB  
Article
Frequency-Domain and Spatial-Domain MLMVN-Based Convolutional Neural Networks
by Igor Aizenberg and Alexander Vasko
Algorithms 2024, 17(8), 361; https://doi.org/10.3390/a17080361 - 17 Aug 2024
Viewed by 266
Abstract
This paper presents a detailed analysis of a convolutional neural network based on multi-valued neurons (CNNMVN) and a fully connected multilayer neural network based on multi-valued neurons (MLMVN), employed here as a convolutional neural network in the frequency domain. We begin by providing [...] Read more.
This paper presents a detailed analysis of a convolutional neural network based on multi-valued neurons (CNNMVN) and a fully connected multilayer neural network based on multi-valued neurons (MLMVN), employed here as a convolutional neural network in the frequency domain. We begin by providing an overview of the fundamental concepts underlying CNNMVN, focusing on the organization of convolutional layers and the CNNMVN learning algorithm. The error backpropagation rule for this network is justified and presented in detail. Subsequently, we consider how MLMVN can be used as a convolutional neural network in the frequency domain. It is shown that each neuron in the first hidden layer of MLMVN may work as a frequency-domain convolutional kernel, utilizing the Convolution Theorem. Essentially, these neurons create Fourier transforms of the feature maps that would have resulted from the convolutions in the spatial domain performed in regular convolutional neural networks. Furthermore, we discuss optimization techniques for both networks and compare the resulting convolutions to explore which features they extract from images. Finally, we present experimental results showing that both approaches can achieve high accuracy in image recognition. Full article
(This article belongs to the Special Issue Machine Learning Algorithms for Image Understanding and Analysis)
Show Figures

Figure 1

13 pages, 2705 KiB  
Article
Development of a Neural Network for Target Gas Detection in Interdigitated Electrode Sensor-Based E-Nose Systems
by Kadir Kaya and Mehmet Ali Ebeoğlu
Sensors 2024, 24(16), 5315; https://doi.org/10.3390/s24165315 - 16 Aug 2024
Viewed by 296
Abstract
In this study, a neural network was developed for the detection of acetone, ethanol, chloroform, and air pollutant NO2 gases using an Interdigitated Electrode (IDE) sensor-based e-nose system. A bioimpedance spectroscopy (BIS)-based interface circuit was used to measure sensor responses in the [...] Read more.
In this study, a neural network was developed for the detection of acetone, ethanol, chloroform, and air pollutant NO2 gases using an Interdigitated Electrode (IDE) sensor-based e-nose system. A bioimpedance spectroscopy (BIS)-based interface circuit was used to measure sensor responses in the e-nose system. The sensor was fed with a sinusoidal voltage at 10 MHz frequency and 0.707 V amplitude. Sensor responses were sampled at 100 Hz frequency and converted to digital data with 16-bit resolution. The highest change in impedance magnitude obtained in the e-nose system against chloroform gas was recorded as 24.86 Ω over a concentration range of 0–11,720 ppm. The highest gas detection sensitivity of the e-nose system was calculated as 0.7825 Ω/ppm against 6.7 ppm NO2 gas. Before training with the neural network, data were filtered from noise using Kalman filtering. Principal Component Analysis (PCA) was applied to the improved signal data for dimensionality reduction, separating them from noise and outliers with low variance and non-informative characteristics. The neural network model created is multi-layered and employs the backpropagation algorithm. The Xavier initialization method was used for determining the initial weights of neurons. The neural network successfully classified NO2 (6.7 ppm), acetone (1820 ppm), ethanol (1820 ppm), and chloroform (1465 ppm) gases with a test accuracy of 87.16%. The neural network achieved this test accuracy in a training time of 239.54 milliseconds. As sensor sensitivity increases, the detection capability of the neural network also improves. Full article
(This article belongs to the Special Issue Chemical Sensors for Toxic Chemical Detection)
Show Figures

Figure 1

22 pages, 40834 KiB  
Article
Design of Optimal Pitch Controller for Wind Turbines Based on Back-Propagation Neural Network
by Shengsheng Qin, Zhipeng Cao, Feng Wang, Sze Song Ngu, Lee Chin Kho and Hui Cai
Energies 2024, 17(16), 4076; https://doi.org/10.3390/en17164076 - 16 Aug 2024
Viewed by 308
Abstract
To ensure the stable operation of a wind turbine generator system when the wind speed exceeds the rated value and address the issue of excessive rotor speed during high wind speeds, this paper proposes a novel variable pitch controller strategy based on a [...] Read more.
To ensure the stable operation of a wind turbine generator system when the wind speed exceeds the rated value and address the issue of excessive rotor speed during high wind speeds, this paper proposes a novel variable pitch controller strategy based on a back-propagation neural network and optimal control theory to solve this problem. Firstly, a mathematical model for the wind turbine is established and linearized. Then, each optimal sub-controller is designed for different wind speed conditions by optimal theory. Subsequently, a back-propagation neural network is utilized to learn the variation pattern of controller parameters with respect to wind speed. Finally, real-time changes in wind speed are applied to evaluate and adjust controller parameters using the trained back-propagation neural network. The model is simulated in MATLAB 2019b, real-time data are observed, and the control effect is compared with that of a Takagi–Sugeno optimal controller, firefly algorithm optimal controller and fuzzy controller. The simulation results show that the rotor speed overshoot of the optimal controller under the step wind speed is the smallest, only 0.05 rad/s. Under other wind speed conditions, the rotor speed range fluctuates around 4.35 rad/s, and the fluctuation size is less than 0.2 rad/s, which is much smaller than the fluctuation range of other controllers. It can be seen that the back-propagation optimal controller can ensure the stability of the rotor speed above the rated wind speed. At the same time, it has better control accuracy compared to other controllers. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

23 pages, 4248 KiB  
Article
Two Fatigue Life Prediction Models Based on the Critical Plane Theory and Artificial Neural Networks
by Yantian Wang, Yuanying Qiu, Jing Li and Jin Bai
Metals 2024, 14(8), 938; https://doi.org/10.3390/met14080938 - 16 Aug 2024
Viewed by 315
Abstract
Since a multiaxial loading environment may lead to the fatigue failure of structures, establishing a reliable fatigue model to predict the multiaxial fatigue lives of structures has always been a concern of engineers. This study proposes a new multiaxial fatigue theoretical model (WYT [...] Read more.
Since a multiaxial loading environment may lead to the fatigue failure of structures, establishing a reliable fatigue model to predict the multiaxial fatigue lives of structures has always been a concern of engineers. This study proposes a new multiaxial fatigue theoretical model (WYT model) based on the critical plane theory, which takes the plane of the maximum shear strain amplitude as the critical plane and considers the effects of shear stress and normal stress on fatigue damage. Moreover, a backpropagation neural network (BPNN) model for multiaxial fatigue life prediction with the shear strain amplitude, normal strain amplitude, mean shear stress, and mean normal stress on the same critical plane as input parameters and fatigue life as the output variable is established. Finally, the WYT model and the BPNN model are compared with two existing multiaxial fatigue models to evaluate the life prediction effects of different models for S45C and 7075-T651 under constant-amplitude and variable-amplitude multiaxial loadings. The calculation results show that the WYT model is feasible, and the BPNN model is more accurate in predicting the fatigue lives of specimens than other multiaxial fatigue theoretical models. Full article
(This article belongs to the Special Issue Fracture and Fatigue of Advanced Metallic Materials)
Show Figures

Figure 1

18 pages, 7952 KiB  
Article
Deep Learning Prediction of Moisture and Color Kinetics of Apple Slices by Long Short-Term Memory as Affected by Blanching and Hot-Air Drying Conditions
by Zehui Jia, Yanhong Liu and Hongwei Xiao
Processes 2024, 12(8), 1724; https://doi.org/10.3390/pr12081724 - 16 Aug 2024
Viewed by 324
Abstract
This study aimed to improve apple slices’ color and drying kinetics by optimizing the hot-air drying process, utilizing machine and deep learning models. Different steam blanching times (30, 60, 90, and 120 s), drying temperatures (50, 55, 60, 65, and 70 °C), and [...] Read more.
This study aimed to improve apple slices’ color and drying kinetics by optimizing the hot-air drying process, utilizing machine and deep learning models. Different steam blanching times (30, 60, 90, and 120 s), drying temperatures (50, 55, 60, 65, and 70 °C), and humidity control methods (full humidity removal or temperature–humidity control) were examined. These factors significantly affected the quality of apple slices. 60 s blanching, 60 °C temperature, and full dehumidification represented the optimal drying conditions for apple slices’ dehydration, achieving better drying kinetics and the best color quality. However, the fastest drying process (40 min) was obtained at a 60 °C drying temperature combined with complete dehumidification after 90 s blanching. Furthermore, machine and deep learning models, including backpropagation (BP), convolutional neural network–long short-term memory (CNN-LSTM), temporal convolutional network (TCN), and long short-term memory (LSTM) networks, effectively predicted the moisture content and color variation in apple slices. Among these, LSTM networks demonstrated exceptional predictive performance with an R2 value exceeding 0.98, indicating superior accuracy. This study provides a scientific foundation for optimizing the drying process of apple slices and illustrates the potential application of deep learning in the agricultural processing and engineering fields. Full article
(This article belongs to the Special Issue Drying Kinetics and Quality Control in Food Processing, 2nd Edition)
Show Figures

Figure 1

22 pages, 8586 KiB  
Article
Multi-Objective Optimization Study of Annular Fluid Flow Structure in Cordless Core Drilling Tools
by Zhitong Zhu, Fan Huang, Yan Zhao, Changping Li, Hairui Wei, Guang Liu, Yutao Shao and Minghao Jia
Appl. Sci. 2024, 14(16), 7200; https://doi.org/10.3390/app14167200 - 15 Aug 2024
Viewed by 456
Abstract
Traditional drilling methods often face difficulty meeting the demand for efficient and accurate coring under complex geological conditions. Cordless coring is an advanced technology that uses hydraulic lifting to carry out coring, which can achieve automation and automated and intelligent drilling operations. In [...] Read more.
Traditional drilling methods often face difficulty meeting the demand for efficient and accurate coring under complex geological conditions. Cordless coring is an advanced technology that uses hydraulic lifting to carry out coring, which can achieve automation and automated and intelligent drilling operations. In this research, a new type of hydraulic lifting cordless coring drilling tool is designed. Moreover, a numerical simulation model of the fluid flow in the annulus between the spearhead and spool of the cordless coring drilling tool was established. Orthogonal simulation tests are carried out, and according to the orthogonal test data, a numerical prediction model of the spool annulus fluid field based on the Backpropagation Neural Network (BP neural network) is established. The prediction of the flow rate of the drilling fluid and the spool back-pressure ratio was obtained when the structural parameters of the spearhead and the spool annulus were different. A multi-objective optimization of the annulus flow structure of the cordless core drilling tool has been carried out. The optimization objectives include deciding the back pressure ratio of the spool overcoming the spring and the flow rate of the drilling fluid. According to the established nonlinear optimization model and based on the improved Non-dominated Sorting Genetic Algorithm II (NSGA-II) multi-objective optimization algorithm, it is verified that the convergence speed and diversity of the improved algorithm are better than those before the improvement. The simulation and experimental validation are carried out. It is verified that the flow rate of drilling fluid increased by 33.56% after optimization, and the force ratio was lowered by 5.825%. Finally, based on the simulation and optimization results, the φ96 cordless core drilling tool was manufactured on a trial basis, and on-site concrete drilling, coring, and hydraulic lifting operations were conducted for smooth coring and lifting. This study could provide an important scientific basis and technical support for the application and development of hydraulic lifting cordless coring technology. Full article
Show Figures

Figure 1

24 pages, 7845 KiB  
Article
Optimization of Plasma-Propelled Drone Performance Parameters
by Zewei Xia, Yulong Ying, Heli Li, Tong Lin, Yuxuan Yao, Naiming Qi and Mingying Huo
Aerospace 2024, 11(8), 667; https://doi.org/10.3390/aerospace11080667 - 14 Aug 2024
Viewed by 291
Abstract
Recently, the world’s first plasma-propelled drone was successfully flown, demonstrating that plasma propulsion technology is suitable for drone flight. The research on plasma propulsion drones has sparked a surge of interest. This study utilized a proxy model and the NSGA-II multi-objective genetic algorithm [...] Read more.
Recently, the world’s first plasma-propelled drone was successfully flown, demonstrating that plasma propulsion technology is suitable for drone flight. The research on plasma propulsion drones has sparked a surge of interest. This study utilized a proxy model and the NSGA-II multi-objective genetic algorithm to optimize the geometric parameters based on staggered thrusters that affect the performance of electroaerodynamics (EAD) thrusters used for solid-state plasma aircraft. This can help address key issues, such as the thrust density and the thrust-to-power ratio of solid-state plasma aircraft, promoting the widespread application of plasma propulsion drones. An appropriate sample set was established using Latin hypercube sampling, and the thrust and current data were collected using a customized experimental setup. The proxy model employed a genetically optimized Bayesian regularization backpropagation neural network, which was trained to predict the effects of variations in the geometric parameters of the electrode assembly on the performance parameters of the plasma aircraft. Based on this information, the maximum achievable value for a given performance parameter and its corresponding geometric parameters were determined, showing a significant increase compared to the sample data. Finally, the optimal parameter combination was determined by using the NSGA-II multi-objective genetic algorithm and the Analytic Hierarchy Process. These findings can serve as a basis for future researchers in the design of EAD thrusters, helping them produce plasma propulsion drones that better meet specific requirements. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 10622 KiB  
Article
Research on the Development Height Prediction Model of Water-Conduction Fracture Zones under Conditions of Extremely Thin Coal Seam Mining
by Hongsheng Wang, Jiahao Tian, Lei Li, Dengfeng Chen, Yuxin Yuan and Bin Li
Water 2024, 16(16), 2273; https://doi.org/10.3390/w16162273 - 12 Aug 2024
Viewed by 578
Abstract
Addressing the difficult problem of predicting the height of water-conducting fracture zones in shallow and thin coal seams, a prediction model of water-conduction fracture zones based on a backpropagation (BP) neural network was developed by integrating theoretical analysis, field measurements, and algorithmic advancements. [...] Read more.
Addressing the difficult problem of predicting the height of water-conducting fracture zones in shallow and thin coal seams, a prediction model of water-conduction fracture zones based on a backpropagation (BP) neural network was developed by integrating theoretical analysis, field measurements, and algorithmic advancements. Firstly, through overburden migration analysis and correlation tests, the height index system of the water-conducting fracture zone was determined. This system includes mining height, buried depth, dip angle, working face width, and overburden rock lithology, with five groups of characteristic parameters. Then, 35 pairs of minefield-measured data were collected to establish the measured height data set of the water-conducting fracture zone. Secondly, a BP neural network prediction model and a traditional support vector regression (SVR) prediction model were constructed based on a Pytorch framework, and the models were trained and tested by selecting data sets. Thirdly, the optimal prediction model was determined by comparing the model with the empirical model and multiple regression model of mining regulations for coal pillar maintenance and pressure in buildings, water bodies, railways, and main shafts. Finally, a typical mine was selected for application to verify the suitability of the optimal model. The results show that: (1) the predicted value of the neural network model is consistent with the change trend of the measured value, which accords with the theoretical law; (2) compared with traditional forecasting methods, the error of the BP neural network prediction model is stable and the prediction effect is the best; (3) dropout can effectively mitigate mitigation training overfitting, achieve regularization, and improve prediction accuracy; (4) the field application further verified that the BP neural network model is the best for predicting the height of water-conducting fracture zones of extremely thin coal seams, and the research results can provide technical guidance for similar fragile coal seams. Full article
Show Figures

Figure 1

17 pages, 5683 KiB  
Article
Enhancing Lambda Measurement in Hydrogen-Fueled SI Engines through Virtual Sensor Implementation
by Federico Ricci, Massimiliano Avana and Francesco Mariani
Energies 2024, 17(16), 3932; https://doi.org/10.3390/en17163932 - 8 Aug 2024
Viewed by 440
Abstract
The automotive industry is increasingly challenged to develop cleaner, more efficient solutions to comply with stringent emission standards. Hydrogen (H2)-powered internal combustion engines (ICEs) offer a promising alternative, with the potential to reduce carbon-based emissions and improve efficiency. However, hydrogen combustion [...] Read more.
The automotive industry is increasingly challenged to develop cleaner, more efficient solutions to comply with stringent emission standards. Hydrogen (H2)-powered internal combustion engines (ICEs) offer a promising alternative, with the potential to reduce carbon-based emissions and improve efficiency. However, hydrogen combustion presents two main challenges related to the calibration process: emissions control and measurement of the air excess coefficient (λ). Traditional lambda sensors struggle with hydrogen’s combustion dynamics, leading to potential inefficiencies and increased pollutant emissions. Consequently, the determination of engine performance could also be compromised. This study explores the feasibility of using machine learning (ML) to replace physical lambda sensors with virtual ones in hydrogen-fueled ICEs. The research was conducted on a single-cylinder spark-ignition (SI) engine, collecting data across a range of air excess coefficients from 1.6 to 3.0. An advanced hybrid model combining long short-term memory (LSTM) networks and convolutional neural networks (CNNs) was developed and fine-tuned to accurately predict the air–fuel ratio; its predictive performance was compared to that obtained with the backpropagation (BP) architecture. The optimal configuration was identified through iterative experimentation, focusing on the neuron count, number of hidden layers, and input variables. The results demonstrate that the LSTM + 1DCNN model successfully converged without overfitting; it also showed better prediction ability in terms of accuracy and robustness when compared with the backpropagation approach. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

20 pages, 7508 KiB  
Article
BresNet: Applying Residual Learning in Backpropagation Neural Networks to Predict Ground Surface Concentration of Primary Air Pollutants
by Zekai Shi, Meng Zhang, Mei Han, Yaowei Zhang, Guodong Ma and Haoyuan Ren
Remote Sens. 2024, 16(16), 2897; https://doi.org/10.3390/rs16162897 - 8 Aug 2024
Viewed by 439
Abstract
Monitoring air pollution is important for human health and the environment. Previous studies on the prediction of air pollutants from satellite images have employed machine learning, yet there are few enhancements to the constructure of model. Moreover, the existing models have been successful [...] Read more.
Monitoring air pollution is important for human health and the environment. Previous studies on the prediction of air pollutants from satellite images have employed machine learning, yet there are few enhancements to the constructure of model. Moreover, the existing models have been successful in predicting pollutants like PM2.5, PM10, and O3. They have not been as effective in predicting other primary air pollutants. To improve the overall prediction performance of the existing model, a novel residual learning backpropagation model, abs. as BresNet, has been proposed in this research. This model has revealed the availability to precisely predict the ground-surface concentration of the six primary air pollutants, PM2.5, PM10, O3, NO2, CO, and SO2, based on the satellite imagery of MODIS AOD. Two of the most commonly used machine learning models so far, viz. the multilayer backpropagation neural network (MLBPN) and random forest (RF), were employed as the control. In the conducted experiments, the proposed BresNet model demonstrated significant improvements of 18.75%/31.94%, 33.82%/85.71%, 15.00%/35.29%, 39.06%/134.21%, 23.23%/68.00%, and 137.14%/260.87% in terms of R2 for the six primary air pollutants, compared to the RF/MLBPN model. Moreover, the convergence speed and loss function of the BresNet model compared to that of the MLBPN decreased by 55.15%, revealing superior convergence speed with the lower loss function. Full article
Show Figures

Figure 1

26 pages, 4834 KiB  
Article
Artificial Neural Network Model for Predicting Mechanical Strengths of Economical Ultra-High-Performance Concrete Containing Coarse Aggregates: Development and Parametric Analysis
by Ling Li, Yufei Gao, Xuan Dong and Yongping Han
Materials 2024, 17(16), 3908; https://doi.org/10.3390/ma17163908 - 7 Aug 2024
Viewed by 477
Abstract
Ultra-high-performance concrete with coarse aggregates (UHPC-CA) has the advantages of high strength, strong shrinkage resistance and a lower production cost, presenting a broad application prospect in civil engineering construction. In view of the difficulty in establishing a mathematical model to accurately predict the [...] Read more.
Ultra-high-performance concrete with coarse aggregates (UHPC-CA) has the advantages of high strength, strong shrinkage resistance and a lower production cost, presenting a broad application prospect in civil engineering construction. In view of the difficulty in establishing a mathematical model to accurately predict the mechanical properties of UHPC-CA, the back-propagation artificial neural network (BP-ANN) method is used to fully consider the various influential factors of the compressive strength (CS) and flexural strength (FS) of UHPC-CA in this paper. By taking the content of cement (C), silica fume (SF), slag, fly ash (FA), coarse aggregate (CA), steel fiber, the water–binder ratio (w/b), the sand rate (SR), the cement type (CT), and the curing method (CM) as input variables, and the CS and FS of UHPC-CA as output objectives, the BP-ANN model with three layers has been well-trained, validated and tested with 220 experimental data in the studies published in the literature. Four evaluating indicators including the determination coefficient (R2), the root mean square error (RMSE), the mean absolute percentage error (MAPE), and the integral absolute error (IAE) were used to evaluate the prediction accuracy of the BP-ANN model. A parametric study for the various influential factors on the CS and FS of UHPC-CA was conducted using the BP-ANN model and the corresponding influential mechanisms were analyzed. Finally, the inclusion levels for the CA, steel fiber, and the dimensionless parameters of the W/B and sand rate were recommended to obtain the optimal strength of UHPC-CA. Full article
(This article belongs to the Special Issue Machine Learning Techniques in Materials Science and Engineering)
Show Figures

Figure 1

Back to TopTop