Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,454)

Search Parameters:
Keywords = biomaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1190 KiB  
Article
Swelling, Protein Adsorption, and Biocompatibility of Pectin–Chitosan Hydrogels
by Sergey Popov, Nikita Paderin, Elizaveta Chistiakova, Alisa Sokolova, Ilya V. Konyshev, Vladislav S. Belozerov and Andrey A. Byvalov
Gels 2024, 10(7), 472; https://doi.org/10.3390/gels10070472 (registering DOI) - 17 Jul 2024
Viewed by 71
Abstract
The study aims to determine how chitosan impacts pectin hydrogel’s ability to attach peritoneal leukocytes, activate complement, induce hemolysis, and adsorb blood proteins. The hydrogels PEC-Chi0, PEC-Chi25, PEC-Chi50, and PEC-Chi75 were prepared by placing a mixture solution of 4% pectin and 4% chitosan [...] Read more.
The study aims to determine how chitosan impacts pectin hydrogel’s ability to attach peritoneal leukocytes, activate complement, induce hemolysis, and adsorb blood proteins. The hydrogels PEC-Chi0, PEC-Chi25, PEC-Chi50, and PEC-Chi75 were prepared by placing a mixture solution of 4% pectin and 4% chitosan in a ratio of 4:0, 3:1, 2:2, and 1:3 in a solution of 1.0 M CaCl2. Chitosan was found to modify the mechanical properties of pectin–calcium hydrogels, such as hardness and cohesiveness-to-adhesiveness ratio. Chitosan in the pectin–calcium hydrogel caused pH-sensitive swelling in Hanks’ solution. The PEC-Chi75 hydrogel was shown to adsorb serum proteins at pH 7.4 to a greater extent than other hydrogels. PEC-Chi75’s strong adsorption capacity was related to lower peritoneal leukocyte adherence to its surface when compared to other hydrogels, showing improved biocompatibility. Using the optical tweezers approach, it was shown that the force of interaction between pectin–chitosan hydrogels and plasma proteins increased from 10 to 24 pN with increasing chitosan content from 0 to 75%. Thus, the properties of pectin–calcium hydrogel, which determine interactions with body tissues after implantation, are improved by the addition of chitosan, making pectin–chitosan hydrogel a promising candidate for smart biomaterial development. Full article
(This article belongs to the Special Issue Physically Cross-Linked Gels and Their Applications)
16 pages, 3368 KiB  
Article
Hybrid Bone Substitute Containing Tricalcium Phosphate and Silver Modified Hydroxyapatite–Methylcellulose Granules
by Joanna P. Czechowska, Annett Dorner-Reisel and Aneta Zima
J. Funct. Biomater. 2024, 15(7), 196; https://doi.org/10.3390/jfb15070196 (registering DOI) - 17 Jul 2024
Viewed by 92
Abstract
Despite years of extensive research, achieving the optimal properties for calcium phosphate-based biomaterials remains an ongoing challenge. Recently, ‘biomicroconcretes’ systems consisting of setting-phase-forming bone cement matrix and aggregates (granules/microspheres) have been developed and studied. However, further investigations are necessary to clarify the complex [...] Read more.
Despite years of extensive research, achieving the optimal properties for calcium phosphate-based biomaterials remains an ongoing challenge. Recently, ‘biomicroconcretes’ systems consisting of setting-phase-forming bone cement matrix and aggregates (granules/microspheres) have been developed and studied. However, further investigations are necessary to clarify the complex interplay between the synthesis, structure, and properties of these materials. This article focusses on the development and potential applications of hybrid biomaterials based on alpha-tricalcium phosphate (αTCP), hydroxyapatite (HA) and methylcellulose (MC) modified with silver (0.1 wt% or 1.0 wt%). The study presents the synthesis and characterization of silver-modified hybrid granules and seeks to determine the possibility and efficiency of incorporating these hybrid granules into αTCP-based biomicroconcretes. The αTCP and hydroxyapatite provide structural integrity and osteoconductivity, the presence of silver imparts antimicrobial properties, and MC allows for the self-assembling of granules. This combination creates an ideal environment for bone regeneration, while it potentially may prevent bacterial colonization and infection. The material’s chemical and phase composition, setting times, compressive strength, microstructure, chemical stability, and bioactive potential in simulated body fluid are systematically investigated. The results of the setting time measurements showed that both the size and the composition of granules (especially the hybrid nature) have an impact on the setting process of biomicroconcretes. The addition of silver resulted in prolonged setting times compared to the unmodified materials. Developed biomicroconcretes, despite exhibiting lower compressive strength compared to traditional calcium phosphate cements, fall within the range of human cancellous bone and demonstrate chemical stability and bioactive potential, indicating their suitability for bone substitution and regeneration. Further in vitro studies and in vivo assessments are needed to check the potential of these biomaterials in clinical applications. Full article
(This article belongs to the Special Issue Hydroxyapatite Composites for Biomedical Application)
12 pages, 9284 KiB  
Article
Effects of Biomaterials Derived from Germinated Hemp Seeds on Stressed Hair Stem Cells and Immune Cells
by Donghyun Kim, Namsoo Peter Kim and Boyong Kim
Int. J. Mol. Sci. 2024, 25(14), 7823; https://doi.org/10.3390/ijms25147823 (registering DOI) - 17 Jul 2024
Viewed by 114
Abstract
Androgenetic alopecia is a genetic disorder that commonly causes progressive hair loss in men, leading to diminished self-esteem. Although cannabinoids extracted from Cannabis sativa are used in hair loss treatments, no study has evaluated the effects of germinated hemp seed extract (GHSE) and [...] Read more.
Androgenetic alopecia is a genetic disorder that commonly causes progressive hair loss in men, leading to diminished self-esteem. Although cannabinoids extracted from Cannabis sativa are used in hair loss treatments, no study has evaluated the effects of germinated hemp seed extract (GHSE) and exosomes derived from the calli of germinated hemp seeds on alopecia. Therefore, this study aimed to demonstrate their preventive effects against alopecia using various methodologies, including quantitative PCR, flow cytometry, ELISA, and immunocytochemistry. Our research highlights the preventive functions of GHSE (GE2000: 2000 µg/mL) and exosomes from the calli of germinated hemp seeds (E40: 40 μg/mL) in three biochemical categories: genetic modulation in hair follicle dermal papilla stem cells (HFDPSCs), cellular differentiation, and immune system modulation. Upon exposure to dihydrotestosterone (DT), both biomaterials upregulated genes preventing alopecia (Wnt, β-catenin, and TCF) in HFDPSCs and suppressed genes activating alopecia (STAT1, 5α-reductase type 1, IL-15R). Additionally, they suppressed alopecia-related genes (NKG2DL, IL2-Rβ, JAK1, STAT1) in CD8+ T cells. Notably, E40 exhibited more pronounced effects compared to GE2000. Consequently, both E40 and GE2000 effectively mitigated DT-induced stress, activating mechanisms promoting hair formation. Given the limited research on alopecia using these materials, their pharmaceutical development promises significant economic and health benefits. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 5522 KiB  
Article
Silk Fibroin-Enriched Bioink Promotes Cell Proliferation in 3D-Bioprinted Constructs
by Sara Lipari, Pasquale Sacco, Eleonora Marsich and Ivan Donati
Gels 2024, 10(7), 469; https://doi.org/10.3390/gels10070469 (registering DOI) - 17 Jul 2024
Viewed by 69
Abstract
Three-dimensional (3D) bioprinting technology enables the controlled deposition of cells and biomaterials (i.e., bioink) to easily create complex 3D biological microenvironments. Silk fibroin (SF) has recently emerged as a compelling bioink component due to its advantageous mechanical and biological properties. This study reports [...] Read more.
Three-dimensional (3D) bioprinting technology enables the controlled deposition of cells and biomaterials (i.e., bioink) to easily create complex 3D biological microenvironments. Silk fibroin (SF) has recently emerged as a compelling bioink component due to its advantageous mechanical and biological properties. This study reports on the development and optimization of a novel bioink for extrusion-based 3D bioprinting and compares different bioink formulations based on mixtures of alginate methacrylate (ALMA), gelatin and SF. The rheological parameters of the bioink were investigated to predict printability and stability, and the optimal concentration of SF was selected. The bioink containing a low amount of SF (0.002% w/V) was found to be the best formulation. Light-assisted gelation of ALMA was exploited to obtain the final hydrogel matrix. Rheological analyses showed that SF-enriched hydrogels exhibited greater elasticity than SF-free hydrogels and were more tolerant to temperature fluctuations. Finally, MG-63 cells were successfully bioprinted and their viability and proliferation over time were analyzed. The SF-enriched bioink represents an excellent biomaterial in terms of printability and allows high cell proliferation over a period of up to 3 weeks. These data confirm the possibility of using the selected formulation for the successful bioprinting of cells into extracellular matrix-like microenvironments. Full article
(This article belongs to the Special Issue Feature Papers in Chemistry and Physics of Biological Gels)
Show Figures

Figure 1

24 pages, 4672 KiB  
Review
Fabrication and Biomedical Application of Alginate Composite Hydrogels in Bone Tissue Engineering: A Review
by Xiuqiong Chen, Ting Wu, Yanan Bu, Huiqiong Yan and Qiang Lin
Int. J. Mol. Sci. 2024, 25(14), 7810; https://doi.org/10.3390/ijms25147810 (registering DOI) - 17 Jul 2024
Viewed by 124
Abstract
Nowadays, as a result of the frequent occurrence of accidental injuries and traumas such as bone damage, the number of people causing bone injuries or fractures is increasing around the world. The design and fabrication of ideal bone tissue engineering (BTE) materials have [...] Read more.
Nowadays, as a result of the frequent occurrence of accidental injuries and traumas such as bone damage, the number of people causing bone injuries or fractures is increasing around the world. The design and fabrication of ideal bone tissue engineering (BTE) materials have become a research hotspot in the scientific community, and thus provide a novel path for the treatment of bone diseases. Among the materials used to construct scaffolds in BTE, including metals, bioceramics, bioglasses, biomacromolecules, synthetic organic polymers, etc., natural biopolymers have more advantages against them because they can interact with cells well, causing natural polymers to be widely studied and applied in the field of BTE. In particular, alginate has the advantages of excellent biocompatibility, good biodegradability, non-immunogenicity, non-toxicity, wide sources, low price, and easy gelation, enabling itself to be widely used as a biomaterial. However, pure alginate hydrogel as a BTE scaffold material still has many shortcomings, such as insufficient mechanical properties, easy disintegration of materials in physiological environments, and lack of cell-specific recognition sites, which severely limits its clinical application in BTE. In order to overcome the defects of single alginate hydrogels, researchers prepared alginate composite hydrogels by adding one or more materials to the alginate matrix in a certain proportion to improve their bioapplicability. For this reason, this review will introduce in detail the methods for constructing alginate composite hydrogels, including alginate/polymer composite hydrogels, alginate/bioprotein or polypeptide composite hydrogels, alginate/bioceramic composite hydrogels, alginate/bioceramic composite hydrogels, and alginate/nanoclay composite hydrogels, as well as their biological application trends in BTE scaffold materials, and look forward to their future research direction. These alginate composite hydrogel scaffolds exhibit both unexceptionable mechanical and biochemical properties, which exhibit their high application value in bone tissue repair and regeneration, thus providing a theoretical basis for the development and sustainable application of alginate-based functional biomedical materials. Full article
(This article belongs to the Special Issue Research on Synthesis and Application of Polymer Materials)
Show Figures

Figure 1

14 pages, 8775 KiB  
Article
Enhancement of Mechanical Properties of PCL/PLA/DMSO2 Composites for Bone Tissue Engineering
by Kyung-Eun Min, Jae-Won Jang, Cheolhee Kim and Sung Yi
Appl. Sci. 2024, 14(14), 6190; https://doi.org/10.3390/app14146190 (registering DOI) - 16 Jul 2024
Viewed by 276
Abstract
Bone tissue engineering shows potential for regenerating or replacing damaged bone tissues by utilizing biomaterials renowned for their biocompatibility and structural support capabilities. Among these biomaterials, polycaprolactone (PCL) and polylactic acid (PLA) have gained attention due to their biodegradability and versatile applications. However, [...] Read more.
Bone tissue engineering shows potential for regenerating or replacing damaged bone tissues by utilizing biomaterials renowned for their biocompatibility and structural support capabilities. Among these biomaterials, polycaprolactone (PCL) and polylactic acid (PLA) have gained attention due to their biodegradability and versatile applications. However, challenges such as low degradation rates and poor mechanical properties limit their effectiveness. Dimethyl sulfone (DMSO2) has emerged as a potential additive to address these limitations, offering benefits such as reduced viscosity, increased degradation time, and enhanced surface tension. In this study, we investigate tailored composites comprising PLA, PCL, and DMSO2 to enhance mechanical properties and hydrophilicity. Through material characterization and mechanical testing, we found that the addition of DMSO2 led to improvements in the yield strength, modulus, and hydrophilicity of the composites. PCL and DMSO2 10, 20, and 30 wt% were premixed, and 20 wt% PCL + 10, 20, and 30 wt% DMSO2 were mixed with PLA. Specifically, PLA/PCL/DMSO2 composites exhibited higher yield strengths and moduli compared to pure PLA, pure PCL, and PLA/PCL composites. Moreover, the hydrophilicity of the composites increased with DMSO2 concentration, facilitating cell attachment. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of –COOH and –COH bands in PLA/PCL/DMSO2 composites, indicating chemical interactions between DMSO2 and the polymer matrix. Fractography analysis revealed enhanced interface adhesion in PLA/PCL/DMSO2 composites due to the hydrogen bonding. Overall, this study demonstrates the potential of PLA/PCL/DMSO2 composites in bone tissue engineering applications, offering improved mechanical properties and enhanced cell compatibility. The findings contribute to the advancement of biomaterials for additive manufacturing in tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Recent Advances in 3D Printing and Additive Manufacturing Technology)
Show Figures

Figure 1

18 pages, 2850 KiB  
Article
Thermal Stability and Heat Transfer of Polyurethanes for Joints Applications of Wooden Structures
by Paweł Rutkowski, Konrad Kwiecień, Anna Berezicka, Justyna Sułowska, Arkadiusz Kwiecień, Klaudia Śliwa-Wieczorek, Boris Azinovic, Matthew Schwarzkopf, Andreja Pondelak, Jaka Gašper Pečnik and Magdalena Szumera
Molecules 2024, 29(14), 3337; https://doi.org/10.3390/molecules29143337 - 16 Jul 2024
Viewed by 231
Abstract
Wood characterized by desired mechanical properties and wood joining material is essential for creating wooden structures. The polymer adhesives are suitable for such applications due to the possibility of energy dissipation from stresses generated by wooden structures and the elimination of thermal bridging, [...] Read more.
Wood characterized by desired mechanical properties and wood joining material is essential for creating wooden structures. The polymer adhesives are suitable for such applications due to the possibility of energy dissipation from stresses generated by wooden structures and the elimination of thermal bridging, which are common problems in metal joining materials. This research focuses on the thermophysical properties of the laboratory-prepared flexible and rigid polyurethanes to select an appropriate polymer adhesive. Our results showed that the highest thermal stability was in the case of the new PSTF-S adhesive, which reached 230 °C, but the lowest mass loss in the air environment was around 54% for the PS material. The mean thermal expansion coefficient for F&R PU adhesives was 124–164∙10−6 K−1. The thermal diffusivity of examined adhesives varied between 0.100 and 0.180 mm2s−1. The thermal conductivity, depending on the type of polyurethane, was in the 0.13–0.29 W∙m−1∙K−1 range. The relative decrease in thermal diffusivity after heating the adhesives to 150 °C was from 2% for materials with the lowest diffusivity to 23% for the PU with the highest value of heat transfer. It was found that such data can be used to simulate wooden construction joints in future research. Full article
(This article belongs to the Special Issue Advanced Functional Materials: Challenges and Opportunities)
21 pages, 4373 KiB  
Article
Enhancing Sustainability in PLA Membrane Preparation through the Use of Biobased Solvents
by Giovanna Gomez d’Ayala, Tiziana Marino, Yêda Medeiros Bastos de Almeida, Anna Raffaela de Matos Costa, Larissa Bezerra da Silva, Pietro Argurio and Paola Laurienzo
Polymers 2024, 16(14), 2024; https://doi.org/10.3390/polym16142024 - 16 Jul 2024
Viewed by 267
Abstract
For the first time, ultrafiltration (UF) green membranes were prepared through a sustainable route by using PLA as a biopolymer and dihydrolevoclucosenone, whose trade name is Cyrene™ (Cyr), dimethyl isosorbide (DMI), and ethyl lactate (EL) as biobased solvents. The influence of physical-chemical properties [...] Read more.
For the first time, ultrafiltration (UF) green membranes were prepared through a sustainable route by using PLA as a biopolymer and dihydrolevoclucosenone, whose trade name is Cyrene™ (Cyr), dimethyl isosorbide (DMI), and ethyl lactate (EL) as biobased solvents. The influence of physical-chemical properties of the solvent on the final membrane morphology and performance was evaluated. The variation of polymer concentration in the casting solution, as well as the presence of Pluronic® (Plu) as a pore former agent, were assessed as well. The obtained results highlighted that the final morphology of a membrane was strictly connected with the interplaying of thermodynamic factors as well as kinetic ones, primarily dope solution viscosity. The pore size of the resulting PLA membranes ranged from 0.02 to 0.09 μm. Membrane thickness and porosity varied in the range of 0.090–0.133 mm of 75–87%, respectively, and DMI led to the most porous membranes. The addition of Plu to the casting solution showed a beneficial effect on the membrane contact angle, allowing the formation of hydrophilic membranes (contact angle < 90°), and promoted the increase of pore size as well as the reduction of membrane crystallinity. PLA membranes were tested for pure water permeability (10–390 L/m2 h bar). Full article
(This article belongs to the Special Issue Biopolymers for Food Packaging and Agricultural Applications)
Show Figures

Graphical abstract

13 pages, 5615 KiB  
Article
Inflammatory Profile of Different Absorbable Membranes Used for Bone Regeneration: An In Vivo Study
by Vinícius Ferreira Bizelli, Arthur Henrique Alécio Viotto, Izabela Fornazari Delamura, Ana Maira Pereira Baggio, Edith Umasi Ramos, Leonardo Perez Faverani and Ana Paula Farnezi Bassi
Biomimetics 2024, 9(7), 431; https://doi.org/10.3390/biomimetics9070431 - 16 Jul 2024
Viewed by 262
Abstract
Background: Guided bone regeneration (GBR) has become a necessary practice in implantology. Absorbable membranes have shown advantages over non-absorbable membranes, such as blood support of bone tissue. This study aimed to evaluate five collagen membranes in rat calvaria critical-size defects through a histomorphometric [...] Read more.
Background: Guided bone regeneration (GBR) has become a necessary practice in implantology. Absorbable membranes have shown advantages over non-absorbable membranes, such as blood support of bone tissue. This study aimed to evaluate five collagen membranes in rat calvaria critical-size defects through a histomorphometric analysis of the inflammatory profile during the initial phase of bone repair. Materials and methods: A total of 72 Albinus Wistar rats were used for the study, divided into six groups, with 12 animals per group, and two experimental periods, 7 and 15 days. The groups were as follows: the CG (clot), BG (Bio-Gide®), JS (Jason®), CS (Collprotect®), GD (GemDerm®), and GDF (GemDerm Flex®). Results: Data showed that the BG group demonstrated an inflammatory profile with an ideal number of inflammatory cells and blood vessels, indicating a statistically significant difference between the JS and CS groups and the BG group in terms of the number of inflammatory cells and a statistically significant difference between the JS and CS groups and the GD group in terms of angiogenesis (p < 0.05). Conclusions: We conclude that different origins and ways of obtaining them, as well as the thickness of the membrane, can interfere with the biological response of the material. Full article
Show Figures

Figure 1

19 pages, 5358 KiB  
Article
Optimization of Biologically Inspired Electrospun Scaffold for Effective Use in Bone Regenerative Applications
by Susai Mani Mary Stella, Murugapandian Rama, T. M. Sridhar and Uthirapathy Vijayalakshmi
Polymers 2024, 16(14), 2023; https://doi.org/10.3390/polym16142023 - 15 Jul 2024
Viewed by 328
Abstract
Human bone is composed of organic and inorganic composite materials, contributing to its unique strength and flexibility. Hydroxyapatite (HAP) has been extensively studied for bone regeneration, due to its excellent bioactivity and osteoconductivity, which makes it a highly valuable biomaterial for tissue engineering [...] Read more.
Human bone is composed of organic and inorganic composite materials, contributing to its unique strength and flexibility. Hydroxyapatite (HAP) has been extensively studied for bone regeneration, due to its excellent bioactivity and osteoconductivity, which makes it a highly valuable biomaterial for tissue engineering applications. For better therapeutic effects, composite nanofibers containing polyvinyl alcohol (PVA) and polyvinyl Pyrrolidone (PVP) were developed using an electrospinning technique in this study. Herein, hydroxyapatite (a major inorganic constituent of native bone) concentrations varying from 5 to 25% were reinforced in the composite, which could alter the properties of nanofibers. The as-prepared composite nanofibers were characterized by SEM, TEM, XRD, and FT-IR spectroscopy, and a bioactivity assessment was performed in simulated body fluid (SBF). The ICP-OES analysis was used to determine the concentration of Ca2+ and PO42– ions before and after SBF immersion. To optimize the material selection, the nanofibrous scaffolds were subjected to cell proliferation and differentiation in MG-63 osteoblast cell lines, but no significant toxicity was observed. In conclusion, HAP-PVA-PVP scaffolds exhibit unique physical and chemical properties and ideal biocompatibility, with great promise to serve as effective candidates for bone tissue applications. Full article
(This article belongs to the Special Issue Polymer Scaffold for Tissue Engineering Applications)
Show Figures

Graphical abstract

13 pages, 4755 KiB  
Review
Investigating the Potential of Polypore Fungi as Eco-Friendly Materials in Food Industry Applications
by Tomasz Pawłowicz, Karolina Anna Gabrysiak and Konrad Wilamowski
Forests 2024, 15(7), 1230; https://doi.org/10.3390/f15071230 - 15 Jul 2024
Viewed by 224
Abstract
Polyporoid fungi represent an untapped resource in the ancillary use of forests, traditionally utilized in both historic and contemporary medicine for their diverse bioactive properties, yet their potential for creating materials within the food industry remains largely unexplored. This article delves into the [...] Read more.
Polyporoid fungi represent an untapped resource in the ancillary use of forests, traditionally utilized in both historic and contemporary medicine for their diverse bioactive properties, yet their potential for creating materials within the food industry remains largely unexplored. This article delves into the polyporoid fungi as a promising, yet underutilized, biomaterial resource for eco-friendly applications in the food sector. Despite their widespread use in traditional and modern medicine, the exploration of these fungi for industrial applications, particularly in food storage solutions and utensils, is in its nascent stages. The Białowieża Primeval Forest, characterized by its abundant deadwood and minimal human intervention, offers a rich repository of polyporoid fungi. This study aims to illuminate the ecological significance and potential industrial applications of polyporoid fungi. By reviewing existing research and synthesizing insights into the genetic diversity, biochemical capabilities, and ecological roles of polyporoid species such as Fomes fomentarius, Fomitopsis pinicola, and Trametes versicolor, this article proposes a novel approach to leveraging polyporoid fungi in developing sustainable solutions that meet current environmental and health-conscious trends. The investigation not only underscores the potential of polyporoid fungi in advancing green technologies but also highlights the importance of utilizing renewable resources in material science, fostering a shift towards more sustainable industrial practices. Full article
(This article belongs to the Special Issue Non-timber Forest Products: Beyond the Wood)
22 pages, 582 KiB  
Review
The Placenta as a Source of Human Material for Neuronal Repair
by Alessia Dallatana, Linda Cremonesi, Francesco Pezzini, Gianluca Fontana, Giulio Innamorati and Luca Giacomello
Biomedicines 2024, 12(7), 1567; https://doi.org/10.3390/biomedicines12071567 - 15 Jul 2024
Viewed by 243
Abstract
Stem cell therapy has the potential to meet unsolved problems in tissue repair and regeneration, particularly in the neural tissues. However, an optimal source has not yet been found. Growing evidence indicates that positive effects produced in vivo by mesenchymal stem cells (MSCs) [...] Read more.
Stem cell therapy has the potential to meet unsolved problems in tissue repair and regeneration, particularly in the neural tissues. However, an optimal source has not yet been found. Growing evidence indicates that positive effects produced in vivo by mesenchymal stem cells (MSCs) can be due not only to their plasticity but also to secreted molecules including extracellular vesicles (EVs) and the extracellular matrix (ECM). Trophic effects produced by MSCs may reveal the key to developing effective tissue-repair strategies, including approaches based on brain implants or other implantable neural electrodes. In this sense, MSCs will become increasingly valuable and needed in the future. The placenta is a temporary organ devoted to protecting and supporting the fetus. At the same time, the placenta represents an abundant and extremely convenient source of MSCs. Nonetheless, placenta-derived MSCs (P-MSCs) remain understudied as compared to MSCs isolated from other sources. This review outlines the limited literature describing the neuroregenerative effects of P-MSC-derived biomaterials and advocates for exploiting the potential of this untapped source for human regenerative therapies. Full article
40 pages, 758 KiB  
Review
Developments in Alloplastic Bone Grafts and Barrier Membrane Biomaterials for Periodontal Guided Tissue and Bone Regeneration Therapy
by Rabia Ashfaq, Anita Kovács, Szilvia Berkó and Mária Budai-Szűcs
Int. J. Mol. Sci. 2024, 25(14), 7746; https://doi.org/10.3390/ijms25147746 - 15 Jul 2024
Viewed by 319
Abstract
Periodontitis is a serious form of oral gum inflammation with recession of gingival soft tissue, destruction of the periodontal ligament, and absorption of alveolar bone. Management of periodontal tissue and bone destruction, along with the restoration of functionality and structural integrity, is not [...] Read more.
Periodontitis is a serious form of oral gum inflammation with recession of gingival soft tissue, destruction of the periodontal ligament, and absorption of alveolar bone. Management of periodontal tissue and bone destruction, along with the restoration of functionality and structural integrity, is not possible with conventional clinical therapy alone. Guided bone and tissue regeneration therapy employs an occlusive biodegradable barrier membrane and graft biomaterials to guide the formation of alveolar bone and tissues for periodontal restoration and regeneration. Amongst several grafting approaches, alloplastic grafts/biomaterials, either derived from natural sources, synthesization, or a combination of both, offer a wide variety of resources tailored to multiple needs. Examining several pertinent scientific databases (Web of Science, Scopus, PubMed, MEDLINE, and Cochrane Library) provided the foundation to cover the literature on synthetic graft materials and membranes, devoted to achieving periodontal tissue and bone regeneration. This discussion proceeds by highlighting potential grafting and barrier biomaterials, their characteristics, efficiency, regenerative ability, therapy outcomes, and advancements in periodontal guided regeneration therapy. Marketed and standardized quality products made of grafts and membrane biomaterials have been documented in this work. Conclusively, this paper illustrates the challenges, risk factors, and combination of biomaterials and drug delivery systems with which to reconstruct the hierarchical periodontium. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

14 pages, 14311 KiB  
Article
Quaternary Zinc Alloys with Magnesium, Calcium and Strontium after Hydrostatic Extrusion—Microstructure and Its Impact on Mechanical and Corrosion Properties
by Magdalena Bieda, Weronika Gozdur, Magdalena Gieleciak, Anna Jarzębska, Łukasz Maj, Łukasz Rogal and Jacek Skiba
Materials 2024, 17(14), 3496; https://doi.org/10.3390/ma17143496 - 15 Jul 2024
Viewed by 270
Abstract
The development of bioabsorbable implants from Zn alloys is one of the main interests in the new generation of biomaterials. The main drawbacks of Zn-based materials are their insufficient mechanical properties. In the presented studies, a quaternary alloy composed of zinc with magnesium [...] Read more.
The development of bioabsorbable implants from Zn alloys is one of the main interests in the new generation of biomaterials. The main drawbacks of Zn-based materials are their insufficient mechanical properties. In the presented studies, a quaternary alloy composed of zinc with magnesium (0.2–1 wt. %), calcium (0.1–0.5 wt. %) and strontium (0.05–0.5 wt. %) was prepared by gravity casting followed by hot extrusion and then by hydrostatic extrusion. Microstructural characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD) phase analysis was performed. The mechanical properties were examined, using static tensile tests. Corrosion properties were analyzed using immersion tests. Samples were immersed in Hanks’ solution (temperature = 37 °C, pH = 7.4) for 14 days. All alloys were subjected after corrosion to SEM observations on the surface and cross-section. The corrosion rate was also calculated. The microstructure of the investigated quaternary alloy consists of the α-Zn grains and intermetallic phases Mg2Zn11, CaZn13 and SrZn13 with different grain sizes and distribution, which impacted both mechanical and corrosion properties. Thanks to the alloying by the addition of Mg, Ca, and Sr and plastic deformation using hydrostatic extrusion, outstanding mechanical properties were obtained along with improvement in uniformity of corrosion rate. Full article
Show Figures

Figure 1

14 pages, 5876 KiB  
Case Report
Combining Orthodontic and Restorative Care with Novel Workflows
by Francisco Garcia-Torres, Carlos A. Jurado, Silvia Rojas-Rueda, Susana Sanchez-Vazquez, Franciele Floriani, Nicholas G. Fischer and Akimasa Tsujimoto
Dent. J. 2024, 12(7), 218; https://doi.org/10.3390/dj12070218 - 15 Jul 2024
Viewed by 213
Abstract
This report describes multidisciplinary care combining orthodontics and restorative dentistry for a patient with Class II occlusion and stained mandibular and maxillary resin composite veneers. The orthodontic treatment improved severe overjet and malocclusion prior to restorative care. Occlusal assessment was provided with a [...] Read more.
This report describes multidisciplinary care combining orthodontics and restorative dentistry for a patient with Class II occlusion and stained mandibular and maxillary resin composite veneers. The orthodontic treatment improved severe overjet and malocclusion prior to restorative care. Occlusal assessment was provided with a novel digital device (PlaneSystem, Zirkonzahn) that is integrated with digital workflows for the evaluation of the occlusal plane and condylar path inclination. Diagnostic digital impressions and digital wax-up for intraoral mock-ups led to the patient’s treatment acceptance. Minimally invasive tooth preparation, final digital impressions, and bonding under dental dam isolation fulfilled the patient’s esthetic and functional demands with all-ceramic restorations. Full article
(This article belongs to the Special Issue Feature Papers in Digital Dentistry)
Show Figures

Graphical abstract

Back to TopTop