Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = boundary layer wind tunnel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8074 KiB  
Article
Predicting Wall Pressure in Shock Wave/Boundary Layer Interactions with Convolutional Neural Networks
by Hongyu Wang, Xiaohua Fan, Yanguang Yang, Gang Wang and Feng Xie
Fluids 2024, 9(8), 173; https://doi.org/10.3390/fluids9080173 - 29 Jul 2024
Viewed by 544
Abstract
Within the dynamic realm of variable-geometry shock wave/boundary layer interactions, the wall parameters of the flow field undergo real-time fluctuations. The conventional approach to sensing these changes in wall pressure through sensor measurements is encumbered by a cumbersome process, leading to diminished efficiency [...] Read more.
Within the dynamic realm of variable-geometry shock wave/boundary layer interactions, the wall parameters of the flow field undergo real-time fluctuations. The conventional approach to sensing these changes in wall pressure through sensor measurements is encumbered by a cumbersome process, leading to diminished efficiency and an inability to provide swift predictions of wall parameters. This paper introduces a data-driven methodology that leverages non-contact schlieren imaging to predict wall pressure within the flow field, a technique that holds promise for informing the optimized design of variable-geometry systems. A sophisticated deep learning framework, predicated on Convolutional Neural Networks (CNN), has been engineered to anticipate alterations in wall pressure stemming from high-speed shock wave/boundary layer interactions. Utilizing an impulsive wind tunnel with a Mach number of 6, we have procured a sequence of schlieren images and corresponding wall pressure measurements, capturing the continuous variations induced by an attack angle from a shock wave generator. These data have been instrumental in compiling a comprehensive dataset for the training and evaluation of the CNN. The CNN model, once trained, has adeptly deduced the distribution of wall pressure from the schlieren imagery. Notwithstanding, it was observed that the CNN’s predictive prowess is marginally diminished in regions where pressure variations are most pronounced. To assess the model’s generalization capabilities, we have segmented the dataset according to different temporal intervals for network training. Our findings indicate that while the generalization of all models crafted was less than optimal, Model 4 demonstrated superior generalization. It is thus suggested that augmenting the training set with additional samples and refining the network architecture will be a worthwhile endeavor in subsequent research initiatives. Full article
(This article belongs to the Special Issue High Speed Flows, 2nd Edition)
Show Figures

Figure 1

26 pages, 7986 KiB  
Article
Experimental Parametric Study on Flow Separation Control Mechanisms around NACA0015 Airfoil Using a Plasma Actuator with Burst Actuation over Reynolds Numbers of 105–106
by Noritsugu Kubo, Sagar Bhandari, Motofumi Tanaka, Taku Nonomura and Hirokazu Kawabata
Appl. Sci. 2024, 14(11), 4652; https://doi.org/10.3390/app14114652 - 28 May 2024
Viewed by 646
Abstract
Dielectric barrier discharge plasma actuators (DBD-PAs) have the potential to improve the performance of fluid machineries such as aircrafts and wind turbines by preventing flow separation. In this study, to identify the multiple flow control mechanisms in high Reynolds number flow, parametric experiments [...] Read more.
Dielectric barrier discharge plasma actuators (DBD-PAs) have the potential to improve the performance of fluid machineries such as aircrafts and wind turbines by preventing flow separation. In this study, to identify the multiple flow control mechanisms in high Reynolds number flow, parametric experiments for an actuation parameter F+ with a wide range of Re values (105–106) for NACA0015 airfoil was conducted. We conducted wind tunnel tests by applying a DBD-PA to the flow field around a wing model at the leading edge. Lift characteristics, turbulent kinetic energy in the flow field, shear layer height, and the separation point of the boundary layer were evaluated based on pressure distributions on the wing surface and velocity of the flow field, with the effect of DBD-PA on the post-stall flow around the wing and the mechanism behind the increase in the lift coefficient CL analyzed based on these evaluation results. The following phenomena contributed to the increase in CL: (1) increase in turbulent kinetic energy; (2) increase in circulation; and (3) acceleration of the flow near the leading edge. Thus, this study effectively investigated the dependence of the increase in lift on F+ and the lift-increasing mechanism for a wide range of Re values. Full article
Show Figures

Figure 1

23 pages, 9346 KiB  
Article
Numerical Simulation and Experimental Study on the Aerodynamics of Propulsive Wing for a Novel Electric Vertical Take-Off and Landing Aircraft
by Junjie Wang, Xinfeng Zhang, Jiaxin Lu and Zhengfei Tang
Aerospace 2024, 11(6), 431; https://doi.org/10.3390/aerospace11060431 - 27 May 2024
Viewed by 885
Abstract
The electric vertical take-off and landing (eVTOL) aircraft offers the advantages of vertical take-off and landing, environmental cleanliness, and automated control, making it a crucial component of future urban air traffic. As competition intensifies, demands for aircraft performance are escalating, including forward flight [...] Read more.
The electric vertical take-off and landing (eVTOL) aircraft offers the advantages of vertical take-off and landing, environmental cleanliness, and automated control, making it a crucial component of future urban air traffic. As competition intensifies, demands for aircraft performance are escalating, including forward flight speed and payload capacity. The article presents a novel eVTOL design with propulsive wings and establishes methodologies for propulsive wing unsteady numerical simulation and wind tunnel experiments, analyzing its aerodynamic characteristics and lift enhancement mechanism. The results indicate that the cross-flow fan (CFF) provides unique airflow control capabilities, enabling the propulsive wing to achieve remarkably high lift coefficients (exceeding 7.6 in experiments) and propulsion coefficients (exceeding 7.1 in experiments) at extreme angles of attack (30°~40°) and low airspeeds. On the one hand, the CFF effectively controls boundary layer flow, delaying airflow separation at high angles of attack; on the other hand, the rotation of the CFF induces two eccentric vortices, generating vortex-induced lift and propulsion. The aerodynamic performance of the propulsive wing depends on the advance ratio and angle of attack. Typically, both lift and propulsion coefficients increase with the advance ratio, while lift and drag coefficients increase with the angle of attack. The propulsive wing shows significant advantages and prospects for eVTOL aircrafts in the low flight velocity range (0–30 m/s). Full article
(This article belongs to the Special Issue E-VTOL Simulation and Autonomous System Development)
Show Figures

Figure 1

24 pages, 26677 KiB  
Article
Wind Tunnel Experiments on Parallel Blade–Vortex Interaction with Static and Oscillating Airfoil
by Andrea Colli, Alex Zanotti and Giuseppe Gibertini
Fluids 2024, 9(5), 111; https://doi.org/10.3390/fluids9050111 - 10 May 2024
Cited by 1 | Viewed by 1028
Abstract
This study aims to experimentally investigate the effects of parallel blade–vortex interaction (BVI) on the aerodynamic performances of an airfoil, in particular as a possible cause of blade stall, since similar effects have been observed in literature in the case of perpendicular BVI. [...] Read more.
This study aims to experimentally investigate the effects of parallel blade–vortex interaction (BVI) on the aerodynamic performances of an airfoil, in particular as a possible cause of blade stall, since similar effects have been observed in literature in the case of perpendicular BVI. A wind tunnel test campaign was conducted reproducing parallel BVI on a NACA 23012 blade model at a Reynolds number of 300,000. The vortex was generated by impulsively pitching a second airfoil model, placed upstream. Measurements of the aerodynamic loads acting on the blade were performed by means of unsteady Kulite pressure transducers, while particle image velocimetry (PIV) techniques were employed to study the flow field over the blade model. After a first phase of vortex characterisation, different test cases were investigated with the blade model both kept fixed at different incidences and oscillating sinusoidally in pitch, with the latter case, a novelty in available research on parallel BVI, representing the pitching motion of a helicopter main rotor blade. The results show that parallel BVI produces a thickening of the boundary layer and can induce local flow separation at incidences close to the stall condition of the airfoil. The aerodynamic loads, both lift and drag, suffer important impulsive variations, in agreement with literature on BVI, the effects of which are extended in time. In the case of the oscillating airfoil, BVI introduces hysteresis cycles in the loads, which are generally reduced. In conclusion, parallel BVI can have a detrimental impact on the aerodynamic performances of the blade and even cause flow separation, which, while not being as catastrophic as in the case of dynamic stall, has relatively long-lasting effects. Full article
(This article belongs to the Special Issue Flow Visualization: Experiments and Techniques)
Show Figures

Figure 1

23 pages, 3122 KiB  
Article
Wall-Proximity Effects on Five-Hole Probe Measurements
by Adrien Vasseur, Nicolas Binder, Fabrizio Fontaneto and Jean-Louis Champion
Int. J. Turbomach. Propuls. Power 2024, 9(2), 16; https://doi.org/10.3390/ijtpp9020016 - 8 May 2024
Viewed by 1187
Abstract
Wall proximity affects the accuracy of pressure probe measurements with a particularly strong impact on multi-hole probes. The wall-related evolution of the calibration of two hemispheric L-shaped 3D-printed five-hole probes was investigated in a low-speed wind tunnel. Pressure measurements and 2D particle image [...] Read more.
Wall proximity affects the accuracy of pressure probe measurements with a particularly strong impact on multi-hole probes. The wall-related evolution of the calibration of two hemispheric L-shaped 3D-printed five-hole probes was investigated in a low-speed wind tunnel. Pressure measurements and 2D particle image velocimetry were performed. The wall proximity causes the probe to measure a flow diverging from the wall, whereas the boundary layer causes the probe to measure a velocity directed towards the wall. Both angular calibration coefficients are affected in different manners. The error in angle measurement can reach 7°. These errors can be treated as calibration information. Acceleration caused by blockage is not the main reason for the errors. Methods to perform measurements closer to the wall are suggested. Full article
Show Figures

Figure 1

21 pages, 10382 KiB  
Article
Effects of Perforated Plates on Shock Structure Alteration for NACA0012 Airfoils
by Mihnea Gall, Oana Dumitrescu, Valeriu Drăgan and Daniel Eugeniu Crunțeanu
Inventions 2024, 9(2), 28; https://doi.org/10.3390/inventions9020028 - 5 Mar 2024
Viewed by 1496
Abstract
This research investigated a passive flow control technique to mitigate the adverse effects of shock wave–boundary layer interaction on a NACA 0012 airfoil. A perforated plate with a strategically positioned cavity beneath the shock wave anchoring spot was employed. Airfoils with perforated plates [...] Read more.
This research investigated a passive flow control technique to mitigate the adverse effects of shock wave–boundary layer interaction on a NACA 0012 airfoil. A perforated plate with a strategically positioned cavity beneath the shock wave anchoring spot was employed. Airfoils with perforated plates of varying orifice sizes (ranging from 0.5 to 1.2 mm) were constructed using various manufacturing techniques. Experimental analysis utilized an “Eiffel”-type open wind tunnel and a Z-type Schlieren system for flow visualization, along with static pressure measurements obtained from the bottom wall. Empirical observations were compared with steady 3D density-based numerical simulations conducted in Ansys FLUENT for comprehensive analysis and validation. The implementation of the perforated plate induced a significant alteration in shock structure, transforming it from a strong normal shock wave into a large lambda-type shock. The passive control case exhibited a 0.2% improvement in total pressure loss and attributed to the perforated plate’s capability to diminish the intensity of the shock wave anchored above. Significant fluctuations in shear stress were introduced by the perforated plate, with lower stress observed in the plate area due to flow detachment from cavity blowing. Balancing shock and viscous losses proved crucial for achieving a favorable outcome with this passive flow control method. Full article
(This article belongs to the Special Issue New Sights in Fluid Mechanics and Transport Phenomena)
Show Figures

Figure 1

23 pages, 8782 KiB  
Article
Computational Fluid Dynamics-Aided Simulation of Twisted Wind Flows in Boundary Layer Wind Tunnel
by Zijing Yi, Lingjun Wang, Xiao Li, Zhigang Zhang, Xu Zhou and Bowen Yan
Appl. Sci. 2024, 14(3), 988; https://doi.org/10.3390/app14030988 - 24 Jan 2024
Viewed by 868
Abstract
The twisted wind flow (TWF), referring to the phenomenon of wind direction varying with height, is a common feature of atmospheric boundary layer (ABL) winds, noticeably affecting the wind-resistant structural design and the wind environment assessment. The TWF can be effectively simulated by [...] Read more.
The twisted wind flow (TWF), referring to the phenomenon of wind direction varying with height, is a common feature of atmospheric boundary layer (ABL) winds, noticeably affecting the wind-resistant structural design and the wind environment assessment. The TWF can be effectively simulated by a guide vane system in wind tunnel tests, but the proper design and configuration of the guide vanes pose a major challenge as practical experience in using such devices is still limited in the literature. To address this issue, this study aims to propose an approach to determining the optimal wind tunnel setup for TWF simulations using a numerical wind tunnel, which is a replica of its physical counterpart, using computational fluid dynamics (CFD) techniques. By analyzing the mechanisms behind guide vanes for generating TWF based on CFD results, it was found that the design must take into account three key parameters, namely, (1) the distance from the vane system to the side wall, (2) the distance from the vane system to the model test region, and (3) the separation between the vanes. Following the optimal setup obtained from the numerical wind tunnel, TWF profiles matching both the power-law and Ekman spiral models, which, respectively, reflect the ABL and wind twist characteristics, were successfully generated in the actual wind tunnel. The findings of this study provide useful information for wind tunnel tests as well as for wind-resistant structural designs and wind environment assessment. Full article
(This article belongs to the Special Issue City Resilience to Windstorm Hazard)
Show Figures

Figure 1

17 pages, 281 KiB  
Review
Full-Scale/Model Test Comparisons to Validate the Traditional Atmospheric Boundary Layer Wind Tunnel Tests: Literature Review and Personal Perspectives
by Xiao-Xiang Cheng, Lin Zhao, Yao-Jun Ge, Jun Dong and Yang Peng
Appl. Sci. 2024, 14(2), 782; https://doi.org/10.3390/app14020782 - 17 Jan 2024
Cited by 3 | Viewed by 1228
Abstract
For this paper, full-scale/model test comparisons to validate the traditional atmospheric boundary layer (ABL) wind-tunnel simulation technique performed until now by the wind engineering community are systematically reviewed. The engineering background includes some benchmark low-rise buildings specifically established for use in wind engineering [...] Read more.
For this paper, full-scale/model test comparisons to validate the traditional atmospheric boundary layer (ABL) wind-tunnel simulation technique performed until now by the wind engineering community are systematically reviewed. The engineering background includes some benchmark low-rise buildings specifically established for use in wind engineering research (the Aylesbury experimental buildings, the Texas Tech University experimental building, the Silsoe buildings, etc.), several high-rise buildings in North America and East Asia, long-span bridges, large-span structures, and cooling towers. These structures are of different geometries, are located in different wind environments, and are equipped with various transducers and anemometers. By summarizing the different articles in the literature, it is evident that notable discrepancies between the full-scale measurement and the model test results were observed in most full-scale/model test comparisons, which usually took certain forms: the mean and/or the peak negative pressures at the flow separation regions on buildings were underestimated in the wind tunnel; differences in the root-mean-square (rms) values of the acceleration samples between the full-scale measurements and the force balance model tests were non-negligible; the vertical vortex-induced vibration amplitudes of bridges measured using section models and aero-elastic models were much lower than those observed on the prototypes, etc. Most scholars subjectively inferred that inherent technical issues with the ABL wind tunnel simulation technique could be responsible for the observed full-scale/model test discrepancies, including the Reynolds number effects, the turbulent flow characteristics effects, and the non-stationarity effects. However, based on the authors’ years of experience and after discussion with experienced researchers, it was found that some of the full-scale measurements performed in earlier research were inherently less accurate and deterministic than the wind tunnel experiments they were supposed to validate, which could also be a significant cause of the full-scale/model test discrepancies observed. It is suggested herein that future studies in this field should regard full-scale measurements only as benchmarks, and that future works should focus on synthesizing the results from different schools of physical experiments and formulating universal empirical models of high theoretical significance to properly validate future wind tunnel tests. Full article
17 pages, 9771 KiB  
Article
Design, Validation and CFD Modeling of an Environmental Wind Tunnel
by Francesco Pinna, Battista Grosso, Alessio Lai, Ouiza Bouarour, Cristiano Armas, Maurizio Serci and Valentina Dentoni
Atmosphere 2024, 15(1), 77; https://doi.org/10.3390/atmos15010077 - 8 Jan 2024
Viewed by 1223
Abstract
The wind erosion of granular materials stored within the open yards of industrial plants (i.e., industrial wind erosion) and the subsequent emission and dispersion of particulate matter (PM) in the surrounding areas represent an important issue for the exposed population and for [...] Read more.
The wind erosion of granular materials stored within the open yards of industrial plants (i.e., industrial wind erosion) and the subsequent emission and dispersion of particulate matter (PM) in the surrounding areas represent an important issue for the exposed population and for the environment as a whole. The Environment Impact Assessment (EIA) and the design of emission control measures require a deep knowledge of the erosion phenomenon, and the precise estimation of the Emission Factors (EF) associated with the specific PM source under investigation. Aiming to characterize the emission potential of industrial granular materials, a new Environmental Wind Tunnel (EWT) has recently been built at the Department of Civil and Environmental Engineering and Architecture (DICAAR) laboratories, in Cagliari University. The article discusses the EWT’s updated design and the set-up methodologies applied to reproduce the Atmospheric Boundary Layer (ABL) acting over the surfaces of coarse and heterogeneous granular materials. In addition, a Computational Fluid Dynamics (CFD) model of the EWT has been developed to reproduce and analyze the wind field throughout the entire tunnel volume and preliminarily evaluate possible modifications to the original design. The accuracy of the simulation has been verified by comparing the CFD model and the results of the experimental tests. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

14 pages, 5191 KiB  
Article
The Experiments and Stability Analysis of Hypersonic Boundary Layer Transition on a Flat Plate
by Yanxin Yin, Yinglei Jiang, Shicheng Liu and Hao Dong
Appl. Sci. 2023, 13(24), 13302; https://doi.org/10.3390/app132413302 - 16 Dec 2023
Cited by 1 | Viewed by 1136
Abstract
Experimental and linear stability theory (LST) investigation of boundary layer transition on a flat plate was conducted with a flow of Mach number 5. The temperature distributions and second-mode disturbances on the flat plate surface at different unit Reynolds number (Reunit [...] Read more.
Experimental and linear stability theory (LST) investigation of boundary layer transition on a flat plate was conducted with a flow of Mach number 5. The temperature distributions and second-mode disturbances on the flat plate surface at different unit Reynolds number (Reunit) values were captured by infrared thermography and PCB technology, respectively, which revealed the transition location of the flat-plate boundary layer. The PCB sensors successfully captured the second-mode disturbances within the boundary layer initially at a frequency of about 100 kHz, with a gradually expanding frequency range as the distance travelled downstream increased. The evolution characteristics of the second-mode instabilities were also investigated by LST and obtained for the second mode, ranging from 100 to 250 kHz. The amplitude amplification factor (N-factor) of the second-mode instabilities was calculated by the eN method. The N-factor of the transition location in the wind tunnel experiment predicted by LST is about 0.98 and 1.25 for Reunit = 6.38 × 106 and 8.20 × 106, respectively. Full article
(This article belongs to the Topic Fluid Mechanics)
Show Figures

Figure 1

16 pages, 3155 KiB  
Article
Numerical Analysis of Unsteady Characteristics of the Second Throat of a Transonic Wind Tunnel
by Chenghua Cong, Honggang Qin and Xingyou Yi
Aerospace 2023, 10(11), 956; https://doi.org/10.3390/aerospace10110956 - 13 Nov 2023
Viewed by 1176
Abstract
The unsteady characteristics of the second throat of a transonic wind tunnel have an important influence on the design and test of the wind tunnel. Therefore, the forced oscillation characteristics were studied by a numerical simulation method. The governing equation was the viscous [...] Read more.
The unsteady characteristics of the second throat of a transonic wind tunnel have an important influence on the design and test of the wind tunnel. Therefore, the forced oscillation characteristics were studied by a numerical simulation method. The governing equation was the viscous compressible unsteady Navier–Stokes equation. Under the sinusoidal pressure disturbance of the computational domain exit, the shock wave presents a clear forced oscillation state, and the shock wave periodically changes its position. Under a pressure disturbance of 1%, the shock wave displacement reaches 150 mm. Additionally, overshoot occurs when the shock moves upstream or downstream. The shock-boundary layer interference is very sensitive to the motion characteristics of the shock wave, resulting in a transformation of the flow field symmetry. The flow field downstream of the shock wave exhibits periodic structural changes. Compared with the pressure change at the outlet, the pressure change near the shock wave has a phase delay. The increasing disturbance near the shock wave shows a clear amplification effect. The pressure disturbance near the shock wave had an obvious amplification effect, and its fluctuation amount reached 16% under the pressure disturbance of 1%. The variation trend of the second throat wall force, wavefront Mach number, and Mach number in the test section with time is similar to that of the downstream disturbance, but it does not have a complete follow-up effect, which indicates that the pressure disturbance can propagate into the test section through the boundary layer or the shock gap. Nevertheless, the second throat choking can still control the Mach number stability of the test section. The dynamic characteristics of shock oscillation are related to the amplitude and frequency of the applied pressure disturbance. The shock displacement decreases with the increase in the excitation frequency. When the excitation frequency is higher than 125 Hz, the flow field basically does not change. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 20604 KiB  
Article
Experimental Study on Optimum Design of Aircraft Icing Detection Based on Large-Scale Icing Wind Tunnel
by Liang Ding, Xian Yi, Zhanwei Hu and Xiangdong Guo
Aerospace 2023, 10(11), 926; https://doi.org/10.3390/aerospace10110926 - 30 Oct 2023
Cited by 1 | Viewed by 1215
Abstract
Icing detection is the premise and basis for the operation of aircraft icing protection system, and is the primary issue in flight safety assurance. At present, there is a lack of research methods and design reference for the layout optimization of ice detectors. [...] Read more.
Icing detection is the premise and basis for the operation of aircraft icing protection system, and is the primary issue in flight safety assurance. At present, there is a lack of research methods and design reference for the layout optimization of ice detectors. Therefore, in order to simulate the real icing environment encountered by the aircraft more accurately, a large-scale icing wind tunnel was used to carry out experimental research on the icing characteristics of the sensor probes. A closed-loop experimental method including the typical condition selection, sensor array interference examination and ice shape repeatability verification was initially proposed. A stepwise optimization process and a sensitivity analysis on ambient conditions were combined to determine the optimal distribution for sensor installation. It is found that the water collection coefficient on the cylinder surface of the probe first increases and then decreases along the axial direction, reaching the extreme value at a certain position. The height of this extreme point will gradually increase with the development of the wall boundary layer, showing a variation range of 2~30 mm. Improper design may cause the sensor probe to fail to capture the point with the maximum icing thickness, affecting the sensitivity of icing detection. In addition, each probe position has different sensitivity to changes in flow parameters; the points with larger icing mass and lower sensitivity to changes in attack angle will have better detection effect. The measured data and analysis in the present work can provide a basis for the accurate design of icing sensor probes. Full article
Show Figures

Figure 1

26 pages, 22147 KiB  
Article
Implementation of Data from Wind Tunnel Tests in the Design of a Tall Building with an Elliptic Ground Plan
by Oľga Hubová, Marek Macák, Michal Franek, Oľga Ivánková and Lenka Bujdáková Konečná
Buildings 2023, 13(11), 2732; https://doi.org/10.3390/buildings13112732 - 29 Oct 2023
Viewed by 1102
Abstract
The design of a 69 m tall multipurpose building was investigated in this paper. The shape of the structure above the ground was an elliptical cylinder. Under the ground, the building was extended into a cuboid shape (for car parking). External wind pressure [...] Read more.
The design of a 69 m tall multipurpose building was investigated in this paper. The shape of the structure above the ground was an elliptical cylinder. Under the ground, the building was extended into a cuboid shape (for car parking). External wind pressure coefficients were determined using three methods: wind tunnel tests, CFD, and “the simplification of the shape” (using information defined in building standards). From the obtained results, it was evident that the simplification did not provide results with sufficient accuracy. The external wind pressure coefficients presented in this paper should be used for the design of a similar structure. The shape of the elliptical cylinder is very sensitive to applied wind. Positive pressures only occur on a small area of the windward side. The rest of the windward side is loaded with negative pressures. Therefore, torsional effects can occur, and these can be dangerous for the structure. The leeward side is completely loaded with negative pressures. In our case, this information was necessary for a follow-on static and dynamic analysis of the building. Various subsoil stiffness coefficients were considered. The calculated horizontal displacement was compared with the limit value. A measured wind direction of 20° caused the maximum obtained torsional moment, and a wind direction of 90° induced the maximum obtained force. The commercial program Ansys Fluent 2022 was used for the CFD simulation. The SCIA ENGINEER 21 program was used for follow-on analysis. This paper presents brief information on the selected turbulence model and details the settings used for the CFD simulation. Also, a description of the wind tunnel laboratory utilized in this study is provided, along with a description of the measuring devices used and the methodologies of the tests carried out. The main purpose of this paper is to show how important it is to consider the wind load for the static analysis of a structure like this. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 4324 KiB  
Article
Receptivity and Stability Theory Analysis of a Transonic Swept Wing Experiment
by Yuanqiang Liu, Yan Liu, Zubi Ji, Yutian Wang and Jiakuan Xu
Aerospace 2023, 10(10), 903; https://doi.org/10.3390/aerospace10100903 - 23 Oct 2023
Viewed by 1373
Abstract
Surface suction provides an efficient way to delay boundary layer transitions. In order to verify the suction effects and determine the mechanism of suction control in transonic swept wing boundary layers, wind tunnel transition measurements in a hybrid laminar flow control (HLFC) wind [...] Read more.
Surface suction provides an efficient way to delay boundary layer transitions. In order to verify the suction effects and determine the mechanism of suction control in transonic swept wing boundary layers, wind tunnel transition measurements in a hybrid laminar flow control (HLFC) wind tunnel model uses an infrared thermography technique in the Aircraft Research Association (ARA) 2.74 m × 2.44 m low turbulence level transonic wind tunnel. Based on the experimental data of stationary crossflow dominant transitions without and with surface suction in transonic swept wing boundary layers, in this paper, the effects on the receptivity and linear and nonlinear evolution of stationary crossflow vortices have been analyzed with the consideration of curvature. Theoretical analysis agreed with the experimental observations in regard to the transition delay caused by boundary layer suction near the leading-edge region. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 5838 KiB  
Article
A New Research Scheme for Full-Scale/Model Test Comparison of Wind Effects on Pengcheng Cooling Tower Based on Sinusoidal Flow Field Simulations
by Xiao-Xiang Cheng, Lin Zhao, Yao-Jun Ge, Bai-Jian Wu, Jun Dong and Yang Peng
Appl. Sci. 2023, 13(20), 11304; https://doi.org/10.3390/app132011304 - 14 Oct 2023
Viewed by 1218
Abstract
When examining the history of wind engineering, it is evident that many full-scale/model test comparisons have found noticeable differences between the results. Although understanding the causes of these differences is important for practical purposes, limited numerical and experimental conditions have often resulted in [...] Read more.
When examining the history of wind engineering, it is evident that many full-scale/model test comparisons have found noticeable differences between the results. Although understanding the causes of these differences is important for practical purposes, limited numerical and experimental conditions have often resulted in subjective explanations for full-scale/model test comparisons without scientific validation. To address this issue, this article suggests the use of the computational fluid dynamics technique or the multiple-fan actively controlled wind tunnel technique to quantitatively reveal the adverse effects that impact the reliability of the traditional atmospheric boundary layer wind tunnel tests for a large cooling tower, including not only the widely acknowledged influences (Reynolds number effects and turbulent flow characteristics effects) but also the non-stationarity effects that have potential influences. Established on the novel proposition, a new research scheme for future full-scale/model test wind effects comparisons for large cooling towers has been formulated based on the numerical or physical simulations of the sinusoidal flow fields. Using the Pengcheng cooling tower as a case study, the research recognized the very significant impact of Reynolds number effects, the non-stationarity effects that cannot be ignored, and the negligible effects of turbulent flow characteristics. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop