Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,827)

Search Parameters:
Keywords = biofilm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1124 KiB  
Article
Anti-Biofilm Effect of Hybrid Nanocomposite Functionalized with Erythrosine B on Staphylococcus aureus Due to Photodynamic Inactivation
by Larysa Bugyna, Katarína Bilská, Peter Boháč, Marek Pribus, Juraj Bujdák and Helena Bujdáková
Molecules 2024, 29(16), 3917; https://doi.org/10.3390/molecules29163917 (registering DOI) - 19 Aug 2024
Abstract
Resistant biofilms formed by Staphylococcus aureus on medical devices pose a constant medical threat. A promising alternative to tackle this problem is photodynamic inactivation (PDI). This study focuses on a polyurethane (PU) material with an antimicrobial surface consisting of a composite based on [...] Read more.
Resistant biofilms formed by Staphylococcus aureus on medical devices pose a constant medical threat. A promising alternative to tackle this problem is photodynamic inactivation (PDI). This study focuses on a polyurethane (PU) material with an antimicrobial surface consisting of a composite based on silicate, polycation, and erythrosine B (EryB). The composite was characterized using X-ray diffraction and spectroscopy methods. Anti-biofilm effectiveness was determined after PDI by calculation of CFU mL−1. The liquid PU precursors penetrated a thin silicate film resulting in effective binding of the PU/silicate composite and the PU bulk phases. The incorporation of EryB into the composite matrix did not significantly alter the spectral properties or photoactivity of the dye. A green LED lamp and laser were used for PDI, while irradiation was performed for different periods. Preliminary experiments with EryB solutions on planktonic cells and biofilms optimized the conditions for PDI on the nanocomposite materials. Significant eradication of S. aureus biofilm on the composite surface was achieved by irradiation with an LED lamp and laser for 1.5 h and 10 min, respectively, resulting in a 10,000-fold reduction in biofilm growth. These results demonstrate potential for the development of antimicrobial polymer surfaces for modification of medical materials and devices. Full article
15 pages, 4565 KiB  
Article
Graywater Treatment Efficiency and Nutrient Removal Using Moving Bed Biofilm Reactor (MBBR) Systems: A Comprehensive Review
by Hajar Nourredine and Matthias Barjenbruch
Water 2024, 16(16), 2330; https://doi.org/10.3390/w16162330 - 19 Aug 2024
Abstract
Using wastewater in response to water-related challenges from climate variation has gained significance. Various sophisticated technologies have been developed to meet the demand for wastewater treatment and reuse. Graywater, an intrinsic component of wastewater, is acknowledged for its practical potential in the context [...] Read more.
Using wastewater in response to water-related challenges from climate variation has gained significance. Various sophisticated technologies have been developed to meet the demand for wastewater treatment and reuse. Graywater, an intrinsic component of wastewater, is acknowledged for its practical potential in the context of reuse. Decentralized wastewater treatment systems, exemplified by Moving Bed Biofilm Reactors (MBBRs), have emerged as efficient alternatives in urban settings. By comparing the physicochemical analyses conducted in the three treatment units and evaluating the treatment efficiency of each unit, we will first establish the validity of the MBBR system for treating and recycling graywater, achieving up to 98% elimination rates for BOD5. Subsequently, the possibility of optimizing the system will be explored by evaluating the different treatment stages of MBBR reactors. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

19 pages, 5312 KiB  
Article
Antibacterial and Antibiofilm Properties of Native Australian Plant Endophytes against Wound-Infecting Bacteria
by Meysam Firoozbahr, Enzo A. Palombo, Peter Kingshott and Bita Zaferanloo
Microorganisms 2024, 12(8), 1710; https://doi.org/10.3390/microorganisms12081710 - 19 Aug 2024
Abstract
The wound management field faces significant challenges due to antimicrobial resistance (AMR) and the complexity of chronic wound care. Effective wound treatment requires antimicrobial dressings to prevent bacterial infections. However, the rise of AMR necessitates new antimicrobial agents for wound dressings, particularly for [...] Read more.
The wound management field faces significant challenges due to antimicrobial resistance (AMR) and the complexity of chronic wound care. Effective wound treatment requires antimicrobial dressings to prevent bacterial infections. However, the rise of AMR necessitates new antimicrobial agents for wound dressings, particularly for addressing bacterial pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Endophytic fungi, known for producing diverse bioactive compounds, represent a promising source of such new agents. This study tested thirty-two endophytic fungi from thirteen distinct Australian native plants for their antibacterial activity against S. aureus. Ethyl acetate (EtOAc) extracts from fungal culture filtrates exhibited inhibitory effects against both methicillin-sensitive S. aureus ATCC 25923 (MIC = 78.1 µg/mL) and MRSA M180920 (MIC = 78.1 µg/mL). DNA sequence analysis was employed for fungal identification. The most active sample, EL 19 (Chaetomium globosum), was selected for further analysis, revealing that its EtOAc extracts reduced S. aureus ATCC 25923 biofilm formation by 55% and cell viability by 57% to 68% at 12 × MIC. Furthermore, cytotoxicity studies using the brine shrimp lethality test demonstrated low cytotoxicity up to 6 × MIC (25% mortality rate) with an LC50 value of 639.1 µg/mL. Finally, the most active sample was incorporated into polycaprolactone (PCL) fiber mats via electrospinning, with resultant inhibition of S. aureus species. This research underscores the potential of endophytic fungi from Australian plants as sources of substances effective against common wound pathogens. Further exploration of the responsible compounds and their mechanisms could facilitate the development of wound dressings effective against MRSA and innovative biofilm-resistant electrospun fibers, contributing to the global efforts to combat AMR. Full article
(This article belongs to the Special Issue Bacterial Biofilm Formation and Eradication)
Show Figures

Figure 1

21 pages, 4502 KiB  
Article
Farnesol Emulsion as an Effective Broad-Spectrum Agent against ESKAPE Biofilms
by Li Tan, Rong Ma, Adam J. Katz and Nicole Levi
Antibiotics 2024, 13(8), 778; https://doi.org/10.3390/antibiotics13080778 - 17 Aug 2024
Viewed by 277
Abstract
The family of ESKAPE pathogens is comprised of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter. Together they are the main contributors of nosocomial infections and are well established for their ability to “escape” antibiotics. Farnesol is [...] Read more.
The family of ESKAPE pathogens is comprised of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter. Together they are the main contributors of nosocomial infections and are well established for their ability to “escape” antibiotics. Farnesol is an FDA-approved cosmetic and flavoring agent with significant anti-biofilm properties. In a proprietary emulsion, farnesol has been shown to be capable of disrupting S. aureus, P. aeruginosa, and A. baumannii biofilms. The current work demonstrates that this farnesol emulsion reduces the number of viable bacteria, while also leading to reductions in biomass, of the other three ESKAPE pathogens: Enterococcus faecium, Klebsiella pneumoniae, and Enterobacter, both in vitro and in an ex vivo human skin model. A concentration of 0.5 mg/mL was effective for impeding biofilm development of all three bacteria, while 1 mg/mL for E. faecium and K. pneumoniae, or 0.2 mg/mL for E. cloacae, was able to kill bacteria in established biofilms. Contrary to antibiotics, no resistance to farnesol was observed for E. faecium or K. pneumoniae. The results indicate that farnesol is effective for direct cell killing and also has the ability to induce biofilm detachment from surfaces, as confirmed using Live/Dead image analysis. Our findings confirm that farnesol emulsion is an effective broad-spectrum agent to impede ESKAPE biofilms. Full article
Show Figures

Figure 1

17 pages, 3284 KiB  
Article
Different Roles of Dioxin-Catabolic Plasmids in Growth, Biofilm Formation, and Metabolism of Rhodococcus sp. Strain p52
by Xu Wang, Yanan Wu, Meng Chen, Changai Fu, Hangzhou Xu and Li Li
Microorganisms 2024, 12(8), 1700; https://doi.org/10.3390/microorganisms12081700 - 17 Aug 2024
Viewed by 274
Abstract
Microorganisms harbor catabolic plasmids to tackle refractory organic pollutants, which is crucial for bioremediation and ecosystem health. Understanding the impacts of plasmids on hosts provides insights into the behavior and adaptation of degrading bacteria in the environment. Here, we examined alterations in the [...] Read more.
Microorganisms harbor catabolic plasmids to tackle refractory organic pollutants, which is crucial for bioremediation and ecosystem health. Understanding the impacts of plasmids on hosts provides insights into the behavior and adaptation of degrading bacteria in the environment. Here, we examined alterations in the physiological properties and gene expression profiles of Rhodococcus sp. strain p52 after losing two conjugative dioxin-catabolic megaplasmids (pDF01 and pDF02). The growth of strain p52 accelerated after pDF01 loss, while it decelerated after pDF02 loss. During dibenzofuran degradation, the expression levels of dibenzofuran catabolic genes on pDF01 were higher compared to those on pDF02; accordingly, pDF01 loss markedly slowed dibenzofuran degradation. It was suggested that pDF01 is more beneficial to strain p52 under dibenzofuran exposure. Moreover, plasmid loss decreased biofilm formation, especially after pDF02 loss. Transcriptome profiling revealed different pathways enriched in upregulated and downregulated genes after pDF01 and pDF02 loss, indicating different adaptation mechanisms. Based on the transcriptional activity variation, pDF01 played roles in transcription and anabolic processes, while pDF02 profoundly influenced energy production and cellular defense. This study enhances our knowledge of the impacts of degradative plasmids on native hosts and the adaptation mechanisms of hosts, contributing to the application of plasmid-mediated bioremediation in contaminated environments. Full article
(This article belongs to the Collection Biodegradation and Environmental Microbiomes)
Show Figures

Figure 1

16 pages, 3936 KiB  
Article
Metabolomic Approaches to Study the Potential Inhibitory Effects of Plantaricin Q7 against Listeria monocytogenes Biofilm
by Yinxue Liu, Yisuo Liu, Linlin Hao, Jiayuan Cao, Lu Jiang and Huaxi Yi
Foods 2024, 13(16), 2573; https://doi.org/10.3390/foods13162573 - 17 Aug 2024
Viewed by 346
Abstract
Listeria monocytogenes is a serious pathogen and can exacerbate harmful effects through the formation of biofilm. Inhibition of or reduction in L. monocytogenes biofilm is a promising strategy to control L. monocytogenes in the food industry. In our previous study, it was found [...] Read more.
Listeria monocytogenes is a serious pathogen and can exacerbate harmful effects through the formation of biofilm. Inhibition of or reduction in L. monocytogenes biofilm is a promising strategy to control L. monocytogenes in the food industry. In our previous study, it was found that plantaricin Q7 produced by Lactiplantibacillus plantarum Q7 could inhibit and reduce L. monocytogenes biofilm, but the specific mechanism remains unclear. In this study, the inhibitive and reduced activity of plantaricin Q7 on L. monocytogenes biofilm was investigated by metabolomics. The results showed that plantaricin Q7 inhibited the synthesis of L. monocytogenes biofilm mainly through purine metabolism and glycerol phospholipid metabolism, and the key differential metabolites included acetylcholine and hypoxanthine with a decrease in abundance from 5.80 to 4.85. In addition, plantaricin Q7 reduced the formed L. monocytogenes biofilm by purine metabolism and arginine biosynthesis, and the main differential metabolites were N-acetylglutamate and D-ribose-1-phosphate with a decrease in abundance from 6.21 to 4.73. It was the first report that purine metabolism and amino acid metabolism were the common metabolic pathway for plantaricin Q7 to inhibit and reduce L. monocytogenes biofilm, which could be potential targets to control L. monocytogenes biofilm. A putative metabolic pathway for L. monocytogenes biofilm inhibition and reduction by plantaricin Q7 was proposed. These findings provided a novel strategy to control L. monocytogenes biofilm in food processing. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 2007 KiB  
Article
Isolation of Staphylococcus pseudintermedius in Immunocompromised Patients from a Single Center in Spain: A Zoonotic Pathogen from Companion Animals
by Joaquim Viñes, Miguel Ángel Verdejo, Laura Horvath, Andrea Vergara, Jordi Vila, Olga Francino, Laura Morata, Mateu Espasa, Climent Casals-Pascual, Àlex Soriano and Cristina Pitart
Microorganisms 2024, 12(8), 1695; https://doi.org/10.3390/microorganisms12081695 - 16 Aug 2024
Viewed by 303
Abstract
Staphylococcus pseudintermedius, a commensal opportunistic bacterium predominantly residing in the skin of companion animals, particularly dogs, has the potential to induce skin and soft tissue infections in pets, and zoonotic infections, including catheter-related complications. This study documents four cases of S. pseudintermedius [...] Read more.
Staphylococcus pseudintermedius, a commensal opportunistic bacterium predominantly residing in the skin of companion animals, particularly dogs, has the potential to induce skin and soft tissue infections in pets, and zoonotic infections, including catheter-related complications. This study documents four cases of S. pseudintermedius infection or colonization in patients who had close contact with dogs or cats. Identification of the bacterial species was performed using MALDI-TOF mass spectrometry, and antibiotic susceptibility was determined using microdilution assay. DNA was sequenced using Nanopore technology followed by in silico analysis. Three isolates were multidrug resistant, including resistance to methicillin, with one belonging to the prevalent European lineage ST551, and the other two were attributed to a novel multilocus sequence type, ST2672. The remaining isolate was attributed to the novel multilocus sequence type ST2673 and was methicillin susceptible. All four isolates exhibited an array of virulence factors that contributed to colonization, damage to host immune cells, and biofilm formation. All the ST551 isolates included in the comparative analysis displayed clonality within the European continent. The importance of describing zoonotic infections associated with S. pseudintermedius resides in the scarcity of available scientific literature, further accentuated by its heightened resistance profile and potential complications, particularly in the context of catheter-related infections. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and One Health)
Show Figures

Figure 1

33 pages, 8180 KiB  
Article
Novel Insights into the Antimicrobial and Antibiofilm Activity of Pyrroloquinoline Quinone (PQQ); In Vitro, In Silico, and Shotgun Proteomic Studies
by Mai M. Labib, Alaa M. Alqahtani, Hebatallah H. Abo Nahas, Rana M. Aldossari, Bandar Fahad Almiman, Sarah Ayman Alnumaani, Mohammad El-Nablaway, Ebtesam Al-Olayan, Maha Alsunbul and Essa M. Saied
Biomolecules 2024, 14(8), 1018; https://doi.org/10.3390/biom14081018 - 16 Aug 2024
Viewed by 453
Abstract
Microbial infections pose a significant global health threat, affecting millions of individuals and leading to substantial mortality rates. The increasing resistance of microorganisms to conventional treatments requires the development of novel antimicrobial agents. Pyrroloquinoline quinone (PQQ), a natural medicinal drug involved in various [...] Read more.
Microbial infections pose a significant global health threat, affecting millions of individuals and leading to substantial mortality rates. The increasing resistance of microorganisms to conventional treatments requires the development of novel antimicrobial agents. Pyrroloquinoline quinone (PQQ), a natural medicinal drug involved in various cellular processes, holds promise as a potential antimicrobial agent. In the present study, our aim was, for the first time, to explore the antimicrobial activity of PQQ against 29 pathogenic microbes, including 13 fungal strains, 8 Gram-positive bacteria, and 8 Gram-negative bacteria. Our findings revealed potent antifungal properties of PQQ, particularly against Syncephalastrum racemosum, Talaromyces marneffei, Candida lipolytica, and Trichophyton rubrum. The MIC values varied between fungal strains, and T. marneffei exhibited a lower MIC, indicating a greater susceptibility to PQQ. In addition, PQQ exhibited notable antibacterial activity against Gram-positive and -negative bacteria, with a prominent inhibition observed against Staphylococcus epidermidis, Proteus vulgaris, and MRSA strains. Remarkably, PQQ demonstrated considerable biofilm inhibition against the MRSA, S. epidermidis, and P. vulgaris strains. Transmission electron microscopy (TEM) studies revealed that PQQ caused structural damage and disrupted cell metabolism in bacterial cells, leading to aberrant morphology, compromised cell membrane integrity, and leakage of cytoplasmic contents. These findings were further affirmed by shotgun proteomic analysis, which revealed that PQQ targets several important cellular processes in bacteria, including membrane proteins, ATP metabolic processes, DNA repair processes, metal-binding proteins, and stress response. Finally, detailed molecular modeling investigations indicated that PQQ exhibits a substantial binding affinity score for key microbial targets, including the mannoprotein Mp1P, the transcriptional regulator TcaR, and the endonuclease PvuRTs1I. Taken together, our study underscores the effectiveness of PQQ as a broad-spectrum antimicrobial agent capable of combating pathogenic fungi and bacteria, while also inhibiting biofilm formation and targeting several critical biological processes, making it a promising therapeutic option for biofilm-related infections. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

12 pages, 12537 KiB  
Article
Antibiofilm and Antihemolytic Activities of Actinostemma lobatum Extract Rich in Quercetin against Staphylococcus aureus
by Jin-Hyung Lee, Yong-Guy Kim, Ji-Su Choi, Yong Tae Jeong, Buyng Su Hwang and Jintae Lee
Pharmaceutics 2024, 16(8), 1075; https://doi.org/10.3390/pharmaceutics16081075 - 16 Aug 2024
Viewed by 229
Abstract
Staphylococcus aureus biofilm formation is a pivotal mechanism in the development of drug resistance, conferring resilience against conventional antibiotics. This study investigates the inhibitory effects of Actinostemma lobatum (A. lobatum) Maxim extracts on S. aureus biofilm formation and their antihemolytic activities, [...] Read more.
Staphylococcus aureus biofilm formation is a pivotal mechanism in the development of drug resistance, conferring resilience against conventional antibiotics. This study investigates the inhibitory effects of Actinostemma lobatum (A. lobatum) Maxim extracts on S. aureus biofilm formation and their antihemolytic activities, with a particular focus on identifying the active antibiofilm and antihemolysis compound, quercetin. Seven solvent extracts and twelve sub-fractions were evaluated against four S. aureus strains. The ethyl acetate fraction (10 to 100 μg/mL) significantly hindered biofilm formation by both methicillin-sensitive and -resistant strains. Bioassay-guided isolation of the ethyl acetate extract identified quercetin as the major antibiofilm compound. The ethyl acetate extract was found to contain 391 μg/mg of quercetin and 30 μg/mg of kaempferol. Additionally, the A. lobatum extract exhibited antihemolytic activity attributable to the presence of quercetin. The findings suggest that quercetin-rich extracts from A. lobatum and other quercetin-rich foods and plants hold promise for inhibiting resilient S. aureus biofilm formation and attenuating its virulence. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Plant Extracts, 2nd Edition)
Show Figures

Figure 1

14 pages, 2547 KiB  
Article
Inhibition of Development and Metabolism of Dual-Species Biofilms of Candida albicans and Candida krusei (Pichia kudriavzevii) by Organoselenium Compounds
by Gabriela de Souza Calvi, Giulia Nicolle Jácome Cartaxo, Qiuxin Lin Carretoni, André Luiz Missio da Silva, Denilson Nogueira de Moraes, José Geraldo da Cruz Pradella and Maricilia Silva Costa
Pharmaceuticals 2024, 17(8), 1078; https://doi.org/10.3390/ph17081078 - 16 Aug 2024
Viewed by 221
Abstract
Although Candida albicans is the most frequently identified Candida species in clinical settings, a significant number of infections related to the non-albicans Candida (NAC) species, Candida krusei, has been reported. Both species are able to produce biofilms and have been an [...] Read more.
Although Candida albicans is the most frequently identified Candida species in clinical settings, a significant number of infections related to the non-albicans Candida (NAC) species, Candida krusei, has been reported. Both species are able to produce biofilms and have been an important resistance-related factor to antimicrobial resistance. In addition, the microbial relationship is common in the human body, contributing to the formation of polymicrobial biofilms. Considering the great number of reports showing the increase in cases of resistance to the available antifungal drugs, the development of new and effective antifungal agents is critical. The inhibitory effect of Organoselenium Compounds (OCs) on the development of Candida albicans and Candida krusei was recently demonstrated, supporting the potential of these compounds as efficient antifungal drugs. In addition, OCs were able to reduce the viability and the development of biofilms, a very important step in colonization and infection caused by fungi. Thus, the objective of this study was to investigate the effect of the Organoselenium Compounds (p-MeOPhSe)2, (PhSe)2, and (p-Cl-PhSe)2 on the development of dual-species biofilms of Candida albicans and Candida krusei produced using either RPMI-1640 or Sabouraud Dextrose Broth (SDB) media. The development of dual-species biofilms was evaluated by the determination of both metabolic activity, using a metabolic assay based on the reduction of XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide sodium salt) assay and identification of either Candida albicans and Candida krusei on CHROMagar Candida medium. Biofilm formation using RPMI-1640 was inhibited in 90, 55, and 20% by 30 µM (p-MeOPhSe)2, (PhSe)2, and (p-Cl-PhSe)2, respectively. However, biofilms produced using SDB presented an inhibition of 62, 30 and 15% in the presence of 30 µM (p-MeOPhSe)2, (PhSe)2, and (p-Cl-PhSe)2, respectively. The metabolic activity of 24 h biofilms was inhibited by 35, 30 and 20% by 30 µM (p-MeOPhSe)2, (PhSe)2, and (p-Cl-PhSe)2, respectively, with RPMI-1640; however, 24 h biofilms formed using SDB were not modified by the OCs. In addition, a great reduction in the number of CFUs of Candida albicans (93%) in biofilms produced using RPMI-1640 in the presence of 30 µM (p-MeOPhSe)2 was observed. However, biofilms formed using SDB and treated with 30 µM (p-MeOPhSe)2 presented a reduction of 97 and 69% in the number of CFUs of Candida albicans and Candida krusei, respectively. These results demonstrated that Organoselenium Compounds, mainly (p-MeOPhSe)2, are able to decrease the metabolic activity of dual-species biofilms by reducing both Candida albicans and Candida krusei cell number during biofilm formation using either RPMI-1640 or SDB. Taken together, these results demonstrated the potential of the OCs to inhibit the development of dual-species biofilms of Candida albicans and Candida krusei. Full article
Show Figures

Figure 1

13 pages, 1384 KiB  
Article
Anti-Biofilm and Anti-Inflammatory Properties of the Truncated Analogs of the Scorpion Venom-Derived Peptide IsCT against Pseudomonas aeruginosa
by Pornpimon Jantaruk, Kittitat Teerapo, Supattra Charoenwutthikun, Sittiruk Roytrakul and Duangkamol Kunthalert
Antibiotics 2024, 13(8), 775; https://doi.org/10.3390/antibiotics13080775 - 16 Aug 2024
Viewed by 482
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen in humans and a frequent cause of severe nosocomial infections and fatal infections in immunocompromised individuals. Its ability to form biofilms has been the main driving force behind its resistance to almost all conventional antibiotics, thereby limiting [...] Read more.
Pseudomonas aeruginosa is an opportunistic pathogen in humans and a frequent cause of severe nosocomial infections and fatal infections in immunocompromised individuals. Its ability to form biofilms has been the main driving force behind its resistance to almost all conventional antibiotics, thereby limiting treatment efficacy. In an effort to discover novel therapeutic agents to fight P. aeruginosa-associated biofilm infections, the truncated analogs of scorpion venom-derived peptide IsCT were synthesized and their anti-biofilm properties were examined. Among the investigated peptides, the IsCT-Δ6-8 peptide evidently showed the most potential anti-P. aeruginosa biofilm activity and the effect was not due to bacterial growth inhibition. The IsCT-Δ6-8 peptide also exhibited inhibitory activity against the production of pyocyanin, an important virulence factor of P. aeruginosa. Furthermore, the IsCT-Δ6-8 peptide significantly suppressed the production of inflammatory mediators nitric oxide and interleukin-6 in P. aeruginosa LPS-induced macrophages. Due to its low cytotoxicity to mammalian cells, the IsCT-Δ6-8 peptide emerges as a promising candidate with significant anti-biofilm and anti-inflammatory properties. These findings highlight its potential application in treating P. aeruginosa-related biofilm infections. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Bioactive Peptides and Their Derivatives)
Show Figures

Figure 1

25 pages, 1569 KiB  
Review
The Role of Pseudomonas aeruginosa in the Pathogenesis of Corneal Ulcer, Its Associated Virulence Factors, and Suggested Novel Treatment Approaches
by Lorina Badger-Emeka, Promise Emeka, Krishnaraj Thirugnanasambantham and Abdulaziz S. Alatawi
Pharmaceutics 2024, 16(8), 1074; https://doi.org/10.3390/pharmaceutics16081074 - 16 Aug 2024
Viewed by 426
Abstract
Background: Pseudomonas aeruginosa (P. aeruginosa), is a diverse Gram-negative pathogen commonly associated with a wide spectrum of infections. It is indicated to be the most prevalent causative agent in the development of bacterial keratitis linked with the use of contact lens. Corneal [...] Read more.
Background: Pseudomonas aeruginosa (P. aeruginosa), is a diverse Gram-negative pathogen commonly associated with a wide spectrum of infections. It is indicated to be the most prevalent causative agent in the development of bacterial keratitis linked with the use of contact lens. Corneal infections attributed to P. aeruginosa frequently have poor clinical outcomes necessitating lengthy and costly therapies. Therefore, this review looks at the aetiology of P. aeruginosa bacterial keratitis as well as the bacterial drivers of its virulence and the potential therapeutics on the horizon. Method: A literature review with the articles used for the review searched for and retrieved from PubMed, Scopus, and Google Scholar (date last accessed 1 April 2024). The keywords used for the search criteria were “Pseudomonas and keratitis, biofilm and cornea as well as P. aeruginosa”. Results: P. aeruginosa is implicated in the pathogenesis of bacterial keratitis associated with contact lens usage. To reduce the potential seriousness of these infections, a variety of contact lens-cleaning options are available. However, continuous exposure to a range of antibiotics doses, from sub-inhibitory to inhibitory, has been shown to lead to the development of resistance to both antibiotics and disinfectant. Generally, there is a global public health concern regarding the rise of difficult-to-treat infections, particularly in the case of P. aeruginosa virulence in ocular infections. This study of the basic pathogenesis of a prevalent P. aeruginosa strain is therefore implicated in keratitis. To this effect, anti-virulence methods and phage therapy are being researched and developed in response to increasing antibiotic resistance. Conclusion: This review has shown P. aeruginosa to be a significant cause of bacterial keratitis, particularly among users of contact lens. It also revealed treatment options, their advantages, and their drawbacks, including prospective candidates. Full article
Show Figures

Figure 1

21 pages, 3702 KiB  
Article
Genetic Characterization, Antibiotic Resistance, and Virulence Genes Profiling of Bacillus cereus Strains from Various Foods in Japan
by Marwa Nabil Sayed Abdelaziz, Mahmoud Gamaleldin Zayda, Aye Thida Maung, Mohamed El-Telbany, Tahir Noor Mohammadi, Su Zar Chi Lwin, Khin Zar Linn, Chen Wang, Lu Yuan, Yoshimitsu Masuda, Ken-ichi Honjoh and Takahisa Miyamoto
Antibiotics 2024, 13(8), 774; https://doi.org/10.3390/antibiotics13080774 - 16 Aug 2024
Viewed by 434
Abstract
Bacillus cereus sensu stricto is a foodborne pathogen that causes food poisoning. Their spore and biofilm-forming abilities persist in various environments and foods. This study investigated the prevalence, virulence, antibiotic resistance, and genetic diversity of B. cereus s. s. strains isolated from various [...] Read more.
Bacillus cereus sensu stricto is a foodborne pathogen that causes food poisoning. Their spore and biofilm-forming abilities persist in various environments and foods. This study investigated the prevalence, virulence, antibiotic resistance, and genetic diversity of B. cereus s. s. strains isolated from various food samples. Of 179 samples, 22.34% were positive for B. cereus s. s., with significantly high detection rates in milk products and raw chicken meat. Forty strains were isolated from positive samples. Matrix-assisted laser desorption ionization/time of flight mass spectrometry analysis revealed nine distinct clusters and multi-locus sequence typing revealed 34 sequence types including 23 novel sequences, demonstrating high genetic diversity among the isolates. PCR analysis revealed that all the strains contained at least one toxin gene, but none contained the cytK gene. Antibiotic resistance tests revealed that all isolates were classified as multidrug-resistant, with high resistance levels, particularly to β-lactam antibiotics and vancomycin, but were susceptible to gentamicin. All isolates showed variations in biofilm formation. This study highlights the significant public health risk due to B. cereus s. s. and underscores the need for stringent monitoring and control measures in food production to manage antimicrobial resistance and ensure food safety. Full article
Show Figures

Graphical abstract

18 pages, 1879 KiB  
Article
Phylogenetic Diversity, Antibiotic Resistance, and Virulence of Escherichia coli Strains from Urinary Tract Infections in Algeria
by Anfal Kara, Chiara Massaro, Giovanni M. Giammanco, Rosa Alduina and Naouel Boussoualim
Antibiotics 2024, 13(8), 773; https://doi.org/10.3390/antibiotics13080773 - 15 Aug 2024
Viewed by 396
Abstract
Urinary tract infections (UTIs) caused by Escherichia coli represent a significant public health concern due to the high virulence and antimicrobial resistance exhibited by these pathogens. This study aimed to analyze the phylogenetic diversity and antibiotic resistance profiles of Uropathogenic E. coli (UPEC) [...] Read more.
Urinary tract infections (UTIs) caused by Escherichia coli represent a significant public health concern due to the high virulence and antimicrobial resistance exhibited by these pathogens. This study aimed to analyze the phylogenetic diversity and antibiotic resistance profiles of Uropathogenic E. coli (UPEC) strains isolated from UTI patients in Algeria, focusing on virulence factors such as extended β-lactamase (ESBL) production, biofilm formation, and hemolytic activity. Phylogenetic grouping of 86 clinical imipenem resistant E. coli isolates showed the prevalence of group B2 (48.9%), followed by groups E (22.1%), unknown (12.8%), A (8.1%), and B1 (4.7%), and Clade I, D, Clade I, or Clade II (1.2%). The highest resistance rates were observed towards amoxicillin (86.04%), ticarcillin (82.55%), piperacillin (73.25%), nitrofurantoin (84.88%), and trimethoprim-sulfamethoxazole (51.16%). Notably, 69.8% of UPEC strains were multidrug-resistant (MDR) and 23.2% were extensively drug-resistant (XDR). Additionally, 48.9%, 42%, and 71% of strains demonstrated ESBL production, hemolytic activity, and weak biofilm production, respectively. Continuous monitoring and characterization of UPEC strains are essential to track the spread of the most resistant and virulent phylogenetic groups over time, facilitating rapid therapeutic decisions to treat infections and prevent the emergence of new resistant organisms, helping choose the most effective antibiotics and reducing treatment failure. Full article
(This article belongs to the Special Issue A One Health Approach to Antimicrobial Resistance)
Show Figures

Figure 1

17 pages, 1033 KiB  
Review
Antimicrobial Regimens in Cement Spacers for Periprosthetic Joint Infections: A Critical Review
by Symeon Naoum, Christos Koutserimpas, Ioannis Pantekidis, Vasileios Giovanoulis, Enejd Veizi, Maria Piagkou, Petros Ioannou, George Samonis, Aglaia Domouchtsidou, Andreas G. Tsantes and Dimitrios V. Papadopoulos
Antibiotics 2024, 13(8), 772; https://doi.org/10.3390/antibiotics13080772 - 15 Aug 2024
Viewed by 403
Abstract
Antibiotic-loaded cement spacers (ALCSs) are essential for treating periprosthetic joint infections (PJIs) by providing mechanical support and local antibiotic delivery. The purpose of this review is to comprehensively examine the various types of spacers utilised in the management of periprosthetic joint infections (PJIs), [...] Read more.
Antibiotic-loaded cement spacers (ALCSs) are essential for treating periprosthetic joint infections (PJIs) by providing mechanical support and local antibiotic delivery. The purpose of this review is to comprehensively examine the various types of spacers utilised in the management of periprosthetic joint infections (PJIs), including both static and articulating variants and to analyse the fundamental principles underlying spacer use, their clinical benefits, the selection and administration of antimicrobial agents, appropriate dosages, and potential adverse effects. Articulating spacers, which allow joint mobility, often yield better outcomes than static ones. Spacer pharmacokinetics are vital for maintaining therapeutic antibiotic levels, influenced by cement porosity, mixing techniques, and the contact area. Antibiotic choice depends on heat stability, solubility, and impact on cement’s mechanical properties. Mechanical properties are crucial, as spacers must withstand physical stresses, with antibiotics potentially affecting these properties. Complications, such as tissue damage and systemic toxicity, are discussed, along with mitigation strategies. Future advancements include surface modifications and novel carriers to enhance biofilm management and infection control. Full article
Show Figures

Figure 1

Back to TopTop