Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (180)

Search Parameters:
Keywords = barite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3649 KiB  
Article
Performance Assessment on the Manufacturing of Zn-22Al-2Cu Alloy Foams Using Barite by Melt Route
by Alejandro Cruz-Ramírez, Ivón Contreras-Hernández, Eduardo Colin-García, Gabriel Plascencia-Barrera, Miguel Pérez-Labra, Víctor Hugo Gutiérrez-Pérez and Margarita García-Hernández
Crystals 2024, 14(10), 872; https://doi.org/10.3390/cryst14100872 - 2 Oct 2024
Abstract
A barium-rich Celestine (Sr,Ba)SO4 concentrate from the primary Mexican ore production was used as a thickening agent to produce closed-cell Zn-22Al-2Cu alloy foams, while calcium carbonate was used as a foaming agent. The microstructure and mechanical properties of the foams were analyzed [...] Read more.
A barium-rich Celestine (Sr,Ba)SO4 concentrate from the primary Mexican ore production was used as a thickening agent to produce closed-cell Zn-22Al-2Cu alloy foams, while calcium carbonate was used as a foaming agent. The microstructure and mechanical properties of the foams were analyzed by optical microscopy, scanning electron microscopy, and compression tests, respectively. The Zn-22Al-2Cu alloy foams showed a typical lamellar eutectic microstructure, constituted by a zinc-rich phase (η) and a (α) solid solution that was richer in aluminum, while a copper-rich (ε) phase was formed in the interdendritic regions. The SEM micrographs show the presence of small particles and aggregates that are randomly scattered in the cell walls and correspond to unreacted calcite and Celestine–Barian particles, especially for the higher barite addition. The compressive curves showed smooth behavior, wherein the particles at the cell walls did not affect the foam’s compressive behavior. The trial containing 1.5 wt. % of BaSO4 and 1.0 wt. % of CaCO3 showed a higher energy absorption capacity of 5.64 MJ m−3 because of its highest relative density and lowest porosity values. The Celestine–Barian concentrate could be used as a foaming agent for high melt-point metals or alloys based on the TGA results. Full article
(This article belongs to the Special Issue Processing, Structure and Properties of Metal Matrix Composites)
Show Figures

Figure 1

23 pages, 10947 KiB  
Review
The Role of Organic Matter and Hydrocarbons in the Genesis of the Pb-Zn-Fe (Ba-Sr) Ore Deposits in the Diapirs Zone, Northern Tunisia
by Larbi Rddad, Nejib Jemmali and Samar Jaballah
Minerals 2024, 14(9), 932; https://doi.org/10.3390/min14090932 - 12 Sep 2024
Abstract
Extensional tectonics along NE-trending faults, coupled with diapirism, created paleo-highs and subsiding basins, providing the structural framework for subsequent mineralization processes. The preservation of organic matter within the Fahdene and Bahloul Cretaceous formations during the Anoxic Oceanic Events (AOE-1 and AOQ-2) facilitated the [...] Read more.
Extensional tectonics along NE-trending faults, coupled with diapirism, created paleo-highs and subsiding basins, providing the structural framework for subsequent mineralization processes. The preservation of organic matter within the Fahdene and Bahloul Cretaceous formations during the Anoxic Oceanic Events (AOE-1 and AOQ-2) facilitated the extraction of metals from seawater. The association of metals with organic matter, Fe-Mg oxides, and pyrite is revealed by principal component analysis (PCA). The subsequent maturation of organic matter generated hydrocarbons, with thermal cracking leading to the incorporation of organo-metallic ligands into mobile hydrocarbons. Oilfield brines form as a byproduct of this catagenesis. The metal-rich hydrocarbons and basinal brines invaded SO4−2-rich fluids from Triassic evaporites, resulting in the precipitation of sulfates (barite and celestite) and the bacteriogenic (BSR) and/or thermal (TSR) reduction of sulfate to reduced sulfur, which combined with metals to form sulfide ores. This study examines the role of hydrocarbons in the genesis of ore deposits within the diapiric zone, drawing upon a synthesis of literature and geological data. It highlights the interplay between basinal evolution, the organic matter-rich Cretaceous formations (Fahdene and Bahloul), diapiric paleo-highs, and the Alpine orogeny, which are identified as crucial factors in ore genesis in the diapiric zone. Full article
(This article belongs to the Special Issue The Role of Hydrocarbons in the Genesis of Mineral Deposits)
Show Figures

Figure 1

15 pages, 7447 KiB  
Article
Comparison of MLR, MNLR, and ANN Models for Estimation of Young’s Modulus (E50) and Poisson’s Ratio (υ) of Rock Materials Using Non-Destructive Measurement Methods
by Orcun Tugay Deniz and Vedat Deniz
Mining 2024, 4(3), 642-656; https://doi.org/10.3390/mining4030036 - 6 Sep 2024
Abstract
In this study, the static E50 and υ parameters of rock materials were investigated using P-S wave velocities and Shore hardness (SH), using non-destructive measurement methods. In this study, the multiple linear regression (MLR), multiple non-linear regression ( [...] Read more.
In this study, the static E50 and υ parameters of rock materials were investigated using P-S wave velocities and Shore hardness (SH), using non-destructive measurement methods. In this study, the multiple linear regression (MLR), multiple non-linear regression (MNLR), and artificial neural network (ANN) models were used to estimate and determine the static E50 and υ parameters. When comparing the models defined by MLR, MNLR, and ANN to the R2 values, it was found that the ANN models, which estimate the E50 and υ parameters of rock materials using non-destructive methods (Vp, Vs, Vp/Vs, ρd, and SH), achieved higher accuracy than the MLR and MNLR models. The originality of this study is rooted in the fact that ores such as galena, chromite, and barite were studied for the first time from a rock mechanics perspective, providing an innovative viewpoint. In addition, the use of all non-destructive measurement methods, Vp, Vs, and Shore hardness tests, also increases the importance of the study findings. Full article
Show Figures

Figure 1

45 pages, 22848 KiB  
Article
Syn-Sedimentary Exhalative or Diagenetic Replacement? Multi-Proxy Evidence for Origin of Metamorphosed Stratiform Barite–Sulfide Deposits near Aberfeldy, Scottish Highlands
by Norman R. Moles, Adrian J. Boyce, Matthew R. Warke and Mark W. Claire
Minerals 2024, 14(9), 865; https://doi.org/10.3390/min14090865 - 25 Aug 2024
Viewed by 537
Abstract
Bedded barite, Fe-Zn-Pb sulfides, carbonates, and cherts within Ediacaran (Dalradian Supergroup) graphitic metasediments near Aberfeldy in Scotland have previously been interpreted as chemical sediments precipitated from hydrothermal fluids episodically exhaled into marine basins filled with organic-rich mud, silt, and sand. Lithological variation and [...] Read more.
Bedded barite, Fe-Zn-Pb sulfides, carbonates, and cherts within Ediacaran (Dalradian Supergroup) graphitic metasediments near Aberfeldy in Scotland have previously been interpreted as chemical sediments precipitated from hydrothermal fluids episodically exhaled into marine basins filled with organic-rich mud, silt, and sand. Lithological variation and compositional diversity in pyrite and sphalerite reflect varied redox environments and proximity to hydrothermal discharges. Thick beds (>2 m) of barite have relatively uniform δ34S of +36 ± 1.5‰, considered to represent contemporaneous seawater sulfate, as negative Δ17O indicates incorporation of atmospheric oxygen during precipitation in the water column. However, certain features suggest that diagenetic processes involving microbial sulfate reduction modified the mineralogy and isotopic composition of the mineralization. Barite bed margins show decimeter-scale variation in δ34S (+32 to +41‰) and δ18O (+8 to +21‰), attributed to fluid-mediated transfer of dissolved barium and sulfate between originally porous barite and adjacent sediments, in which millimetric sulfate crystals grew across sedimentary lamination. Encapsulated micron-sized barium carbonates indicate early diagenetic barite dissolution with incorporation of sulfur into pyrite, elevating pyrite δ34S. Subsequently, sulfidation reactions produced volumetrically minor secondary barite with δ34S of +16 to +22‰. Overall, these processes affected small volumes of the mineralization, which originally formed on the seafloor as a classic SEDEX deposit. Full article
Show Figures

Figure 1

38 pages, 22170 KiB  
Article
New Geochemical and Geochronological Constraints on the Genesis of the Imourkhssen Cu±Mo±Au±Ag Porphyry Deposit (Ouzellagh-Siroua Salient, Anti-Atlas, Morocco): Geodynamic and Metallogenic Implications
by Mariam Ferraq, Saïd Belkacim, Li-Zhen Cheng, Joshua H. F. L. Davies, Morgann G. Perrot, Abdelhay Ben-Tami and Mohammed Bouabdellah
Minerals 2024, 14(8), 832; https://doi.org/10.3390/min14080832 - 16 Aug 2024
Viewed by 523
Abstract
The Imourkhssen porphyry Cu±Mo±Au±Ag deposit is located at the Ouzellagh-Siroua Salient (OSS) straddling the boundary between the central Anti-Atlas and the central High Atlas. It is characterized by a typical porphyry-style mineralization. The volcanic rocks are intruded by numerous magmatic rocks of the [...] Read more.
The Imourkhssen porphyry Cu±Mo±Au±Ag deposit is located at the Ouzellagh-Siroua Salient (OSS) straddling the boundary between the central Anti-Atlas and the central High Atlas. It is characterized by a typical porphyry-style mineralization. The volcanic rocks are intruded by numerous magmatic rocks of the Ouarzazate Group (580–539 Ma), referred to as the Late Ediacaran magmatic suites (LEMS). Of these, the Askaoun, Imourkhssen, and Imourgane granites are the most significant as they are related to the porphyry mineralization. The entire set is intruded by the Zaghar mafic dyke swarms. Zircon U-Pb dating of the Imourkhssen granite and the ore-bearing granite porphyry shows that these intrusive rocks were emplaced at 558 ± 1 and 550 ± 2 Ma, respectively. Moreover, the whole-rock major and trace element geochemistry reveal a high-K calc-alkaline I-type composition, consistent with an emplacement in a post-collisional setting under a trans-tensional tectonic regime. Ore bodies are hosted by the Askaoun granodiorite as well as the Imourgane granite. The mineralization occurs as fine-grained dissemination and infills of hydrothermally altered NNE–SSW to N–S trending veins and veinlets. Ore-related hydrothermal alteration consists of potassic, chlorite-sericite, serecitic, and propylitic mineral assemblages along with pervasive silicification and pyritization, providing a porphyry-style alteration pattern. The ore periods comprise supergene and magmatic-hydrothermal periods. The latter includes primary dissemination and secondary NNE–SSW to N–S ore-bearing system stages. The occurrence of molybdenite is either restricted to the potassic and chlorite-sericite alteration zones of the ore-bearing granite as fine disseminations or alternatively as veinlet infills within the propylitic halos. The molybdenite occurrences along with pyrite, chalcopyrite, galena, and tennantite dissemination are assigned to the primary ore stage, while the NNE–SSW to N–S ore-bearing system is related to the secondary ore stage. It consists of pyrite, chalcopyrite, bornite, covellite, diagenite, sphalerite, hematite, galena, gold, and chenguodaite. The predominance of cockade and crack-and-seal textures suggest multiple episodes of ore-forming fluid circulations under epithermal conditions. The supergene stage is achieved by subordinate malachite, azurite, barite, hematite, epsomite, and chrysocolla. From the descriptions above, we argue that the Imourkhssen Cu±Mo±Au±Ag mineralization shares many mineralogical and paragenetic attributes of porphyry-copper deposits. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

20 pages, 7821 KiB  
Article
Optimizing the Influence of Fly Ash as an Anti-Sagging Additive in Highly Deviated Geothermal Well Drilling Fluids Using Surface Response Method
by Opeyemi Oni and Adesina Fadairo
Appl. Sci. 2024, 14(15), 6833; https://doi.org/10.3390/app14156833 - 5 Aug 2024
Viewed by 528
Abstract
Weighting materials such as barite and ilmenite are crucial for controlling fluid density during deep or ultra-deep drilling operations. However, sagging poses significant challenges, especially in highly deviated high-pressure and high-temperature (HP/HT) wells. This leads to inadequate well control, wellbore instability, and variations [...] Read more.
Weighting materials such as barite and ilmenite are crucial for controlling fluid density during deep or ultra-deep drilling operations. However, sagging poses significant challenges, especially in highly deviated high-pressure and high-temperature (HP/HT) wells. This leads to inadequate well control, wellbore instability, and variations in hydrostatic pressure in extended-reach wells. Given the challenges of experimental research, reliable prediction models are imperative for evaluating the interaction between the ratio of anti-sagging additives, temperature, and wellbore inclination on sag factor (SF). This research presents statistical-based empirical models for predicting the SF at various wellbore inclinations (0°, 30°, 45°, 60°, 70°, 80°, and 90°) and assessing the influence of fly ash on the SF. The regression equations, developed using the Response Surface Methodology in Minitab 18 software, show high reliability, with R2 values approaching unity. Contour and surface response plots provide a clear understanding of the variable interactions. The analysis reveals that sagging is most severe at 60° to 65° inclination. At 400 °F and 60° inclination, adding 4 lb/bbl of fly ash reduces sagging in barite and ilmenite-densified fluid by 63.9% and 63.1%, respectively. Model validation shows high accuracy, with percentage errors below 3%. This study offers valuable insights for optimizing drilling fluid formulations in HP/HT well environments. Full article
(This article belongs to the Special Issue Recent Advances in Drilling Fluid Technologies)
Show Figures

Figure 1

25 pages, 6625 KiB  
Article
Fluid Inclusion, Rare Earth Element Geochemistry, and Isotopic (O and S) Characteristics of the Ardakan Barite Deposit, Yazd Province, Iran
by Ebrahim Ansari, Farhad Ehya, Ghodratollah Rostami Paydar and Sara Maleki Kheymehsari
Minerals 2024, 14(8), 739; https://doi.org/10.3390/min14080739 - 24 Jul 2024
Viewed by 508
Abstract
The stratabound barite mineralization occurs in the Ardakan deposit as patches and veins in the dolomites and limestones of the Middle Triassic Shotori Formation. Rare-earth element (REE) geochemistry, O and S isotopes, and fluid inclusion data were used to identify the mode of [...] Read more.
The stratabound barite mineralization occurs in the Ardakan deposit as patches and veins in the dolomites and limestones of the Middle Triassic Shotori Formation. Rare-earth element (REE) geochemistry, O and S isotopes, and fluid inclusion data were used to identify the mode of barite formation. Barite is associated with subordinate fluorite and quartz and, to a lesser extent, with sphalerite, malachite, chrysocolla, and iron and manganese oxide-hydroxides. Barite contains a very low ∑REE concentration (14.80–19.59 ppm) and is enriched in light rare-earth elements (LREEs) relative to heavy rare-earth elements (HREEs). The low ∑REE content and the Ce/La ratio (4.0–6.5) indicate a hydrothermal (terrestrial) origin of the barite. Similar to barite, the ∑REE content in fluorite is low (0.14–6.52 ppm) and suggests a sedimentary setting. The Tb/Ca versus Tb/La diagram also indicates a hydrothermal origin of fluorite. The δ34S values in the barite (+27.9 to +32.4‰) indicate that the sulfur most likely originates from evaporites and/or connate waters from the Late Precambrian to the Lower Cambrian. The δ18O values (+15.9 to +18.1‰) in the barite show that the oxygen originated either from Late Precambrian–Lower Cambrian evaporites or from basinal brines with slightly higher δ18O values than the evaporites. The salinity and homogenization temperature ranges of the aqueous fluid inclusions in barite, fluorite, and quartz (0.88–16.89 wt% NaCl equivalent and 90–270 °C, respectively) reveal that the mineralizing fluids were formed from basinal brines with the participation of heated meteoric water. From this, it is concluded that the Ardakan barite deposit was formed by the meeting of heated, ascending sulfate-bearing meteoric water and cooler, Ba-bearing connate water trapped in the overlying Middle Triassic dolomites and limestones. The Ardakan deposit belongs to the structure-related class and the unconformity-related subclass of barite deposits. Full article
Show Figures

Figure 1

18 pages, 6824 KiB  
Article
Mechanical Properties of Adjacent Pile Bases in Collapsible Loess under Metro Depot
by Xiaohua Liu, Mingze Li, Hongjian Liao, Bingyan Huang and Shaohua Liu
Appl. Sci. 2024, 14(13), 5819; https://doi.org/10.3390/app14135819 - 3 Jul 2024
Viewed by 571
Abstract
Metro transit construction has begun to develop rapidly in northwest China because of the acceleration of urbanization. Accordingly, metro depots are also regarded as an essential auxiliary facility for stopping, operation, and maintenance of trains. Meanwhile, many commercial buildings are constructed over metro [...] Read more.
Metro transit construction has begun to develop rapidly in northwest China because of the acceleration of urbanization. Accordingly, metro depots are also regarded as an essential auxiliary facility for stopping, operation, and maintenance of trains. Meanwhile, many commercial buildings are constructed over metro depots to improve the utilization rate of land due to the increasingly scarce urban land resources, known as transit-oriented development (TOD). These buildings have a large covered area and transfer concentrated loads to the bases. Therefore, pile bases under metro depots have the bearing characteristics of undertaking large concentrated loads, while lesser loads are placed on the soil between the adjacent pile bases. Additionally, the main ground in northwest China is collapsible loess, so the collapsibility should also be considered. Based on the above background, this research performed static loading tests with and without immersion in a reduced scale of adjacent pile bases under a metro depot in Xi’an. The remolding process of natural loess could destroy its structure and the anisotropy of natural loess could also affect the test results. Therefore, four kinds of artificial collapsible loess with different mass ratios of barite powder, kaolin, river sand, cement, industrial salt, and calcium oxide were made by the free-drop method. This method could make the artificial loess simulate the structure of natural loess reasonably. Then, the artificial loess with the most similar properties to intact loess was selected by comparison. Finally, static loading tests with this artificial loess were implemented. The results showed that the ultimate bearing capacity was 4.5 kN. At the same time, the axial force decreased along depth, since the pile shaft friction was positive, and the load sharing ratio of pile tip force increased to 0.58 when the load exceeded 4.5 kN in the situation without immersion; the settlement of pile bases increased significantly after immersion, while the negative shaft friction occurred at the depth of −8 cm~−35 cm, and the load sharing ratio of pile tip force reached 0.92. Full article
(This article belongs to the Special Issue Advances in Civil Infrastructures Engineering)
Show Figures

Figure 1

37 pages, 50819 KiB  
Article
Barite Replacement as a Key Factor in the Genesis of Sediment-Hosted Zn-Pb±Ba and Barite-Sulfide Deposits: Ore Fluids and Isotope (S and Sr) Signatures from Sediment-Hosted Zn-Pb±Ba Deposits of Iran
by Abdorrahman Rajabi, Pouria Mahmoodi, Pura Alfonso, Carles Canet, Colin Andrew, Saeideh Azhdari, Somaye Rezaei, Zahra Alaminia, Somaye Tamarzadeh, Ali Yarmohammadi, Ghazaleh Khan Mohammadi and Rasoul Saeidi
Minerals 2024, 14(7), 671; https://doi.org/10.3390/min14070671 - 28 Jun 2024
Cited by 1 | Viewed by 595
Abstract
Iran hosts more than 350 Precambrian to Cenozoic sediment-hosted Zn-Pb±Ba and barite-sulfide deposits, including shale-hosted massive sulfide (SHMS, also called SEDEX) and Irish-type and Mississippi Valley-type (MVT) mineralization, and barite is a common mineral in these deposits. In the SHMS deposits, barite is [...] Read more.
Iran hosts more than 350 Precambrian to Cenozoic sediment-hosted Zn-Pb±Ba and barite-sulfide deposits, including shale-hosted massive sulfide (SHMS, also called SEDEX) and Irish-type and Mississippi Valley-type (MVT) mineralization, and barite is a common mineral in these deposits. In the SHMS deposits, barite is typically found as fine-grained disseminations in thin laminae. In these deposits, the sulfide laminae often occur as diagenetic replacements and as bands containing authigenic and diagenetic barite and pyrite framboids. In the Irish-type Zn-Pb-Ba and stratabound barite-sulfide deposits, barite exhibits various textures, including fine-grained disseminated barite, banded zebra textures, veins, and massive barite lenses. In some of the giant Irish-type deposits, as well as in the stratabound barite-sulfide mineralization, the main stratabound sulfide ore is developed within a barite envelope and is characterized by the replacement of barite and pyrite by chalcopyrite, galena, and sphalerite. In the MVT deposits, the formation of barite is often related to dolomitization, and sulfide mineralization involves the replacement of the dolomitized carbonate rocks, as well as associated barite. Fluid inclusion studies on the Irish-type deposits indicate that the temperatures and salinities of the sulfide-forming fluids are higher compared to those of the barite-forming fluids. Fluid inclusion analyses of coarse-grained barites from Irish and MVT deposits reveal their hydrothermal origin. The δ3⁴S values of sulfide minerals (pyrite, sphalerite, and galena) in Irish-type deposits exhibit a broad range of low values (mostly −28 to +5‰), primarily revealing a process of bacterial sulfate reduction (BSR). However, the textures (replacement, colloform, and banded) and more positive sulfur isotope values (+1 to +36‰) in the SHMS Zn-Pb deposits suggest that bacterial sulfate reduction (BSR) plays a less significant role. We suggest that thermochemical sulfate reduction (TSR) connected to the direct replacement of barite plays a more relevant role in providing sulfur for the sulfide mineralization in the SHMS, barite-sulfide, and MVT deposits. Based on the textual evidence, sulfur isotopic data, and fluid inclusion studies, barite has been identified as a key controller for the subsequent Zn-Pb mineralization by providing a suitable host and significant sulfur contribution in the sediment-hosted Zn-Pb and stratabound barite-sulfide deposits. This implies that diagenetic barite might be a precursor to all types of sediment-hosted Zn-Pb mineralization. Full article
Show Figures

Figure 1

17 pages, 7262 KiB  
Article
Detailed Analysis of Gamma-Shielding Characteristics of Ternary Composites Using Experimental, Theoretical and Monte Carlo Simulation Methods
by Hasan Özdoğan, Yiğit Ali Üncü, Ferdi Akman, Hasan Polat and Mustafa Recep Kaçal
Polymers 2024, 16(13), 1778; https://doi.org/10.3390/polym16131778 - 24 Jun 2024
Cited by 2 | Viewed by 624
Abstract
Ionizing radiation is vital in various fields but poses health risks, necessitating effective shielding. This study investigated the photon-shielding properties of polyester-based ternary composites with barite (BaSO4) and tungsten (W) using experimental methods, theoretical calculations, and Monte Carlo simulations for energies [...] Read more.
Ionizing radiation is vital in various fields but poses health risks, necessitating effective shielding. This study investigated the photon-shielding properties of polyester-based ternary composites with barite (BaSO4) and tungsten (W) using experimental methods, theoretical calculations, and Monte Carlo simulations for energies between 81 keV and 1332.5 keV. WINXCOM was utilized for the theoretical predictions, and the MCNP6 and PHITS 3.22 algorithms were employed for the simulations. According to the results, the simulation, theoretical, and experimental data all closely aligned. At 81 keV, the composite containing the highest amount of tungsten (PBaW50) had the highest mass attenuation coefficient (3.7498 cm2/g) and linear attenuation coefficient (12.9676 cm−1). Furthermore, for a sample that was 1 cm thick, PBaW50 offered 99.88% protection at 81 keV and had the lowest HVL and TVL values. PBaW50 exhibited attenuation capabilities, making it appropriate for use in industrial, medical, and aerospace settings. In summary, the findings of this study underscore the potential of polyester-based composites doped with barite and tungsten as effective materials for gamma radiation shielding. The PBaW50 sample, in particular, stands out for its attenuation performance, making it a viable option for a wide range of applications where durable and efficient radiation shielding is essential. Full article
Show Figures

Figure 1

30 pages, 40890 KiB  
Article
The Ballynoe Stratiform Barite Deposit, Silvermines, County Tipperary, Ireland
by Colin J. Andrew
Minerals 2024, 14(5), 498; https://doi.org/10.3390/min14050498 - 9 May 2024
Cited by 1 | Viewed by 977
Abstract
The Ballynoe barite deposit is a conformable, mineralised horizon of Lower Carboniferous age overlying a diastem and mass faunal extinction demarking the transition from a quiet water environment to one of dynamic sedimentation. The geometry of the barite orebody correlates with the palaeotopography [...] Read more.
The Ballynoe barite deposit is a conformable, mineralised horizon of Lower Carboniferous age overlying a diastem and mass faunal extinction demarking the transition from a quiet water environment to one of dynamic sedimentation. The geometry of the barite orebody correlates with the palaeotopography of the footwall, which acted as an important control over the lateral extent, thickness, and nature of the mineralisation. Sedimentary features within the barite horizon suggest that it was precipitated in the form of a cryptocrystalline mud which underwent major diagenetic modification resulting in extensive stylolitisation, recrystallisation, and remobilisation. There is abundant and compelling geological and isotopic evidence for early local exhalation from the presence of a hydrothermal vent fauna consisting of delicately pyritised worm tubes and haematised filaments of apparent microbial origin. The worm tubes are remarkably similar to examples from modern and ancient volcanic-hosted massive sulphide deposits, and the filamentous microfossils have similarities to modern Fe-oxidising bacteria. Strontium in the barite has an 87Sr/86Sr ratio indistinguishable from seawater between 350 and 344 Ma whilst oxygen isotopes from barite and chert suggest a diagenetic origin in equilibrium with such seawater around 60–70 °C. Fluid inclusion studies have shown that, in general, low temperature inclusions are very saline (20%–25%) whilst at higher homogenisation temperatures they are more dilute (9%–12%). Full article
Show Figures

Figure 1

17 pages, 17665 KiB  
Article
Genesis of the Mahour Base Metal Deposit, Iran: Constraints from Fluid Inclusions and Sulfur Isotopes
by Zahra Moradiani, Majid Ghaderi, Hossein-Ali Tajeddin and Pura Alfonso
Minerals 2024, 14(4), 435; https://doi.org/10.3390/min14040435 - 22 Apr 2024
Viewed by 871
Abstract
The Mahour base metal deposit is located northeast of Badroud in the middle of the Urumieh–Dokhtar magmatic arc in the Isfahan province of Iran. The main host rocks to the ores are Eocene volcanic and volcaniclastic rocks. Hypogene ore minerals constituting the main [...] Read more.
The Mahour base metal deposit is located northeast of Badroud in the middle of the Urumieh–Dokhtar magmatic arc in the Isfahan province of Iran. The main host rocks to the ores are Eocene volcanic and volcaniclastic rocks. Hypogene ore minerals constituting the main ore body are galena, sphalerite, pyrite, and chalcopyrite. In addition to gangue quartz, a variety of supergene minerals comprising gypsum, goethite, hematite, “limonite”, malachite, azurite, covellite, and chalcocite are also present; gangue minerals are quartz, barite, calcite, sericite, and chlorite. Silicification, intermediate argillic, and propylitic are the main wall-rock alteration types. The presence of fluid inclusions with different vapor/liquid ratios in quartz and sphalerite could indicate a boiling process. The primary liquid-rich fluid inclusions suggest that the homogenization temperature was between 107 and 298 °C from fluids with salinities from 1.5 to 13.7 wt.% NaCl equiv. These data suggest that the ore-forming fluids were magmatic with a contribution from meteoric waters. The δ34S values of sulfides range from 1.9 to 3.4‰, those of barite range from 12.1 to 13.2‰, and those of gypsum range from 4.3 to 5.6‰. These data suggest that sulfur was mostly of magmatic origin with a minor contribution from sedimentary rocks. Our data suggest that the boiling of fluids formed an intermediate-sulfidation style of epithermal mineralization for the Mahour deposit. Full article
(This article belongs to the Special Issue New Insights into Porphyry, Epithermal, and Skarn Deposits)
Show Figures

Figure 1

25 pages, 6333 KiB  
Article
Metallogeny and Genesis of Fault-Filling Barite-Sulfide Veins (Ougnat, Morocco): Petrography, Fluid Inclusion, and Sr-S Isotopic Constraints
by Samir Samaoui, Ayoub Aabi, Abdellah Boushaba, Belkasmi Mohammed, Abdellah Nait Bba, Abderrahim Essaifi, Lahssen Baidder and Othmane Lamrani
Geosciences 2024, 14(3), 83; https://doi.org/10.3390/geosciences14030083 - 18 Mar 2024
Cited by 2 | Viewed by 1586
Abstract
The Ougnat Massif of the eastern Anti-Atlas (Morocco) hosts barite and sulfide vein-type deposits of vital economic importance. With over 150 mineralized structures reported in the Ougnat Massif, the ore-bearing ones are predominantly composed of barite, quartz, calcite, and minor portions of sulfides. [...] Read more.
The Ougnat Massif of the eastern Anti-Atlas (Morocco) hosts barite and sulfide vein-type deposits of vital economic importance. With over 150 mineralized structures reported in the Ougnat Massif, the ore-bearing ones are predominantly composed of barite, quartz, calcite, and minor portions of sulfides. The mineralized veins are driven by NW-SE and NE-SW to E-W oblique-slip opening faults that cross both the Precambrian basement and its Paleozoic cover. The mineralized structures occur as lenses and sigmoidal veins that follow stepped tension fracture sets oblique to the fault planes. These geometries and kinematic indicators of these structures point to a predominantly normal-sinistral opening in a brittle-ductile tectonic setting. The S isotopic compositions of barite from the Ougnat Massif (+10.8 to +19.5‰) fall mostly within the range of δ34S values of Late Triassic to Jurassic seawater, thus suggesting that some of the SO2− in barite comes from seawater sulfate. This range of δ34S values also corresponds approximately to the hydrothermal barite context. The 87Sr/86Sr ratios of barite, which range from 0.710772 to 0.710816, lie between the radiogenic strontium isotopic compositions of deposition by hydrothermal solutions, and also coincide with the non-radiogenic isotopic signature of Triassic to Jurassic seawater. Based on a fluid inclusions study, the ore-forming fluids were a mixture of two or more fluids. A deep hot fluid with an average temperature of 368 °C leached the granodiorites and volcanic-sedimentary complex of the Ouarzazate Group. This fluid provided the hydrothermal system with most of the Ba, radiogenic Sr, and some of the dissolved S. A second, shallow fluid with an average temperature of 242 °C was derived from Late Triassic to Jurassic seawater. The barite mineralization of the Ougnat Massif constitutes a typical example of vein-type mineralization that occurred along the northern margin of the West African Craton and regionally tied to the central Atlantic opening. Full article
Show Figures

Figure 1

21 pages, 15627 KiB  
Article
Discovery of Pseudomorph Scapolite and Diagenetic Indication from the Permian Volcaniclastic Rocks in Western Sichuan (SW China)
by Xiaohong Liu, Yue’e Li, Cong Tan, Zhenglin Cao, Hui Jin, Mingyou Feng, Maolong Xia and Junlang Chen
Minerals 2024, 14(2), 200; https://doi.org/10.3390/min14020200 - 15 Feb 2024
Cited by 1 | Viewed by 978
Abstract
Volcaniclastic rocks are important unconventional oil and gas reservoirs from which it is difficult to determine the protolith due to strong metasomatic alteration. Intensive alteration has occurred in much of western China, but few robustly documented examples are known from which to assess [...] Read more.
Volcaniclastic rocks are important unconventional oil and gas reservoirs from which it is difficult to determine the protolith due to strong metasomatic alteration. Intensive alteration has occurred in much of western China, but few robustly documented examples are known from which to assess the alteration processes. Further recognition from the petrological and mineralogical record is essential to quantify the diagenetic environment, the degree of alteration, and its impacts. Permian volcanic rocks are widely developed in the western Sichuan Basin (southwestern China), with a thickness of more than 200 m. The thickness of volcaniclastic rocks in the Permian Emeishan Basalt Formation is up to 140 m, with a 5600~6000 m burial depth. In this study, we demonstrate an approach to recognizing hydrothermal alteration by the occurrence of scapolite megacryst mineral pseudomorphs (SMMPs) in Permian volcaniclastic rocks in the Sichuan Basin (southwestern China). The results show that SMMPs in the Permian volcaniclastic rocks in the western Sichuan Basin mainly occur in the lower part of the Permian basalts as intragranular minerals and rock inclusions. Scapolite is transformed into quartz and albite, and only the pseudomorph is preserved, indicating secondary hydrothermal fluid metasomatic alteration. Scapolite is formed after microcrystalline titanite and is the product of the high-temperature pneumatolytic metasomatism of plagioclase from the mafic protolith during the post-magmatic stage. The mixing of meteoric water and barium-rich hydrothermal fluid leads to the precipitation of barite; additionally, the pores are filled with barite and halite after the alteration of scapolite. The silicification and hydrothermal dissolution of scapolite and the albitization of sodium-rich matrix minerals increase the pore volume, which is conducive to the later recharge by hydrothermal fluids. The discovery of SMMPs can serve as an indicator of the high-temperature pneumatolytic metasomatism and mixing of meteoric water and deep hydrothermal fluid. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

19 pages, 10995 KiB  
Article
Iron–Titanium Oxide–Apatite–Sulfide–Sulfate Microinclusions in Gabbro and Adakite from the Russian Far East Indicate Possible Magmatic Links to Iron Oxide–Apatite and Iron Oxide–Copper–Gold Deposits
by Pavel Kepezhinskas, Nikolai Berdnikov, Valeria Krutikova and Nadezhda Kozhemyako
Minerals 2024, 14(2), 188; https://doi.org/10.3390/min14020188 - 11 Feb 2024
Viewed by 1198
Abstract
Mesozoic gabbro from the Stanovoy convergent margin and adakitic dacite lava from the Pliocene–Quaternary Bakening volcano in Kamchatka contain iron–titanium oxide–apatite–sulfide–sulfate (ITOASS) microinclusions along with abundant isolated iron–titanium minerals, sulfides and halides of base and precious metals. Iron–titanium minerals include magnetite, ilmenite and [...] Read more.
Mesozoic gabbro from the Stanovoy convergent margin and adakitic dacite lava from the Pliocene–Quaternary Bakening volcano in Kamchatka contain iron–titanium oxide–apatite–sulfide–sulfate (ITOASS) microinclusions along with abundant isolated iron–titanium minerals, sulfides and halides of base and precious metals. Iron–titanium minerals include magnetite, ilmenite and rutile; sulfides include chalcopyrite, pyrite and pyrrhotite; sulfates are represented by barite; and halides are predominantly composed of copper and silver chlorides. Apatite in both gabbro and adakitic dacite frequently contains elevated chlorine concentrations (up to 1.7 wt.%). Mineral thermobarometry suggests that the ITOASS microinclusions and associated Fe-Ti minerals and sulfides crystallized from subduction-related metal-rich melts in mid-crustal magmatic conduits at depths of 10 to 20 km below the surface under almost neutral redox conditions (from the unit below to the unit above the QFM buffer). The ITOASS microinclusions in gabbro and adakite from the Russian Far East provide possible magmatic links to iron oxide–apatite (IOA) and iron oxide–copper–gold (IOCG) deposits and offer valuable insights into the early magmatic (pre-metasomatic) evolution of the IOA and ICOG mineralized systems in paleo-subduction- and collision-related geodynamic environments. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

Back to TopTop