Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (379)

Search Parameters:
Keywords = bifunctional catalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7534 KiB  
Article
Investigation of the Performances of TiO2 and Pd@TiO2 in Photocatalytic Hydrogen Evolution and Hydrogenation of Acetylenic Compounds for Application in Photocatalytic Transfer Hydrogenation
by Eldar T. Talgatov, Akzhol A. Naizabayev, Alima M. Kenzheyeva, Zhannur K. Myltykbayeva, Atıf Koca, Farida U. Bukharbayeva, Sandugash N. Akhmetova, Raiymbek Yersaiyn and Assemgul S. Auyezkhanova
Catalysts 2024, 14(10), 665; https://doi.org/10.3390/catal14100665 - 26 Sep 2024
Abstract
The development of effective bifunctional catalysts demonstrating high performance in both photocatalytic hydrogen evolution and selective hydrogenation of unsaturated compounds is of great interest for photocatalytic transfer hydrogenation. In this work, TiO2 and Pd@TiO2 catalysts were studied in two separate processes: [...] Read more.
The development of effective bifunctional catalysts demonstrating high performance in both photocatalytic hydrogen evolution and selective hydrogenation of unsaturated compounds is of great interest for photocatalytic transfer hydrogenation. In this work, TiO2 and Pd@TiO2 catalysts were studied in two separate processes: photocatalytic H2 evolution and conventional hydrogenation reactions. Photocatalytic properties of titanium dioxide synthesized by a simple precipitation method were compared with those of commercial ones. Commercial anatase with a lower agglomeration degree showed better activity in H2 evolution. Further modification of the commercial anatase with Pd resulted in increasing its activity, achieving an H2 evolution rate of 760 μmol/h gcat. The Pd catalysts supported on different TiO2 samples were tested in hydrogenation of acetylenic compounds. The activity of the Pd@TiO2 catalysts was found to be dependent on the photocatalytic properties of TiO2 supports. XPS studies of Pd catalysts indicated that commercial anatase with better photocatalytic properties provided easier reduction of Pd2+ to active Pd0 particles. The Pd catalyst supported on commercial anatase demonstrated the highest activity in the hydrogenation process. The WC≡C rate achieved 2.6 × 10−6, 9.0 × 10−6 and 35.7 × 10−6 mol/s for hydrogenation of 2-hexyne-1-ol, 5-hexyne-1-ol and 2-hexyne, respectively. The selectivity of the catalyst to target olefinic compounds was 94–96%. In addition, the hydrogenation rate was found to be significantly affected by reaction conditions such as hydrogen concentration and solvent composition. The WC≡C rate decreased linearly with decreasing hydrogen concentration in a H2:He gas mixture (30–100 vol%). Performing the reaction in 0.10 M NaOH ethanolic solution resulted in increasing the WC≡C rate and selectivity of the process. The Pd catalyst was reused in an alkali medium (NaOH in ethanol) for 35 runs without significant degradation in its catalytic activity. Thus, the results obtained in this work can be useful in photocatalytic transfer hydrogenation. Full article
(This article belongs to the Special Issue Novel Catalytic Materials for Hydrogen Storage and Generation)
Show Figures

Figure 1

20 pages, 5663 KiB  
Article
Cross-Linked Metathesis Polynorbornenes Based on Nadimides Bearing Hydrocarbon Substituents: Synthesis and Physicochemical Properties
by Kirill S. Sadovnikov, Ivan V. Nazarov, Vsevolod A. Zhigarev, Anastasia A. Danshina, Igor S. Makarov and Maxim V. Bermeshev
Polymers 2024, 16(18), 2671; https://doi.org/10.3390/polym16182671 - 22 Sep 2024
Abstract
Metathesis homo- and copolymerization of bifunctional monomers bearing two norbornene moieties was studied. The monomers were synthesized from cis-5-norbornene-exo-2,3-dicarboxylic anhydride and various diamines (hexamethylenediamine, decamethylenediamine, 1R,3S-isophoronediamine). The metathesis homopolymerization of these bis(nadimides) in the presence of the second-generation Grubbs catalyst afforded glassy cross-linked [...] Read more.
Metathesis homo- and copolymerization of bifunctional monomers bearing two norbornene moieties was studied. The monomers were synthesized from cis-5-norbornene-exo-2,3-dicarboxylic anhydride and various diamines (hexamethylenediamine, decamethylenediamine, 1R,3S-isophoronediamine). The metathesis homopolymerization of these bis(nadimides) in the presence of the second-generation Grubbs catalyst afforded glassy cross-linked polymers in more than 90% yields. The metathesis copolymerization of the bis(nadimides) and a monofunctional norbornene derivative containing the β-pinene fragment also resulted in insoluble cross-linked polymers in nearly quantitative yields. The structures and purity of the synthesized polymers were confirmed via IR spectroscopy and CP/MAS NMR spectroscopy. Conditions for the fabrication of mechanically strong solution-cast thin films based on copolymers synthesized from the comonomers mentioned above were determined by varying the content of the cross-linking agent. It was shown that the films made in this way are stable in a range of organic solvents and could be useful as semipermeable or membrane materials for use in liquid organic media. The permeability of the polymer films in question to 1-phenylethanol and mandelic acid was studied. The results obtained are discussed along with the data from the DSC, TGA, and powder X-ray diffraction studies of the properties of the synthesized metathesis homo- and copolymers. Full article
(This article belongs to the Special Issue Preparation and Application of Functional Polymer Materials)
Show Figures

Figure 1

14 pages, 4623 KiB  
Article
Synergic Effects of Ordered Mesoporous Bifunctional Ionic Liquid: A Recyclable Catalyst to Access Chemoselective N-Protected Indoline-2,3-dione Analogous
by Gouthaman Siddan and Viswas Raja Solomon
Catalysts 2024, 14(9), 629; https://doi.org/10.3390/catal14090629 - 17 Sep 2024
Abstract
SBA-15 and organic ionic liquid were incorporated in a post-grafting technique for generating a bifunctional ionic liquid embedded mesoporous SBA-15. The prepared heterogeneous catalyst was employed for the first time to synthesize N-alkylated indoline-2,3-dione at mild conditions to afford excellent yields in [...] Read more.
SBA-15 and organic ionic liquid were incorporated in a post-grafting technique for generating a bifunctional ionic liquid embedded mesoporous SBA-15. The prepared heterogeneous catalyst was employed for the first time to synthesize N-alkylated indoline-2,3-dione at mild conditions to afford excellent yields in a short reaction time. The synthesized DABCOIL@SBA-15 catalyst was meticulously characterized by various techniques, such as FT-IR, solid-state 13C NMR, solid-state 29Si NMR, small-angle X-ray diffraction (XRD), and N2 adsorption–desorption. Further, the morphological behavior of the catalyst was studied by SEM and TEM. The thermal stability and number of active sites were determined by thermogravimetric analysis (TGA). The Hammett equation was used to analyze the synergetic effect of the catalyst and substituent effects on the N-alkylated products of 5-substituted isatin derivatives, which resulted in a negative slope. This negative slope indicates a positive charge in the transition state. Notably, the DABCOIL@SBA-15 catalyst demonstrated its practicality by being reused for seven cycles with consistently high catalytic activity. Full article
(This article belongs to the Special Issue Mesoporous Nanostructured Materials for Heterogeneous Catalysis)
Show Figures

Figure 1

22 pages, 7976 KiB  
Article
A3B Zn(II)-Porphyrin-Coated Carbon Electrodes Obtained Using Different Procedures and Tested for Water Electrolysis
by Bogdan-Ovidiu Taranu, Florina Stefania Rus and Eugenia Fagadar-Cosma
Coatings 2024, 14(8), 1048; https://doi.org/10.3390/coatings14081048 - 16 Aug 2024
Viewed by 370
Abstract
In the context of water electrolysis being highlighted as a promising technology for the large-scale sustainable production of hydrogen, the water-splitting electrocatalytic properties of an asymmetrically functionalized A3B zinc metalated porphyrin, namely, Zn(II) 5-(4-pyridyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin, were evaluated in a wide pH range. [...] Read more.
In the context of water electrolysis being highlighted as a promising technology for the large-scale sustainable production of hydrogen, the water-splitting electrocatalytic properties of an asymmetrically functionalized A3B zinc metalated porphyrin, namely, Zn(II) 5-(4-pyridyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin, were evaluated in a wide pH range. Two different electrode manufacturing procedures were employed to outline the porphyrin’s applicative potential for the O2 and H2 evolution reactions (OER and HER). The electrode, manufactured by coating the catalyst on a graphite support from a dimethylsulfoxide solution, displayed electrocatalytic activity for the OER in an acidic electrolyte. An overpotential value of 0.44 V (at i = 10 mA/cm2) and a Tafel slope of 0.135 V/dec were obtained. The modified electrode that resulted from applying a Zn(II)-porphyrin-containing catalyst ink onto the same substrate type was identified as a bifunctional water-splitting catalyst in a neutral medium. OER and HER overpotentials of 0.78 and 1.02 V and Tafel slopes of 0.39 and 0.249 V/dec were determined. This is the first Zn(II)-porphyrin to be reported as a heterogenous bifunctional water-splitting electrocatalyst in neutral aqueous electrolyte solution and is one of very few porphyrins behaving as such. The TEM analysis of the porphyrin’s self-assembly behavior revealed a wide variety of architectures. Full article
(This article belongs to the Special Issue Environmentally Friendly Energy Conversion Materials and Thin Films)
Show Figures

Figure 1

11 pages, 4073 KiB  
Article
Rational Construction of Honeycomb-like Carbon Network-Encapsulated MoSe2 Nanocrystals as Bifunctional Catalysts for Highly Efficient Water Splitting
by Changjie Ou, Zhongkai Huang, Xiaoyu Yan, Xiangzhong Kong, Xi Chen, Shi Li, Lihua Wang and Zhongmin Wan
Molecules 2024, 29(16), 3877; https://doi.org/10.3390/molecules29163877 - 16 Aug 2024
Viewed by 467
Abstract
The scalable fabrication of cost-efficient bifunctional catalysts with enhanced hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance plays a significant role in overall water splitting in hydrogen production fields. MoSe2 is considered to be one of the most promising candidates [...] Read more.
The scalable fabrication of cost-efficient bifunctional catalysts with enhanced hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance plays a significant role in overall water splitting in hydrogen production fields. MoSe2 is considered to be one of the most promising candidates because of its low cost and high catalytic activity. Herein, hierarchical nitrogen-doped carbon networks were constructed to enhance the catalytic activity of the MoSe2-based materials by scalable free-drying combined with an in situ selenization strategy. The rationally designed carbonaceous network-encapsulated MoSe2 composite (MoSe2/NC) endows a continuous honeycomb-like structure. When utilized as a bifunctional electrocatalyst for both HER and OER, the MoSe2/NC electrode exhibits excellent electrochemical performance. Significantly, the MoSe2/NC‖MoSe2/NC cells require a mere 1.5 V to reach a current density of 10 mA cm−2 for overall water splitting in 1 M KOH. Ex situ characterizations and electrochemical kinetic analysis reveal that the superior catalytic performance of the MoSe2/NC composite is mainly attributed to fast electron and ion transportation and good structural stability, which is derived from the abundant active sites and excellent structural flexibility of the honeycomb-like carbon network. This work offers a promising pathway to the scalable fabrication of advanced non-noble bifunctional electrodes for highly efficient hydrogen evolution. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

5 pages, 180 KiB  
Editorial
Transition-Metal-Containing Bifunctional Catalysts: Design and Catalytic Applications
by Linda Zh. Nikoshvili, Valentin Yu. Doluda and Lioubov Kiwi-Minsker
Catalysts 2024, 14(8), 518; https://doi.org/10.3390/catal14080518 - 10 Aug 2024
Viewed by 413
Abstract
Chemical processes catalyzed by transition metals are widely applied and well established in modern industry [...] Full article
14 pages, 6854 KiB  
Article
Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation
by Yizhen Zhu, Xiangyu Chen, Yuanyao Zhang, Zhifei Zhu, Handan Chen, Kejie Chai and Weiming Xu
Molecules 2024, 29(16), 3734; https://doi.org/10.3390/molecules29163734 - 7 Aug 2024
Viewed by 493
Abstract
Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetallic oxide electrocatalyst (WO-N/NF) by a one-step hydrothermal [...] Read more.
Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetallic oxide electrocatalyst (WO-N/NF) by a one-step hydrothermal method for the selective electrooxidation of benzyl alcohol to benzoic acid in alkaline electrolytes. The WO-N/NF electrode features block-shaped particles on a rough, inhomogeneous surface with cracks and lumpy nodules, increasing active sites and enhancing electrolyte diffusion. The electrode demonstrates exceptional activity, stability, and selectivity, achieving efficient benzoic acid production while reducing the electrolysis voltage. A low onset potential of 1.38 V (vs. RHE) is achieved to reach a current density of 100 mA cm−2 in 1.0 M KOH electrolyte with only 0.2 mmol of metal precursors, which is 396 mV lower than that of water oxidation. The analysis reveals a yield, conversion, and selectivity of 98.41%, 99.66%, and 99.74%, respectively, with a Faradaic efficiency of 98.77%. This work provides insight into the rational design of a highly active and selective catalyst for electrocatalytic alcohol oxidation. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

20 pages, 6013 KiB  
Article
Molybdenum and Vanadium-Codoped Cobalt Carbonate Nanosheets Deposited on Nickel Foam as a High-Efficient Bifunctional Catalyst for Overall Alkaline Water Splitting
by Wenxin Wang, Lulu Xu, Ruilong Ye, Peng Yang, Junjie Zhu, Liping Jiang and Xingcai Wu
Molecules 2024, 29(15), 3591; https://doi.org/10.3390/molecules29153591 - 30 Jul 2024
Viewed by 490
Abstract
To address issues of global energy sustainability, it is essential to develop highly efficient bifunctional transition metal-based electrocatalysts to accelerate the kinetics of both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Herein, the heterogeneous molybdenum and vanadium codoped cobalt [...] Read more.
To address issues of global energy sustainability, it is essential to develop highly efficient bifunctional transition metal-based electrocatalysts to accelerate the kinetics of both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Herein, the heterogeneous molybdenum and vanadium codoped cobalt carbonate nanosheets loaded on nickel foam (VMoCoCOx@NF) are fabricated by facile hydrothermal deposition. Firstly, the mole ratio of V/Mo/Co in the composite is optimized by response surface methodology (RSM). When the optimized composite serves as a bifunctional catalyst, the water-splitting current density achieves 10 mA cm−2 and 100 mA cm−2 at cell voltages of 1.54 V and 1.61 V in a 1.0 M KOH electrolyte with robust stability. Furthermore, characterization is carried out using field emission scanning electron microscopy-energy dispersive spectroscopy (FESEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Density functional theory (DFT) calculations reveal that the fabricated VMoCoCOx@NF catalyst synergistically decreases the Gibbs free energy of hydrogen and oxygen-containing intermediates, thus accelerating OER/HER catalytic kinetics. Benefiting from the concerted advantages of porous NF substrates and clustered VMoCoCOx nanosheets, the fabricated catalyst exhibits superior electrocatalytic performance. This work presents a novel approach to developing transition metal catalysts for overall water splitting. Full article
Show Figures

Graphical abstract

12 pages, 4193 KiB  
Article
Oxygen-Vacancy-Induced Enhancement of BiVO4 Bifunctional Photoelectrochemical Activity for Overall Water Splitting
by Huailiang Fu, Qingxiu Qi, Yushu Li, Jing Pan and Chonggui Zhong
Nanomaterials 2024, 14(15), 1270; https://doi.org/10.3390/nano14151270 - 29 Jul 2024
Viewed by 721
Abstract
Hydrogen generation via photoelectrochemical (PEC) overall water splitting is an attractive means of renewable energy production so developing and designing the cost-effective and high-activity bifunctional PEC catalysts both for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) has been focused [...] Read more.
Hydrogen generation via photoelectrochemical (PEC) overall water splitting is an attractive means of renewable energy production so developing and designing the cost-effective and high-activity bifunctional PEC catalysts both for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) has been focused on. Based on first-principles calculations, we propose a feasible strategy to enhance either HER or OER performance in the monoclinic exposed BiVO4 (110) facet by the introduction of oxygen vacancies (Ovacs). Our results show that oxygen vacancies induce charge rearrangements, which enhances charge transfer between active sites and adatoms. Furthermore, the incorporation of oxygen vacancies reduces the work function of the system, which makes charge transfer from the inner to the surface more easily; thus, the charges possess stronger redox capacity. As a result, the Ovac reduces both the hydrogen adsorption-free energy (ΔGH*) for the HER and the overpotential for the OER, facilitating the PEC activity of overall water splitting. The findings provide not only a method to develop bifunctional PEC catalysts based on BiVO4 but also insight into the mechanism of enhanced catalytic performance. Full article
Show Figures

Figure 1

50 pages, 10220 KiB  
Review
Direct CO2 Hydrogenation over Bifunctional Catalysts to Produce Dimethyl Ether—A Review
by Samira Ebrahimian and Sankar Bhattacharya
Energies 2024, 17(15), 3701; https://doi.org/10.3390/en17153701 - 26 Jul 2024
Viewed by 508
Abstract
Hydrogenation of CO2 represents a promising pathway for converting it into valuable hydrocarbons and clean fuels like dimethyl ether (DME). Despite significant research, several challenges persist, including a limited understanding of reaction mechanisms, thermodynamics, the necessity for catalyst design to enhance DME [...] Read more.
Hydrogenation of CO2 represents a promising pathway for converting it into valuable hydrocarbons and clean fuels like dimethyl ether (DME). Despite significant research, several challenges persist, including a limited understanding of reaction mechanisms, thermodynamics, the necessity for catalyst design to enhance DME selectivity, and issues related to catalyst deactivation. The paper provides a comprehensive overview of recent studies from 2012 to 2023, covering various aspects of CO2 hydrogenation to methanol and DME. This review primarily focuses on advancing the development of efficient, selective, and stable innovative catalysts for this purpose. Recent investigations that have extensively explored heterogeneous catalysts for CO2 hydrogenation were summarized. A notable focus is on Cu-based catalysts modified with promoters such as Zn, Zr, Fe, etc. Additionally, this context delves into thermodynamic considerations, the impact of reaction variables, reaction mechanisms, reactor configurations, and recent technological advancements, such as 3D-printed catalysts. Furthermore, the paper examines the influence of different parameters on catalyst deactivation. The review offers insights into direct CO2 hydrogenation to DME and proposes paths for future investigation, aiming to address current challenges and advance the field. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

12 pages, 2653 KiB  
Article
Facile Immersing Synthesis of Pt Single Atoms Supported on Sulfide for Bifunctional toward Seawater Electrolysis
by Jian Shen, Guotao Yang, Tianshui Li, Wei Liu, Qihao Sha, Zheng Zhong and Yun Kuang
Catalysts 2024, 14(8), 477; https://doi.org/10.3390/catal14080477 - 26 Jul 2024
Viewed by 419
Abstract
Seawater electrolysis for hydrogen production represents a substantial opportunity to curtail production expenditures and exhibits considerable potential for various industrial applications. Platinum-based precious metals exhibit excellent activity for water electrolysis. However, their limited reserves and high costs impede their widespread use on a [...] Read more.
Seawater electrolysis for hydrogen production represents a substantial opportunity to curtail production expenditures and exhibits considerable potential for various industrial applications. Platinum-based precious metals exhibit excellent activity for water electrolysis. However, their limited reserves and high costs impede their widespread use on a large scale. Single-atom catalysts, characterized by low loading and high utilization efficiency, represent a viable alternative, and the development of simple synthesis methods can facilitate their practical application. In this work, we report the facile synthesis of a single-atom Pt-loaded NiCoFeSx (Pt@NiCoFeSx) bifunctional catalytic electrode using a simple impregnation method on a nickel foam substrate. The resulting electrode exhibits low overpotentials for both HER (60 mV@10 mA cm−2) and OER (201 mV@10 mA cm−2) in alkaline seawater electrolytes. When incorporated into a seawater electrolyzer, this electrode achieves a direct current energy consumption of only 4.18 kWh/Nm3H2 over a 100 h test period with negligible decay. These findings demonstrate the potential of our approach for industrial-scale seawater electrolysis. Full article
(This article belongs to the Special Issue Electrocatalytic Water Oxidation, 2nd Edition)
Show Figures

Figure 1

48 pages, 11437 KiB  
Review
Advancing Plastic Recycling: A Review on the Synthesis and Applications of Hierarchical Zeolites in Waste Plastic Hydrocracking
by Muhammad Usman Azam, Waheed Afzal and Inês Graça
Catalysts 2024, 14(7), 450; https://doi.org/10.3390/catal14070450 - 12 Jul 2024
Cited by 1 | Viewed by 860
Abstract
The extensive use of plastics has led to a significant environmental threat due to the generation of waste plastic, which has shown significant challenges during recycling. The catalytic hydrocracking route, however, is viewed as a key strategy to manage this fossil-fuel-derived waste into [...] Read more.
The extensive use of plastics has led to a significant environmental threat due to the generation of waste plastic, which has shown significant challenges during recycling. The catalytic hydrocracking route, however, is viewed as a key strategy to manage this fossil-fuel-derived waste into plastic-derived fuels with lower carbon emissions. Despite numerous efforts to identify an effective bi-functional catalyst, especially metal-loaded zeolites, the high-performing zeolite for hydrocracking plastics has yet to be synthesized. This is due to the microporous nature of zeolite, which results in the diffusional limitations of bulkier polymer molecules entering the structure and reducing the overall cracking of plastic and catalyst cycle time. These constraints can be overcome by developing hierarchical zeolites that feature shorter diffusion paths and larger pore sizes, facilitating the movement of bulky polymer molecules. However, if the hierarchical modification process of zeolites is not controlled, it can lead to the synthesis of hierarchical zeolites with compromised functionality or structural integrity, resulting in reduced conversion for the hydrocracking of plastics. Therefore, we provide an overview of various methods for synthesizing hierarchical zeolites, emphasizing significant advancements over the past two decades in developing innovative strategies to introduce additional pore systems. However, the objective of this review is to study the various synthesis approaches based on their effectiveness while developing a clear link between the optimized preparation methods and the structure-activity relationship of the resulting hierarchical zeolites used for the hydrocracking of plastics. Full article
Show Figures

Graphical abstract

27 pages, 3430 KiB  
Article
Effect of TiO2 on Acidity and Dispersion of H3PW12O40 in Bifunctional Cu-ZnO(Al)-H3PW12O40/TiO2 Catalysts for Direct Dimethyl Ether Synthesis
by Elena Millán Ordóñez, Noelia Mota Toledo, Bertrand Revel, Olivier Lafon and Rufino M. Navarro Yerga
Catalysts 2024, 14(7), 435; https://doi.org/10.3390/catal14070435 - 8 Jul 2024
Viewed by 487
Abstract
The performance of bifunctional hybrid catalysts based on phosphotungstic acid (H3PW12O40, HPW) supported on TiO2 combined with a Cu-ZnO(Al) catalyst in the direct synthesis of dimethyl ether (DME) from syngas has been investigated. In this work, [...] Read more.
The performance of bifunctional hybrid catalysts based on phosphotungstic acid (H3PW12O40, HPW) supported on TiO2 combined with a Cu-ZnO(Al) catalyst in the direct synthesis of dimethyl ether (DME) from syngas has been investigated. In this work, different types of TiO2 were used as a support to study the effect of changes in the structure of the TiO2 support on the acidity and dispersion of HPW. Various TiO2 supports with different structural and surface characteristics have been studied and the results indicate that: (i) the crystallinity and crystallite size of the primary particles of the HPW units depend on the TiO2 support; (ii) the pore size distribution of the TiO2 support affects the surface segregation of the heteropolyacids; and (iii) changes in the supported HPW acid catalysts do not significantly alter the crystal structure of the CuO and ZnO phases after contact with CZA in bifunctional catalysts. The activity results indicate that the variation in the intrinsic activity of the Cu-ZnOx centers in the bifunctional catalysts for direct DME synthesis is minimal due to the limited alteration of the crystal structure of the centers. Full article
(This article belongs to the Special Issue Polyoxometalates (POMs) as Catalysts for Biomass Conversion)
Show Figures

Graphical abstract

14 pages, 4595 KiB  
Article
Electronic-Structure-Modulated Cu,Co-Coanchored N-Doped Nanocarbon as a Difunctional Electrocatalyst for Hydrogen Evolution and Oxygen Reduction Reactions
by Liyun Cao, Rui Liu, Yixuan Huang, Dewei Chu, Mengyao Li, Guoting Xu, Xiaoyi Li, Jianfeng Huang, Yong Zhao and Liangliang Feng
Molecules 2024, 29(13), 2973; https://doi.org/10.3390/molecules29132973 - 22 Jun 2024
Viewed by 472
Abstract
To alleviate the problems of environmental pollution and energy crisis, aggressive development of clean and alternative energy technologies, in particular, water splitting, metal–air batteries, and fuel cells involving two key half reactions comprising hydrogen evolution reaction (HER) and oxygen reduction (ORR), is crucial. [...] Read more.
To alleviate the problems of environmental pollution and energy crisis, aggressive development of clean and alternative energy technologies, in particular, water splitting, metal–air batteries, and fuel cells involving two key half reactions comprising hydrogen evolution reaction (HER) and oxygen reduction (ORR), is crucial. In this work, an innovative hybrid comprising heterogeneous Cu/Co bimetallic nanoparticles homogeneously dispersed on a nitrogen-doped carbon layer (Cu/Co/NC) was constructed as a bifunctional electrocatalyst toward HER and ORR via a hydrothermal reaction along with post-solid-phase sintering technique. Thanks to the interfacial coupling and electronic synergism between the Cu and Co bimetallic nanoparticles, the Cu/Co/NC catalyst showed improved catalytic ORR activity with a half-wave potential of 0.865 V and an excellent stability of more than 30 h, even compared to 20 wt% Pt/C. The Cu/Co/NC catalyst also exhibited excellent HER catalytic performance with an overpotential of below 149 mV at 10 mA/cm2 and long-term operation for over 30 h. Full article
(This article belongs to the Special Issue Battery Chemistry: Recent Advances and Future Opportunities)
Show Figures

Graphical abstract

15 pages, 6901 KiB  
Article
Covalent Molecular Anchoring of Metal-Free Porphyrin on Graphitic Surfaces toward Improved Electrocatalytic Activities in Acidic Medium
by Thi Mien Trung Huynh and Thanh Hai Phan
Coatings 2024, 14(6), 745; https://doi.org/10.3390/coatings14060745 - 12 Jun 2024
Viewed by 1079
Abstract
Robust engineering of two-dimensional (2D) materials via covalent grafting of organic molecules has been a great strategy for permanently tuningtheir physicochemical behaviors toward electrochemical energy applications. Herein, we demonstrated that a covalent functionalization approach of graphitic surfaces including graphene by a graftable porphyrin [...] Read more.
Robust engineering of two-dimensional (2D) materials via covalent grafting of organic molecules has been a great strategy for permanently tuningtheir physicochemical behaviors toward electrochemical energy applications. Herein, we demonstrated that a covalent functionalization approach of graphitic surfaces including graphene by a graftable porphyrin (g-Por) derivative, abbreviated as g-Por/HOPG or g-Por/G, is realizable. The efficiency of this approach is determined at both the molecular and global scales by using a state-of-the-art toolbox including cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, atomic force microscopy (AFM), and scanning tunneling microscopy (STM). Consequently, g-Por molecules were proven to covalently graft on graphitic surfaces via C-C bonds, resulting in the formation of a robust novel hybrid 2D material visualized by AFM and STM imaging. Interestingly, the resulting robust molecular material was elucidated as a novel bifunctional catalyst for both the oxygen evolution (OER) and the hydrogen evolution reactions (HER) in acidic medium with highly catalytic stability and examined at the molecular level. These findings contribute to an in-depth understanding at the molecular level ofthe contribution of the synergetic effects of molecular structures toward the water-splitting process. Full article
Show Figures

Figure 1

Back to TopTop