Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (302)

Search Parameters:
Keywords = baryons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1240 KiB  
Review
On the Energy Budget of Quarks and Hadrons, Their Inconspicuous “Strong Charge”, and the Impact of Coulomb Repulsion on the Charged Ground States
by Dimitris M. Christodoulou and Demosthenes Kazanas
Particles 2024, 7(3), 653-682; https://doi.org/10.3390/particles7030038 - 26 Jul 2024
Viewed by 314
Abstract
We review and meta-analyze particle data and properties of hadrons with measured rest masses. The results of our study are summarized as follows. (1) The strong-force suppression of the repulsive Coulomb forces between quarks is sufficient to explain the differences between mass deficits [...] Read more.
We review and meta-analyze particle data and properties of hadrons with measured rest masses. The results of our study are summarized as follows. (1) The strong-force suppression of the repulsive Coulomb forces between quarks is sufficient to explain the differences between mass deficits in nucleons and pions (and only them), the ground states with the longest known mean lifetimes; (2) unlike mass deficits, the excitations in rest masses of all particle groups are effectively quantized, but the rules are different in baryons and mesons; (3) the strong field is aware of the extra factor of ϑe=2 in the charges (Q) of the positively charged quarks; (4) mass deficits incorporate contributions proportional to the mass of each valence quark; (5) the scaling factor of these contributions is the same for each quark in each group of particles, provided that the factor ϑe=2 is taken into account; (6) besides hypercharge (Y), the much lesser-known “strong charge” (Q=YQ) is very useful in SU(3) in describing properties of particles located along the right-leaning sides and diagonals of the weight diagrams; (7) strong decays in which Q is conserved are differentiated from weak decays, even for the same particle; and (8) the energy diagrams of (anti)quark transitions indicate the origin of CP violation. Full article
Show Figures

Figure 1

30 pages, 2160 KiB  
Article
Isospin QCD as a Laboratory for Dense QCD
by Toru Kojo, Daiki Suenaga and Ryuji Chiba
Universe 2024, 10(7), 293; https://doi.org/10.3390/universe10070293 - 12 Jul 2024
Cited by 1 | Viewed by 372
Abstract
QCD with the isospin chemical potential μI is a useful laboratory to delineate the microphysics in dense QCD. To study the quark–hadron continuity, we use a quark–meson model that interpolates hadronic and quark matter physics at microscopic level. The equation of state [...] Read more.
QCD with the isospin chemical potential μI is a useful laboratory to delineate the microphysics in dense QCD. To study the quark–hadron continuity, we use a quark–meson model that interpolates hadronic and quark matter physics at microscopic level. The equation of state is dominated by mesons at low density but taken over by quarks at high density. We extend our previous studies with two flavors to the three-flavor case to study the impact of the strangeness, which may be brought by kaons (K+,K0)=(us¯,sd¯) and the UA(1) anomaly. In the normal phase, the excitation energies of kaons are reduced by μI in the same way as hyperons in nuclear matter at the finite baryon chemical potential. Once pions condense, kaon excitation energies increase as μI does. Moreover, strange quarks become more massive through the UA(1) coupling to the condensed pions. Hence, at zero and low temperature, the strange hadrons and quarks are highly suppressed. The previous findings in two-flavor models, sound speed peak, negative trace anomaly, gaps insensitive to μI, persist in our three-flavor model and remain consistent with the lattice results to μI 1 GeV. We discuss the non-perturbative power corrections and quark saturation effects as important ingredients to understand the crossover equations of state measured on the lattice. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Show Figures

Figure 1

18 pages, 741 KiB  
Article
Approaching the Conformal Limit of Quark Matter with Different Chemical Potentials
by Connor Brown, Veronica Dexheimer, Rafael Bán Jacobsen and Ricardo Luciano Sonego Farias
Symmetry 2024, 16(7), 852; https://doi.org/10.3390/sym16070852 - 5 Jul 2024
Viewed by 968
Abstract
We study in detail the influence of different chemical potentials (baryon, electric charge, strange, and neutrino) on how and how fast a free gas of quarks in the zero-temperature limit reaches the conformal limit. We discuss the influence of non-zero masses, the inclusion [...] Read more.
We study in detail the influence of different chemical potentials (baryon, electric charge, strange, and neutrino) on how and how fast a free gas of quarks in the zero-temperature limit reaches the conformal limit. We discuss the influence of non-zero masses, the inclusion of leptons, and different constraints, such as charge neutrality, zero-net strangeness, and fixed lepton fraction. We also investigate for the first time how the symmetry energy of the system under some of these conditions approaches the conformal limit. We find that the inclusion of all quark masses (even the light ones) can produce different results depending on the chemical potential values or constraints assumed. A positive or negative deviation of 10% from the pressure of free massless quarks with the same chemical potential was found to take place as low as μB=77 to as high as 48,897 MeV. This illustrates the fact that the “free” or conformal limit is not a unique description. Finally, we briefly discuss what kind of corrections are expected from perturbative QCD as one goes away from the conformal limit. Full article
Show Figures

Figure 1

21 pages, 2528 KiB  
Article
On Dark Matter and Dark Energy in CCC+TL Cosmology
by Rajendra P. Gupta
Universe 2024, 10(6), 266; https://doi.org/10.3390/universe10060266 - 18 Jun 2024
Viewed by 602
Abstract
Relaxing the temporal constancy constraint on coupling constants in an expanding universe results in Friedmann equations containing terms that may be interpreted as dark energy and dark matter. When tired light (TL) was considered to complement the redshift due to the expanding universe, [...] Read more.
Relaxing the temporal constancy constraint on coupling constants in an expanding universe results in Friedmann equations containing terms that may be interpreted as dark energy and dark matter. When tired light (TL) was considered to complement the redshift due to the expanding universe, the resulting covarying coupling constants (CCC+TL) model not only fit the Type Ia supernovae data as precisely as the ΛCDM model, but also resolved concerns about the angular size of cosmic dawn galaxies observed by the James Webb Space Telescope. The model was recently shown to be compliant with the baryon acoustic oscillation features in the galaxy distribution and the cosmic microwave background (CMB). This paper demonstrates that dark energy and dark matter of the standard ΛCDM model are not arbitrary but can be derived from the CCC approach based on Dirac’s 1937 hypothesis. The energy densities associated with dark matter and dark energy turn out to be about the same in the ΛCDM and the CCC+TL models. However, the critical density in the new model can only account for the baryonic matter in the universe, raising concerns about how to account for observations requiring dark matter. We therefore analyze some key parameters of structure formation and show how they are affected in the absence of dark matter in the CCC+TL scenario. It requires reconsidering alternatives to dark matter to explain observations on gravitationally bound structures. Incidentally, since the CCC models inherently have no dark energy, it has no coincidence problem. The model’s consistency with the CMB power spectrum, BBN element abundances, and other critical observations is yet to be established. Full article
(This article belongs to the Special Issue Dark Energy and Dark Matter)
Show Figures

Figure 1

18 pages, 6417 KiB  
Article
New Parametrization of the Dark-Energy Equation of State with a Single Parameter
by Jainendra Kumar Singh, Preeti Singh, Emmanuel N. Saridakis, Shynaray Myrzakul and Harshna Balhara
Universe 2024, 10(6), 246; https://doi.org/10.3390/universe10060246 - 1 Jun 2024
Cited by 8 | Viewed by 457
Abstract
We propose a novel dark-energy equation-of-state parametrization, with a single parameter η that quantifies the deviation from ΛCDM cosmology. We first confront the scenario with various datasets, from the Hubble function (OHD), Pantheon, baryon acoustic oscillations (BAO), and their joint observations, and [...] Read more.
We propose a novel dark-energy equation-of-state parametrization, with a single parameter η that quantifies the deviation from ΛCDM cosmology. We first confront the scenario with various datasets, from the Hubble function (OHD), Pantheon, baryon acoustic oscillations (BAO), and their joint observations, and we show that η has a preference for a non-zero value, namely, a deviation from ΛCDM cosmology is favored, although the zero value is marginally inside the 1σ confidence level. However, we find that the present Hubble function value acquires a higher value, namely, H0=66.6240.013+0.011 Km s−1 Mpc−1, which implies that the H0 tension can be partially alleviated. Additionally, we perform a cosmographic analysis, showing that the universe transits from deceleration to acceleration in the recent cosmological past; nevertheless, in the future, it will not result in a de Sitter phase since it exhibits a second transition from acceleration to deceleration. Finally, we perform the statefinder analysis. The scenario behaves similarly to the ΛCDM paradigm at high redshifts, while the deviation becomes significant at late and recent times and especially in the future. Full article
(This article belongs to the Collection Modified Theories of Gravity and Cosmological Applications)
Show Figures

Figure 1

17 pages, 3765 KiB  
Article
Strange Quark Stars: The Role of Excluded Volume Effects
by G. Lugones and Ana G. Grunfeld
Universe 2024, 10(6), 233; https://doi.org/10.3390/universe10060233 - 24 May 2024
Cited by 2 | Viewed by 509
Abstract
We study cold strange quark stars employing an enhanced version of the quark-mass density-dependent model, which incorporates excluded volume effects to address non-perturbative QCD repulsive interactions. We provide a comparative analysis of our mass formula parametrization with previous models from the literature. We [...] Read more.
We study cold strange quark stars employing an enhanced version of the quark-mass density-dependent model, which incorporates excluded volume effects to address non-perturbative QCD repulsive interactions. We provide a comparative analysis of our mass formula parametrization with previous models from the literature. We identify the regions within the parameter space where three-flavor quark matter is more stable than the most tightly bound atomic nucleus (stability window). Specifically, we show that excluded volume effects do not change the Gibbs free energy per baryon at zero pressure, rendering the stability window unaffected. The curves of pressure versus energy density exhibit various shapes—convex upward, concave downward, or nearly linear—depending on the mass parametrization. This behavior results in different patterns of increase, decrease, or constancy in the speed of sound as a function of baryon number density. We analyze the mass–radius relationship of strange quark stars, revealing a significant increase in maximum gravitational mass and a shift in the curves toward larger radii as the excluded volume effect intensifies. Excluded volume effects render our models compatible with all modern astrophysical constraints, including the properties of the recently observed low-mass compact object HESSJ1731. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Show Figures

Figure 1

15 pages, 1443 KiB  
Article
Phantom Scalar Field Cosmologies Constrained by Early Cosmic Measurements
by José Antonio Nájera and Celia Escamilla-Rivera
Universe 2024, 10(6), 232; https://doi.org/10.3390/universe10060232 - 23 May 2024
Viewed by 470
Abstract
In this work, we explore new constraints on phantom scalar field cosmologies with a scalar field employing early-time catalogs related to CMB measurements, along with the local standard observables, like Supernovae Type Ia (SNIa), H(z) measurements (Cosmick clocks), and Baryon [...] Read more.
In this work, we explore new constraints on phantom scalar field cosmologies with a scalar field employing early-time catalogs related to CMB measurements, along with the local standard observables, like Supernovae Type Ia (SNIa), H(z) measurements (Cosmick clocks), and Baryon Acoustic Oscillation (BAO) baselines. In particular, we studied a tracker phantom field with hyperbolic polar coordinates that have been proposed in the literature. The main goal is to obtain precise cosmological constraints for H0 and σ8, in comparison to other constructions that present tension in early cosmological parameters. Our results show that phantom scalar field cosmologies have a reduced statistical tension on H0 that it is less than 3σ using model-independent CMB catalogs as SPT-3G+WMAP9 and ACTPol DR-4+WMAP9 baselines. This suggests that these models, using a different phantom potential, might address the Hubble constant problem and reduce the systematics involved. Full article
(This article belongs to the Special Issue The Nature of Dark Energy)
Show Figures

Figure 1

15 pages, 2535 KiB  
Article
Estimating the Mass of Galactic Components Using Machine Learning Algorithms
by Jessica N. López-Sánchez, Erick Munive-Villa, Ana A. Avilez-López and Oscar M. Martínez-Bravo
Universe 2024, 10(5), 220; https://doi.org/10.3390/universe10050220 - 15 May 2024
Viewed by 781
Abstract
The estimation of galactic component masses can be carried out through various approaches that involve a host of assumptions about baryon dynamics or the dark matter model. In contrast, this work introduces an alternative method for predicting the masses of the disk, bulge, [...] Read more.
The estimation of galactic component masses can be carried out through various approaches that involve a host of assumptions about baryon dynamics or the dark matter model. In contrast, this work introduces an alternative method for predicting the masses of the disk, bulge, stellar, and total mass using the k-nearest neighbours, linear regression, random forest, and neural network (NN) algorithms, reducing the dependence on any particular hypothesis. The ugriz photometric system was selected as the set of input features, and the training was performed using spiral galaxies in Guo’s mock catalogue from the Millennium simulation. In general, all of the algorithms provide good predictions for the galaxy’s mass from 109 M to 1011 M, corresponding to the central region of the training domain. The NN algorithm showed the best performance. To validate the algorithm, we used the SDSS survey and found that the predictions of disk-dominant galaxies’ masses lie within a 99% confidence level, while galaxies with larger bulges are predicted at a 95% confidence level. The NN also reveals scaling relations between mass components and magnitudes. However, predictions for less luminous galaxies are biased due to observational limitations. Our study demonstrates the efficacy of these methods with the potential for further enhancement through the addition of observational data or galactic dynamics. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

20 pages, 346 KiB  
Review
Ordered Patterns of (3+1)-Dimensional Hadronic Gauged Solitons in the Low-Energy Limit of Quantum Chromodynamics at a Finite Baryon Density, Their Magnetic Fields and Novel BPS Bounds
by Fabrizio Canfora, Evangelo Delgado and Luis Urrutia
Symmetry 2024, 16(5), 518; https://doi.org/10.3390/sym16050518 - 25 Apr 2024
Viewed by 569
Abstract
In this paper, we will review two analytical approaches to the construction of non-homogeneous Baryonic condensates in the low-energy limit of QCD in (3+1) dimensions. In both cases, the minimal coupling with the Maxwell U(1) gauge field can be taken [...] Read more.
In this paper, we will review two analytical approaches to the construction of non-homogeneous Baryonic condensates in the low-energy limit of QCD in (3+1) dimensions. In both cases, the minimal coupling with the Maxwell U(1) gauge field can be taken explicitly into account. The first approach (which is related to the generalization of the usual spherical hedgehog ansatz to situations without spherical symmetry at a finite Baryon density) allows for the construction of ordered arrays of Baryonic tubes and layers. When the minimal coupling of the Pions to the U(1) Maxwell gauge field is taken into account, one can show that the electromagnetic field generated by these inhomogeneous Baryonic condensates is of a force-free type (in which the electric and magnetic components have the same size). Thus, it is natural to wonder whether it is also possible to analytically describe magnetized hadronic condensates (namely, Hadronic distributions generating only a magnetic field). The idea of the second approach is to construct a novel BPS bound in the low-energy limit of QCD using the theory of the Hamilton–Jacobi equation. Such an approach allows us to derive a new topological bound which (unlike the usual one in the Skyrme model in terms of the Baryonic charge) can actually be saturated. The nicest example of this phenomenon is a BPS magnetized Baryonic layer. However, the topological charge appearing naturally in the BPS bound is a non-linear function of the Baryonic charge. Such an approach allows us to derive important physical quantities (which would be very difficult to compute with other methods), such as how much one should increase the magnetic flux in order to increase the Baryonic charge by one unit. The novel results of this work include an analysis of the extension of the Hamilton–Jacobi approach to the case in which Skyrme coupling is not negligible. We also discuss some relevant properties of the Dirac operator for quarks coupled to magnetized BPS layers. Full article
19 pages, 2294 KiB  
Review
Neutrino at Different Epochs of the Friedmann Universe
by Alexandre V. Ivanchik, Oleg A. Kurichin and Vlad Yu. Yurchenko
Universe 2024, 10(4), 169; https://doi.org/10.3390/universe10040169 - 2 Apr 2024
Viewed by 1175
Abstract
At least two relics of the Big Bang have survived: the cosmological microwave background (CMB) and the cosmological neutrino background (CνB). Being the second most abundant particle in the universe, the neutrino has a significant impact on its evolution from the [...] Read more.
At least two relics of the Big Bang have survived: the cosmological microwave background (CMB) and the cosmological neutrino background (CνB). Being the second most abundant particle in the universe, the neutrino has a significant impact on its evolution from the Big Bang to the present day. Neutrinos affect the following cosmological processes: the expansion rate of the universe, its chemical and isotopic composition, the CMB anisotropy and the formation of the large-scale structure of the universe. Another relic neutrino background is theoretically predicted, it consists of non-equilibrium antineutrinos of Primordial Nucleosynthesis arising as a result of the decay of neutrons and tritium nuclei. Such antineutrinos are an indicator of the baryon asymmetry of the universe. In addition to experimentally detectable active neutrinos, the existence of sterile neutrinos is theoretically predicted to generate neutrino masses and explain their oscillations. Sterile neutrinos can also solve such cosmological problems as the baryonic asymmetry of the universe and the nature of dark matter. The recent results of several independent experiments point to the possibility of the existence of a light sterile neutrino. However, the existence of such a neutrino is inconsistent with the predictions of the Standard Cosmological Model. The inclusion of a non-zero lepton asymmetry of the universe and/or increasing the energy density of active neutrinos can eliminate these contradictions and reconcile the possible existence of sterile neutrinos with Primordial Nucleosynthesis, the CMB anisotropy, and also reduce the H0-tension. In this brief review, we discuss the influence of the physical properties of active and sterile neutrinos on the evolution of the universe from the Big Bang to the present day. Full article
(This article belongs to the Special Issue The Friedmann Cosmology: A Century Later)
Show Figures

Figure 1

26 pages, 17785 KiB  
Article
The κ-Model under the Test of the SPARC Database
by Gianni Pascoli
Universe 2024, 10(3), 151; https://doi.org/10.3390/universe10030151 - 21 Mar 2024
Viewed by 1037
Abstract
Our main goal here is to conduct a comparative analysis between the well-known MOND theory and a more recent model called the κ-model. An additional connection, between the κ-model and two other novel MOND-type theories, Newtonian Fractional-Dimension Gravity (NFDG) and Refracted [...] Read more.
Our main goal here is to conduct a comparative analysis between the well-known MOND theory and a more recent model called the κ-model. An additional connection, between the κ-model and two other novel MOND-type theories, Newtonian Fractional-Dimension Gravity (NFDG) and Refracted Gravity (RG), is likewise presented. All these models are built to overtake the DM paradigm, or at least to strongly reduce the dark matter content. Whereas they rely on different formalisms, however, all four seem to suggest that the universal parameter, a0, appearing in MOND theory could intrinsically be correlated to either the sole baryonic mean mass density (RG and κ-model) and/or to the dimension of the object under consideration (NFDG and κ-model). We then confer to parameter a0 a more flexible status of multiscale parameter, as required to explain the dynamics together in galaxies and in galaxy clusters. Eventually, the conformal gravity theory (CFT) also seems to have some remote link with the κ-model, even though the first one is an extension of general relativity, and the second one is Newtonian in essence. The κ-model has been tested on a small sample of spiral galaxies and in galaxy clusters. Now, we test this model on a large sample of galaxies issued from the SPARC database. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024—"Galaxies and Clusters")
Show Figures

Figure 1

24 pages, 515 KiB  
Article
Hidden-Charm Pentaquarks with Strangeness in a Chiral Quark Model
by Gang Yang, Jialun Ping and Jorge Segovia
Symmetry 2024, 16(3), 354; https://doi.org/10.3390/sym16030354 - 14 Mar 2024
Cited by 7 | Viewed by 829
Abstract
The LHCb collaboration has recently announced the discovery of two hidden-charm pentaquark states with strange quark content, Pcs(4338) and Pcs(4459); its analysis points towards having both hadrons’ isospins equal to zero and [...] Read more.
The LHCb collaboration has recently announced the discovery of two hidden-charm pentaquark states with strange quark content, Pcs(4338) and Pcs(4459); its analysis points towards having both hadrons’ isospins equal to zero and spin-parity quantum numbers 12 and 32, respectively. Herein, we perform a systematical investigation of the qqscc¯(q=u,d) system by means of a chiral quark model, along with a highly accurate computational method, the Gaussian expansion approach combined with the complex scaling technique. baryon-meson configurations in both singlet- and hidden-color channels are considered. The Pcs(4338) and Pcs(4459) signals can be well identified as molecular bound states with dominant components ΛJ/ψ(60%) and ΞcD(23%) for the lowest-energy case and ΞcD(72%) for the highest-energy one. In addition, it seems that some narrow resonances can also be found in each allowed I(JP) channel in the energy region of 4.65.5 GeV, except for the 1(12) channel where a shallow bound state with dominant ΞcD structure is obtained at 4673 MeV with binding energy EB=3 MeV. These exotic states are expected to be confirmed in future high-energy experiments. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

31 pages, 43899 KiB  
Article
“Polymerization” of Bimerons in Quasi-Two-Dimensional Chiral Magnets with Easy-Plane Anisotropy
by Natsuki Mukai and Andrey O. Leonov
Nanomaterials 2024, 14(6), 504; https://doi.org/10.3390/nano14060504 - 11 Mar 2024
Viewed by 1209
Abstract
We re-examine the internal structure of bimerons, which are stabilized in easy-plane chiral magnets and represent coupled states of two merons with the same topological charge |1/2| but with opposite vorticity and the polarity. We find that, in addition [...] Read more.
We re-examine the internal structure of bimerons, which are stabilized in easy-plane chiral magnets and represent coupled states of two merons with the same topological charge |1/2| but with opposite vorticity and the polarity. We find that, in addition to the vortices and antivortices, bimerons feature circular regions which are located behind the anti-vortices and bear the rotational sense opposite to the rotational sense chosen by the Dzyaloshinskii–Moriya interaction. In an attempt to eliminate these wrong-twist regions with an excess of positive energy density, bimerons assemble into chains, and as such exhibit an attracting interaction potential. As an alternative to chains, we demonstrate the existence of ring-shaped bimeron clusters of several varieties. In some rings, bimeron dipoles are oriented along the circle and swirl clockwise and/or counterclockwise (dubbed “roundabouts”). Moreover, a central meron encircled by the outer bimerons may possess either positive or negative polarity. In other rings, the bimeron dipoles point towards the center of a ring and consequently couple to the central meron (dubbed “crossings”). We point out that the ringlike solutions for baryons obtained within the Skyrme model of pions, although driven by the same tendency of the energy reduction, yield only one type of bimeron rings. The conditions of stability applied to the described bimeron rings are additionally extended to bimeron networks when bimerons fill the whole space of two-dimensional samples and exhibit combinations of rings and chains dispersed with different spatial density (dubbed bimeron “polymers”). In particular, bimeron crystals with hexagonal and the square bimeron orderings are possible when the sides of the unit cells represent chains of bimerons joined in intersections with three or four bimerons, respectively; otherwise, bimeron networks represent disordered bimeron structures. Moreover, we scrutinize the inter-transformations between hexagonal Skyrmion lattices and disordered bimeron polymers occuring via nucleation and mutual annihilation of merons within the cell boundaries. Our theory provides clear directions for experimental studies of bimeron orderings in different condensed-matter systems with quasi-two-dimensional geometries. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

26 pages, 2095 KiB  
Article
Asymmetric Dark Matter in Baryon Asymmetrical Universe
by Vitaly A. Beylin, Maxim Yu. Khlopov and Danila O. Sopin
Symmetry 2024, 16(3), 311; https://doi.org/10.3390/sym16030311 - 6 Mar 2024
Viewed by 783
Abstract
New heavy particles with electroweak charges arise in extensions of the standard model. They should take part in sphaleron transitions in the early Universe, which balance baryon asymmetry with the excess of new charged particles. If electrically charged with charge 2n [...] Read more.
New heavy particles with electroweak charges arise in extensions of the standard model. They should take part in sphaleron transitions in the early Universe, which balance baryon asymmetry with the excess of new charged particles. If electrically charged with charge 2n, they bind with n nuclei of primordial helium in dark atoms of dark matter. This makes it possible to find the ratio of densities of asymmetric dark matter and baryonic matter. Examples of the model with new, successive, and stable generation of quarks and leptons and the minimal walking technicolor model are considered. Full article
Show Figures

Figure 1

13 pages, 3989 KiB  
Article
Exploring the Distribution and Impact of Bosonic Dark Matter in Neutron Stars
by Davood Rafiei Karkevandi, Mahboubeh Shahrbaf, Soroush Shakeri and Stefan Typel
Particles 2024, 7(1), 201-213; https://doi.org/10.3390/particles7010011 - 3 Mar 2024
Cited by 2 | Viewed by 1356
Abstract
The presence of dark matter (DM) within neutron stars (NSs) can be introduced by different accumulation scenarios in which DM and baryonic matter (BM) may interact only through the gravitational force. In this work, we consider asymmetric self-interacting bosonic DM, which can reside [...] Read more.
The presence of dark matter (DM) within neutron stars (NSs) can be introduced by different accumulation scenarios in which DM and baryonic matter (BM) may interact only through the gravitational force. In this work, we consider asymmetric self-interacting bosonic DM, which can reside as a dense core inside the NS or form an extended halo around it. It is seen that depending on the boson mass (mχ), self-coupling constant (λ) and DM fraction (Fχ), the maximum mass, radius and tidal deformability of NSs with DM admixture will be altered significantly. The impact of DM causes some modifications in the observable features induced solely by the BM component. Here, we focus on the widely used nuclear matter equation of state (EoS) called DD2 for describing NS matter. We show that by involving DM in NSs, the corresponding observational parameters will be changed to be consistent with the latest multi-messenger observations of NSs. It is seen that for mχ200 MeV and λ2π, DM-admixed NSs with 4%Fχ20% are consistent with the maximum mass and tidal deformability constraints. Full article
Show Figures

Figure 1

Back to TopTop