Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,790)

Search Parameters:
Keywords = batch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 599 KiB  
Article
Integrating Order Splitting and Acceptance with Batch Delivery in Parallel Machine Scheduling
by Hanxing Cui, Qilan Zhao, Huanhuan Wang, Yuliang Guo and Junjie Guo
Systems 2024, 12(9), 354; https://doi.org/10.3390/systems12090354 (registering DOI) - 8 Sep 2024
Abstract
Multiple production lines can work together to efficiently manufacture certain products. Thus, when capacity is insufficient, it is necessary to decide whether to develop new production lines to ensure the timely completion of all orders. For example, running a new production line for [...] Read more.
Multiple production lines can work together to efficiently manufacture certain products. Thus, when capacity is insufficient, it is necessary to decide whether to develop new production lines to ensure the timely completion of all orders. For example, running a new production line for a small number of orders is not cost-effective. Therefore, decision-making involves choosing between paying tardiness costs for a few orders, abandoning some orders, or developing new production lines to maximize efficiency. Additionally, the timely transportation of completed orders is crucial and depends on vehicle usage efficiency. From a transportation perspective, fully loading vehicles is the most efficient, but this may impact the timeliness of orders, leading to potential tardiness costs. By comprehensively considering these aspects, a multi-machine production model is constructed that incorporates transportation batch sequences and uses heuristic algorithms to solve the problem. Finally, designed case examples validate the effectiveness of the model and algorithm. Full article
21 pages, 1583 KiB  
Article
The Efficiency of Chemical and Electrochemical Coagulation Methods for Pretreatment of Wastewater from Underground Coal Gasification
by Mateusz Szul, Katarzyna Rychlewska, Tomasz Billig and Tomasz Iluk
Water 2024, 16(17), 2540; https://doi.org/10.3390/w16172540 (registering DOI) - 8 Sep 2024
Abstract
This article compares chemical coagulation with electrocoagulation, two popular methods for the primary treatment of wastewater generated in the process of underground coal gasification (UCG). The primary aim was to determine which method is more effective in the removal of cyanide and sulphide [...] Read more.
This article compares chemical coagulation with electrocoagulation, two popular methods for the primary treatment of wastewater generated in the process of underground coal gasification (UCG). The primary aim was to determine which method is more effective in the removal of cyanide and sulphide ions, metals and metalloids, as well as organic compounds. In both cases, experiments were conducted in batch 1 dm3 reactors and using iron ions. Four types of coagulants were tested during the chemical coagulation study: FeCl2, FeSO4, Fe2(SO4)3, and FeCl3. In the electrocoagulation experiments, pure iron Armco steel was used to manufacture the sacrificial iron anode. Both processes were tested under a wide range of operating conditions (pH, time, Fe dose) to determine their maximum efficiency for treating UCG wastewater. It was found that, through electrocoagulation, a dose as low as 60 mg Fe/dm3 leads to >60% cyanide reduction and >98% sulphide removal efficiency, while for chemical coagulation, even a dose of 307 mg Fe/dm3 did not achieve more than 24% cyanide ion removal. Moreover, industrial chemical coagulants, especially when used in very high doses, can be a substantial source of cross-contamination with trace elements. Full article
Show Figures

Figure 1

23 pages, 1626 KiB  
Article
Is Reinforcement Learning Good at American Option Valuation?
by Peyman Kor, Reidar B. Bratvold and Aojie Hong
Algorithms 2024, 17(9), 400; https://doi.org/10.3390/a17090400 (registering DOI) - 7 Sep 2024
Abstract
This paper investigates algorithms for identifying the optimal policy for pricing American Options. The American Option pricing is reformulated as a Sequential Decision-Making problem with two binary actions (Exercise or Continue), transforming it into an optimal stopping time problem. Both the least square [...] Read more.
This paper investigates algorithms for identifying the optimal policy for pricing American Options. The American Option pricing is reformulated as a Sequential Decision-Making problem with two binary actions (Exercise or Continue), transforming it into an optimal stopping time problem. Both the least square Monte Carlo simulation method (LSM) and Reinforcement Learning (RL)-based methods were utilized to find the optimal policy and, hence, the fair value of the American Put Option. Both Classical Geometric Brownian Motion (GBM) and calibrated Stochastic Volatility models served as the underlying uncertain assets. The novelty of this work lies in two aspects: (1) Applying LSM- and RL-based methods to determine option prices, with a specific focus on analyzing the dynamics of “Decisions” made by each method and comparing final decisions chosen by the LSM and RL methods. (2) Assess how the RL method updates “Decisions” at each batch, revealing the evolution of the decisions during the learning process to achieve optimal policy. Full article
Show Figures

Figure 1

19 pages, 2898 KiB  
Article
Catalyst Accessibility and Acidity in the Hydrocracking of HDPE: A Comparative Study of H-USY, H-ZSM-5, and MCM-41 Modified with Ga and Al
by Cátia S. Costa, M. Rosário Ribeiro and João M. Silva
Molecules 2024, 29(17), 4248; https://doi.org/10.3390/molecules29174248 (registering DOI) - 7 Sep 2024
Abstract
Plastic pollution is a critical environmental issue due to the widespread use of plastic materials and their long degradation time. Hydrocracking (HDC) offers a promising solution to manage plastic waste by converting it into valuable products, namely chemicals or fuels. This work aims [...] Read more.
Plastic pollution is a critical environmental issue due to the widespread use of plastic materials and their long degradation time. Hydrocracking (HDC) offers a promising solution to manage plastic waste by converting it into valuable products, namely chemicals or fuels. This work aims to investigates the effect of catalyst accessibility and acidity on the HDC reaction of high density polyethylene (HDPE). Therefore, a variety of materials with significant differences in both textural and acidic properties were tested as catalysts. These include H-USY and H-ZSM.5 zeolites with various Si/Al molar ratios (H-USY: Si/Al = 2.9, 15, 30 and 40; H-ZSM-5: Si/Al = 11.5, 40, 500) and mesostructured MCM-41 materials modified with Ga and Al, also with different Si/metal ratios (Si/Al = 16 and 30; Si/Ga = 63 and 82). Thermogravimetric analysis under hydrogen atmosphere was used as a preliminary screening tool to evaluate the potential of the various catalysts for this application in terms of energy requirements. In addition, batch autoclave reactor experiments (T = 300 °C, PH2 = 20 bar, t = 60 min) were conducted to obtain further information on conversion, product yields and product distribution for the most promising systems. The results show that the catalytic performance in HDPE hydrocracking is determined by a balance between the acidity of the catalyst and its structural accessibility. Accordingly, for catalyst series where the structural and textural properties do not vary with the Si/Al ratio, there is a clear correlation of the HDPE degradation temperature and of the HDPE conversion with the Si/metal ratio (which relates to the acidic properties). In contrast, for catalyst series where the structural and textural properties vary with the Si/Al ratio, no consistent trend is observed and the catalytic performance is determined by a balance between the acidic and textural properties. The product distribution was also found to be influenced by the physical and chemical properties of the catalyst. Catalysts with strong acidity and smaller pores were observed to favor the formation of lighter hydrocarbons. In addition to the textural and acidic properties of the catalyst, the role of coke formation should not be neglected to ensure a comprehensive analysis of the catalytic performance. Full article
Show Figures

Figure 1

16 pages, 3164 KiB  
Article
Variations in the Sensory Attributes of Infant Formula among Batches and Their Impact on Maternal Consumer Preferences: A Study Combining Consumer Preferences, Pivot Profile, and Quantitative Descriptive Analysis
by Yilin Li, Xinyu Hu, Ruotong Li, Chunguang Wang, Houyin Wang, Guirong Liu, Lipeng Gao, Anwen Jin and Baoqing Zhu
Foods 2024, 13(17), 2839; https://doi.org/10.3390/foods13172839 (registering DOI) - 7 Sep 2024
Abstract
The sensory quality of infant formula (IF) has a significant impact on the preferences and purchasing behavior of maternal consumers. Consumer-based rapid descriptive methods have become popular and are widely preferred over classical methods, but the application of Pivot Profile (PP) in IF [...] Read more.
The sensory quality of infant formula (IF) has a significant impact on the preferences and purchasing behavior of maternal consumers. Consumer-based rapid descriptive methods have become popular and are widely preferred over classical methods, but the application of Pivot Profile (PP) in IF is still little explored. In this study, both Pivot Profile (PP) and Quantitative Descriptive Analysis (QDA) were applied to characterize the sensory profile of 12 batches of one-stage and three-stage IF with different storage periods, respectively, along with consumer preference data to determine the flavors contributing to liking. The results of PP and QDA aligned moderately well, with the most perceptible differences identified as “fishy”, “milky”, and “T-sweet” attributes. IFs with shorter storage times were highly associated with “milky” aromas and “T-sweet” tastes, whereas IFs with longer storage times exhibited a strong correlation with “fishy” and “oxidation” aromas. External preference analysis highlighted that the occurrence of “fishy” and “oxidation” aromas during prolonged storage periods significantly reduced the consumer preference for IFs. Conversely, the perception of “milky” and “creamy” aromas and “T-sweet” tastes may be critical positive factors influencing consumer preference. This study provided valuable insights and guidance for enhancing the sensory quality and consumer preference of IF. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

17 pages, 2354 KiB  
Article
Impact of Chemical Oxygen Demand/Total Nitrogen Ratio on Shifting Autotrophic Partial Nitrification to Heterotrophic Nitrification and Aerobic Denitrification in High-Strength Ammonium Wastewater Treatment
by Zhenghua Peng, Yongfei Lei, Yousheng Zhan, Benqin Yang and Xuejun Pan
Water 2024, 16(17), 2532; https://doi.org/10.3390/w16172532 - 6 Sep 2024
Abstract
Partial nitrification (PN) is an effective process for treating high-strength ammonium wastewater with a low COD/N (chemical oxygen demand/total nitrogen) ratio; this is because the cooperative interaction with denitrification or anammox can result in a reduction in aeration costs of approximately 25% and [...] Read more.
Partial nitrification (PN) is an effective process for treating high-strength ammonium wastewater with a low COD/N (chemical oxygen demand/total nitrogen) ratio; this is because the cooperative interaction with denitrification or anammox can result in a reduction in aeration costs of approximately 25% and a reduction in the use of organic sources during biological nitrogen removal of 40%. However, the key functional microorganisms in the partial nitrification (PN) process are ammonia-oxidizing bacteria (AOB), which are autotrophic microorganisms that are influenced by carbon sources. Therefore, the COD/N ratio affects the performance of the PN process when treating high-strength ammonium wastewater. In this study, five sequence batch reactors were constructed and operated for 42 days; they were fed with synthetic high-strength ammonium wastewater (500 mg/L) with various COD/N ratios (at 0, 0.5, 1, 2, and 4). The results suggested that the PN process could be accomplished at COD/N ratios of 0 and 0.5, but its performance decreased significantly when the COD/N ratio increased to 1 due to the occurrence of simultaneous nitrification and denitrification. The AOB could not compete with the heterotrophic bacteria; as the COD/N ratios increased, the abundance of Nitrosomonas (a genus of autotrophic AOB) decreased, and it was not detected at COD/N ratios of 2 and 4. Instead, the heterotrophic nitrification and heterotrophic denitrification (HNAD) bacteria appeared, and their relative abundance increased when the COD/N ratios increased from 1 to 4. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

18 pages, 3357 KiB  
Article
Integrating Whey Processing: Ultrafiltration, Nanofiltration, and Water Reuse from Diafiltration
by Vandré Barbosa Brião, Juliane Mossmann, Bruna Seguenka, Samarah Graciola and Jeferson Steffanello Piccin
Membranes 2024, 14(9), 191; https://doi.org/10.3390/membranes14090191 - 6 Sep 2024
Abstract
This work proposes an integrated production of whey protein concentrate (WPC) and lactose and the recovery of water from diafiltration (DF) steps. Whey protein and lactose can be concentrated using ultrafiltration and nanofiltration, respectively, and both can be purified using DF. However, DF [...] Read more.
This work proposes an integrated production of whey protein concentrate (WPC) and lactose and the recovery of water from diafiltration (DF) steps. Whey protein and lactose can be concentrated using ultrafiltration and nanofiltration, respectively, and both can be purified using DF. However, DF uses three-fold the initial volume of whey. We propose a method to reclaim this water using reverse osmosis and adsorption by activated carbon. We produced WPC with 88% protein and purified lactose (90%), and 66% of the water can be reclaimed as drinking water. Additionally, the reclaimed water was used to produce another batch of WPC, with no decrease in product quality. Water recovery from the whey process is necessary to meet the needs of a dairy refinery. Full article
(This article belongs to the Special Issue Innovations in Membrane Technology for Food Applications)
Show Figures

Figure 1

14 pages, 1346 KiB  
Article
Test Results of Crystalline Silicon Melting Process from Briquetted Monocharge Obtained from Microsilica
by Alibek Baisanov, Nina Vorobkalo, Yerbol Shabanov, Azat Mussin, Symbat Sharieva and Amir Makishev
Processes 2024, 12(9), 1911; https://doi.org/10.3390/pr12091911 - 5 Sep 2024
Abstract
Currently, enterprises producing crystalline silicon are facing the formation and accumulation of large volumes of microsilica, a technogenic dusty waste formed during the melting of silicon alloys. Due to its chemical composition, this waste can be a significant raw material for metallurgical production. [...] Read more.
Currently, enterprises producing crystalline silicon are facing the formation and accumulation of large volumes of microsilica, a technogenic dusty waste formed during the melting of silicon alloys. Due to its chemical composition, this waste can be a significant raw material for metallurgical production. Therefore, this study is aimed to solve the problem of recycling microsilica. For these studies, a technology for the combined briquetting of microsilica and a carbonaceous reducing agent was developed for the production of a pilot batch of briquettes. This paper presents the results obtained from the process of testing the melting of crystalline (technical) silicon from briquetted monocharge obtained from microsilica. The tests were conducted under large-scale laboratory conditions on a 200 kVA ore-thermal furnace, where 30, 50, and 100% replacements of the traditional charge mixture with briquettes were tested. The results of this study showed that briquettes in the melting process of technical silicon can be successfully used in the range of 0 to 50%. The use of briquettes can significantly improve the technological indicators. The maximum extraction of silicon (approximately 83%) was achieved at 30% replacement. The technical and economic indicators of the process also improved. In particular, an increase in productivity was observed in comparison with tests on a traditional charge. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

28 pages, 4532 KiB  
Article
Insurance Analytics with Clustering Techniques
by Charlotte Jamotton, Donatien Hainaut and Thomas Hames
Risks 2024, 12(9), 141; https://doi.org/10.3390/risks12090141 - 5 Sep 2024
Abstract
The K-means algorithm and its variants are well-known clustering techniques. In actuarial applications, these partitioning methods can identify clusters of policies with similar attributes. The resulting partitions provide an actuarial framework for creating maps of dominant risks and unsupervised pricing grids. This research [...] Read more.
The K-means algorithm and its variants are well-known clustering techniques. In actuarial applications, these partitioning methods can identify clusters of policies with similar attributes. The resulting partitions provide an actuarial framework for creating maps of dominant risks and unsupervised pricing grids. This research article aims to adapt well-established clustering methods to complex insurance datasets containing both categorical and numerical variables. To achieve this, we propose a novel approach based on Burt distance. We begin by reviewing the K-means algorithm to establish the foundation for our Burt distance-based framework. Next, we extend the scope of application of the mini-batch and fuzzy K-means variants to heterogeneous insurance data. Additionally, we adapt spectral clustering, a technique based on graph theory that accommodates non-convex cluster shapes. To mitigate the computational complexity associated with spectral clustering’s O(n3) runtime, we introduce a data reduction method for large-scale datasets using our Burt distance-based approach. Full article
19 pages, 5049 KiB  
Article
The Impact of Temperature and the Duration of Freezing on a Hydrogel Used for a 3D-Bioprinted In Vitro Skin Model
by Maja Sever, Dominik Škrinjar, Tina Maver, Monika Belak, Franc Zupanič, Ivan Anžel and Tanja Zidarič
Biomedicines 2024, 12(9), 2028; https://doi.org/10.3390/biomedicines12092028 - 5 Sep 2024
Abstract
Skin bioprinting has the potential to revolutionize treatment approaches for injuries and surgical procedures, while also providing a valuable platform for assessing and screening cosmetic and pharmaceutical products. This technology offers key advantages, including flexibility and reproducibility, which enable the creation of complex, [...] Read more.
Skin bioprinting has the potential to revolutionize treatment approaches for injuries and surgical procedures, while also providing a valuable platform for assessing and screening cosmetic and pharmaceutical products. This technology offers key advantages, including flexibility and reproducibility, which enable the creation of complex, multilayered scaffolds that closely mimic the intricate microenvironment of native skin tissue. The development of an ideal hydrogel is critical for the successful bioprinting of these scaffolds with incorporated cells. In this study, we used a hydrogel formulation developed in our laboratory to fabricate a 3D-bioprinted skin model. The hydrogel composition was carefully selected based on its high compatibility with human skin cells, incorporating alginate, methyl cellulose, and nanofibrillated cellulose. One of the critical challenges in this process, particularly for its commercialization and large-scale production, is ensuring consistency with minimal batch-to-batch variations. To address this, we explored methods with which to preserve the physicochemical properties of the hydrogels, with a focus on freezing techniques. We validated the pre-frozen hydrogels’ printability, rheology, and mechanical and surface properties. Our results revealed that extended freezing times significantly reduced the viscosity of the formulations due to ice crystal formation, leading to a redistribution of the polymer chains. This reduction in viscosity resulted in a more challenging extrusion and increased macro- and microporosity of the hydrogels, as confirmed by nanoCT imaging. The increased porosity led to greater water uptake, swelling, compromised scaffold integrity, and altered degradation kinetics. The insights gained from this study lay a solid foundation for advancing the development of an in vitro skin model with promising applications in preclinical and clinical research. Full article
Show Figures

Graphical abstract

25 pages, 13590 KiB  
Article
Fast and Nondestructive Proximate Analysis of Coal from Hyperspectral Images with Machine Learning and Combined Spectra-Texture Features
by Jihua Mao, Hengqian Zhao, Yu Xie, Mengmeng Wang, Pan Wang, Yaning Shi and Yusen Zhao
Appl. Sci. 2024, 14(17), 7920; https://doi.org/10.3390/app14177920 - 5 Sep 2024
Abstract
Proximate analysis, including ash, volatile matter, moisture, fixed carbon, and calorific value, is a fundamental aspect of fuel testing and serves as the primary method for evaluating coal quality, which is critical for the processing and utilization of coal. The traditional analytical methods [...] Read more.
Proximate analysis, including ash, volatile matter, moisture, fixed carbon, and calorific value, is a fundamental aspect of fuel testing and serves as the primary method for evaluating coal quality, which is critical for the processing and utilization of coal. The traditional analytical methods involve time-consuming and costly combustion processes, particularly when applied to large volumes of coal that need to be sampled in massive batches. Hyperspectral imaging is promising for the rapid and nondestructive determination of coal quality indices. In this study, a fast and nondestructive coal proximate analysis method with combined spectral-spatial features was developed using a hyperspectral imaging system in the 450–2500 nm range. The processed spectra were evaluated using PLSR, with the most effective MSC spectra selected. To reduce the spectral redundancy and improve the accuracy, the SPA, Boruta, iVISSA, and CARS algorithms were adopted to extract the characteristic wavelengths, and 16 prediction models were constructed and optimized based on the PLSR, RF, BPNN, and LSSVR algorithms within the Optuna framework for each quality indicator. For spatial information, the histogram statistics, gray-level covariance matrix, and Gabor filters were employed to extract the texture features within the characteristic wavelengths. The texture feature-based and combined spectral-texture feature-based prediction models were constructed by applying the spectral modeling strategy, respectively. Compared with the models based on spectral or texture features only, the LSSVR models with combined spectral-texture features achieved the highest prediction accuracy in all quality metrics, with Rp2 values of 0.993, 0.989, 0.979, 0.948, and 0.994 for Ash, VM, MC, FC, and CV, respectively. This study provides a technical reference for hyperspectral imaging technology as a new method for the rapid, nondestructive proximate analysis and quality assessment of coal. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

14 pages, 3698 KiB  
Article
Simultaneous Production of Biogas and Electricity from Anaerobic Digestion of Pine Needles: Sustainable Energy and Waste Management
by Deepak Sharma, Rishi Mahajan, Vikas Baghel, Saurabh Bansal, Vishal Ahuja and Gunjan Goel
BioTech 2024, 13(3), 35; https://doi.org/10.3390/biotech13030035 - 5 Sep 2024
Abstract
Power scarcity and pollution can be overcome with the use of green energy forms like ethanol, biogas, electricity, hydrogen, etc., especially energy produced from renewable and industrial feedstocks. In hilly areas, pine needles are the most abundant biomass that has a low possibility [...] Read more.
Power scarcity and pollution can be overcome with the use of green energy forms like ethanol, biogas, electricity, hydrogen, etc., especially energy produced from renewable and industrial feedstocks. In hilly areas, pine needles are the most abundant biomass that has a low possibility of valorization due to high lignin content. On the other hand, anaerobic digestion (AD) of lignin and animal waste has low biogas yield due to poor conductivity. This study focuses on the simultaneous production of biogas and electricity through the co-digestion of cow dung and pine needles. The digester was initially established and stabilized in the lab to ensure a continuous supply of inoculum throughout the experiment. The optimization process involved the determination of an ideal cow dung-to-water ratio and selecting the appropriate conductive material that can enhance the energy generation from the feedstock. Afterward, both batch and continuous anaerobic digestion experiments were conducted. The results revealed that the addition of powdered graphite (5 mM), activated charcoal (15 mM), and biochar (25 mM) exhibited maximum voltage of 0.71 ± 0.013 V, 0.56 ± 0.013 V, and 0.49 ± 0.011 V on the 30th, 25th and 20th day of AD, respectively. The batch experiment showed that 5 mM graphite powder enhanced electron transfer in the AD process and generated a voltage of 0.77 ± 0.014 V on the 30th day, indicating an increase of ~1.5-fold as compared to the control (0.56 ± 0.019 V). The results from the continuous AD process showed that the digester with cow dung, pine needle, and a conductive material in combination exhibited the maximum voltage of 0.76 ± 0.012 V on the 21st day of AD, while the digester with cow dung only exhibited a maximum voltage of 0.62 ± 0.015 V on the 22nd day of AD, representing a 1.3-fold increase over the control. Furthermore, the current work used discarded plastic items and electrodes from spent batteries to emphasize waste management and aid in attaining sustainable energy and development goals. Full article
(This article belongs to the Section Environmental Biotechnology)
Show Figures

Figure 1

13 pages, 1700 KiB  
Article
Investigation of the Flotation of an Ore Containing Bastnaesite and Monazite: Kinetic Study and Process Flowsheet Simulation
by Claude Bazin and Jean-François Boulanger
Minerals 2024, 14(9), 906; https://doi.org/10.3390/min14090906 - 4 Sep 2024
Viewed by 166
Abstract
Laboratory flotation tests carried out using an ore sample containing Rare Earth Elements (REEs) present as monazite and bastnaesite show that the flotation of monazite is slower and yielded lower recovery than that of bastnaesite. Results show that when studying the performances of [...] Read more.
Laboratory flotation tests carried out using an ore sample containing Rare Earth Elements (REEs) present as monazite and bastnaesite show that the flotation of monazite is slower and yielded lower recovery than that of bastnaesite. Results show that when studying the performances of a concentration process for an REE ore, it is essential to not look only at the behavior of the individual REEs but to convert elemental assays into mineral assays to obtain the mineral’s actual response to the concentration process. The results of the laboratory flotation tests are used to calibrate a flotation simulator applied to study different circuit configurations for the concentration of the REE minerals. Indeed, it is shown that for the studied ore, two cleaning stages of a rougher concentrate are sufficient to produce a concentrate with a Total Rare Earth Oxide (TREO) grade above 40%, which is acceptable for the subsequent hydrometallurgical process. The simulation also shows that it may be feasible, if required for the hydrometallurgy step, to separate bastnaesite and monazite by taking advantage of the different flotation kinetics of the two minerals. Full article
Show Figures

Figure 1

20 pages, 9382 KiB  
Article
Enhancing the Antibody Production Efficiency of Chinese Hamster Ovary Cells through Improvement of Disulfide Bond Folding Ability and Apoptosis Resistance
by Chen Zhang, Yunhui Fu, Wenyun Zheng, Feng Chang, Yue Shen, Jinping Niu, Yangmin Wang and Xingyuan Ma
Cells 2024, 13(17), 1481; https://doi.org/10.3390/cells13171481 - 4 Sep 2024
Viewed by 158
Abstract
The complex structure of monoclonal antibodies (mAbs) expressed in Chinese hamster ovary (CHO) cells may result in the accumulation of unfolded proteins, triggering endoplasmic reticulum (ER) stress and an unfolded protein response (UPR). If the protein folding ability cannot maintain ER homeostasis, the [...] Read more.
The complex structure of monoclonal antibodies (mAbs) expressed in Chinese hamster ovary (CHO) cells may result in the accumulation of unfolded proteins, triggering endoplasmic reticulum (ER) stress and an unfolded protein response (UPR). If the protein folding ability cannot maintain ER homeostasis, the cell will shut down protein translation and ultimately induce apoptosis. We co-overexpressed HsQSOX1b and survivin proteins in the antibody-producing cell line CHO-PAb to obtain a new cell line, CHO-PAb-QS. Compared with CHO-PAb cells, the survival time of CHO-PAb-QS cells in batch culture was extended by 2 days, and the antibody accumulation and productivity were increased by 52% and 45%, respectively. The proportion of (HC-LC)2 was approximately doubled in the CHO-PAb-QS cells, which adapted to the accelerated disulfide bond folding capacity by upregulating the UPR’s strength and increasing the ER content. The results of the apoptosis assays indicated that the CHO-PAb-QS cell line exhibited more excellent resistance to apoptosis induced by ER stress. Finally, CHO-PAb-QS cells exhibited mild oxidative stress but did not significantly alter the redox status. This study demonstrated that strategies based on HsQSOX1b and survivin co-overexpression could facilitate protein disulfide bond folding and anti-apoptosis ability, enhancing antibody production efficiency in CHO cell lines. Full article
(This article belongs to the Collection Advances in Cell Culture and Tissue Engineering)
Show Figures

Figure 1

12 pages, 1299 KiB  
Article
Rapid Detection of Aflatoxins in Ground Maize Using Near Infrared Spectroscopy
by Sylviane Bailly, Béatrice Orlando, Jean Brustel, Jean-Denis Bailly and Cecile Levasseur-Garcia
Toxins 2024, 16(9), 385; https://doi.org/10.3390/toxins16090385 - 4 Sep 2024
Viewed by 207
Abstract
Aflatoxins are carcinogenic mycotoxins that may contaminate many crops and more especially maize. To protect consumers from these contaminants, many countries set up low regulatory thresholds of few µg/kg. The control of food requires time-consuming analysis for which sampling is a key step. [...] Read more.
Aflatoxins are carcinogenic mycotoxins that may contaminate many crops and more especially maize. To protect consumers from these contaminants, many countries set up low regulatory thresholds of few µg/kg. The control of food requires time-consuming analysis for which sampling is a key step. It would therefore of key sanitary and economic relevance to develop rapid, sensitive and accurate methods that could even be applied on line at harvest, to identify batches to be excluded as soon as possible. In this study, we analyzed more than 500 maize samples taken at harvest during 3 years for their aflatoxin contamination using HPLC-MS. Among them, only 7% were contaminated but sometimes at levels largely exceeding European regulations. We demonstrate that Near InfraRed Spectroscopy (NIRS) could be of great help to classify cereal samples according to their level of aflatoxin contamination (below or higher than E.U. regulation). To build the model, all AF contaminated samples as well as an equivalent number of AF free samples were used. NIRS performance was not sufficient to quantify the toxins with adequate precision. However, its ability to discriminate naturally contaminated maize samples according to their level of contamination with aflatoxins in relation to European regulations using a quadratic PCA-DA model was excellent. Accuracy of the model was 97.4% for aflatoxin B1 and 100% for total aflatoxins. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

Back to TopTop