Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (933)

Search Parameters:
Keywords = bubbly flows

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5542 KiB  
Article
Experimental and Numerical Study on the Characteristics of Bubble Motion in a Narrow Channel
by Borong Tang, Shenfei Wang, Fang Liu and Fenglei Niu
J. Nucl. Eng. 2024, 5(4), 445-455; https://doi.org/10.3390/jne5040028 (registering DOI) - 15 Oct 2024
Viewed by 172
Abstract
Plate fuel elements, known for their compact structure and efficient cooling, are commonly used in the core of nuclear reactors. In these reactors, coolant channels are designed as rectangular narrow slits. Bubble behavior in narrow channels differs significantly from that in conventional channels. [...] Read more.
Plate fuel elements, known for their compact structure and efficient cooling, are commonly used in the core of nuclear reactors. In these reactors, coolant channels are designed as rectangular narrow slits. Bubble behavior in narrow channels differs significantly from that in conventional channels. This paper investigates the vertical rise of bubbles in narrow slit channels. A gas–liquid two-phase flow experimental rig was constructed using transparent acrylic boards. A high-speed camera captured the bubble formation process during gas injection, and code implemented in Matlab was used to process the images. Numerical simulations were conducted with CFD software under identical conditions and compared with the experimental results, showing a good agreement. The results show that the experimental and simulated bubble movement velocities are in good agreement. In the experiments of this paper, when the width of the narrow gap is below 3 mm, the sidewalls exert a pronounced influence on the dynamics of bubble rise, notably altering both the velocity profile and the trajectory of the bubbles’ ascent. As the gas injection flow rate gradually increases, the bubble rising speed and trajectory change from regular to oscillatory patterns. Full article
(This article belongs to the Special Issue Advances in Thermal Hydraulics of Nuclear Power Plants)
Show Figures

Figure 1

13 pages, 4219 KiB  
Article
Dynamic Sliding Mode Control of Spherical Bubble for Cavitation Suppression
by Ali Karami-Mollaee and Oscar Barambones
Axioms 2024, 13(10), 706; https://doi.org/10.3390/axioms13100706 - 13 Oct 2024
Viewed by 358
Abstract
Cavitation is a disadvantageous phenomenon that occurs when fluid pressure drops below its vapor pressure. Under these conditions, bubbles form in the fluid. When these bubbles flow into a high-pressure area or tube, they erupt, causing harm to mechanical parts such as centrifugal [...] Read more.
Cavitation is a disadvantageous phenomenon that occurs when fluid pressure drops below its vapor pressure. Under these conditions, bubbles form in the fluid. When these bubbles flow into a high-pressure area or tube, they erupt, causing harm to mechanical parts such as centrifugal pumps. The difference in pressure in a fluid is the result of varying temperatures. One way to eliminate cavitation is to reduce the radius of the bubbles to zero before they reach high-pressure areas, using a robust approach. In this paper, sliding mode control is used for this purpose due to its invariance property. To force the radius of the bubbles toward zero and prevent chattering, a new dynamic sliding mode control approach is used. In dynamic sliding mode control, chattering is removed by passing the input control through a low-pass filter, such as an integrator. A general model of the spherical bubble is used, transferred to the state space, and then a state proportional-integral feedback is applied to obtain a linear system with a new input control signal. A comparison is also made with traditional sliding mode control using state feedback, providing a trusted comparison. Full article
(This article belongs to the Special Issue New Perspectives in Control Theory)
Show Figures

Figure 1

12 pages, 3531 KiB  
Article
Study on the Characteristics of Molten Glass in a Float Glass Process with a New Structure
by Benjun Cheng, Hao Feng, Feng Wu, Xiaocheng Liang and Mao Li
Materials 2024, 17(20), 4989; https://doi.org/10.3390/ma17204989 - 12 Oct 2024
Viewed by 365
Abstract
Glass is one of the most common materials in society, and the float glass process is the main production method of glass used at present, which involves adopting a melting furnace with a single cooler. However, this structure has been difficult to fit [...] Read more.
Glass is one of the most common materials in society, and the float glass process is the main production method of glass used at present, which involves adopting a melting furnace with a single cooler. However, this structure has been difficult to fit to the requirements of modern glass production, such as producing multiple types of glass and large-scale production. Therefore, a large-tonnage float glass melting furnace with a double cooler is studied, which is rising in popularity in the glass sector. The aim of this paper is to clarify the characteristics of the new glass furnace. A numerical simulation technique is applied to analyze the thermal and flow characteristics of molten glass in the new structure so as to clarify the feasibility of production by checking the temperature distribution and flow field of the molten glass. The results show that the new structure also exhibits flow behavior similar to the original structure in the branch line. Due to the addition of the branch line, the stability of the temperature is improved, with a 60 K and 43 K difference between the surface and bottom in the main and branch lines, respectively. Similar stability is shown in the flow field, specifically low acceleration in the cooler (0.006 m/s2). The bubble clarification time is about 2700 s, less than the 3000 s required for flow. The parameters of the branch line meet the requirements of glass production. In theory, a glass-melting furnace with a double cooler has the capacity to produce two types of glass. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

18 pages, 2295 KiB  
Article
Piperazine-Based Mixed Solvents for CO2 Capture in Bubble-Column Scrubbers and Regeneration Heat
by Pao-Chi Chen, Jyun-Hong Jhuang and Zhong-Yi Lin
Processes 2024, 12(10), 2178; https://doi.org/10.3390/pr12102178 - 7 Oct 2024
Viewed by 757
Abstract
This work used piperazine (PZ) as a base solvent, blended individually with five amines, which were monoethanolamine (MEA), secondary amines (DIPAs), tertiary amines (TEAs), stereo amines (AMPs), and diethylenetriamine (DETA), to prepare mixed solvents at the desired concentrations as the test solvents. A [...] Read more.
This work used piperazine (PZ) as a base solvent, blended individually with five amines, which were monoethanolamine (MEA), secondary amines (DIPAs), tertiary amines (TEAs), stereo amines (AMPs), and diethylenetriamine (DETA), to prepare mixed solvents at the desired concentrations as the test solvents. A continuous bubble-column scrubber with one stage (1 s) was first used for the test. Six parameters were selected, including the type of mixed solvent (A), the ratio of mixed solvents (B), the solvent feed rate (C), the gas flow rate (D), the concentration of the mixed solvents (E), and the liquid temperature (F), each one having five levels. Using the Taguchi experimental design, only 25 runs were required. The outcome data, such as the absorption efficiency (EF), the absorption rate (RA), the overall mass-transfer coefficient (KGa), and the absorption factor (φ), could be determined under steady-state conditions. The optimal mixed solvents were found to be A1 (PZ + MEA) and A2 (PZ + DIPA). The parameter importance and optimal conditions for EF, RA, KGa, and ϕ were determined separately; the verification of all optimal conditions was successful. This analysis found that the importance of the parameters was D > C > A > E > B > F, and the gas flow rate (D) was the most important factor. Subsequently, multiple-stage scrubbers were used to capture CO2. Comparing 1 s and 3 s (three-stage scrubber), EF, RA, KGa, and φ increased by 33%, 29%, 22%, and 38%, respectively. The desorption tests for the four optimal scrubbed solutions, including multiple stages, showed that the heat of regeneration for the three scrubbers was 3.57–8.93 GJ/t, in the temperature range of 110–130 °C, while A2 was the best solvent. Finally, the heat regeneration mechanism was also discussed in this work. Full article
Show Figures

Figure 1

15 pages, 5375 KiB  
Article
Investigation of Gas-Liquid Mass Transfer in the Fuel Scrubbing Inerting Process Using Mixed Inert Gas
by Chaoyue Li, Sha Liu and Guannan Liu
Processes 2024, 12(10), 2157; https://doi.org/10.3390/pr12102157 - 3 Oct 2024
Viewed by 455
Abstract
This study investigates the dynamics of mass transfer between gas and liquid during the fuel scrubbing inerting process, utilizing a mixed inert gas (MIG) composed of CO2, N2, and trace amounts of O2. The goal is to [...] Read more.
This study investigates the dynamics of mass transfer between gas and liquid during the fuel scrubbing inerting process, utilizing a mixed inert gas (MIG) composed of CO2, N2, and trace amounts of O2. The goal is to lower oxygen concentrations in aircraft fuel tanks, thereby reducing the risk of explosions. The experiments were conducted on a fuel scrubbing inerting platform, where an MIG was utilized to deoxygenate aviation fuel. Changes in the oxygen concentration in the ullage (OCU) and the dissolved oxygen concentration in the fuel (DOCF) were measured during the scrubbing process. Validated by these experimental data, Computational Fluid Dynamics (CFD) simulations demonstrated the reliability of the model. The discrepancies between CFD predictions and experimental measurements were 4.11% for OCU and 5.23% for DOCF. The influence of the MIG bubble diameter, MIG flow rate, and fuel loading rate on DOCF, gas holdup (GH), and the oxygen volumetric mass transfer coefficient (OVMTC) was comprehensively examined. The results reveal that larger MIG bubble diameters lead to an increased DOCF but reduced GH and OVMTC. In contrast, a higher MIG flow rate decreases DOCF while boosting GH and OVMTC. Additionally, a greater fuel loading rate increases DOCF but decreases GH and OVMTC. These findings offer important insights for optimizing fuel scrubbing inerting systems, underscoring the necessity of selecting suitable operating parameters to enhance oxygen displacement and ensure aircraft safety. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

21 pages, 6854 KiB  
Review
Process Intensification of Gas–Liquid Separations Using Packed Beds: A Review
by Yafang Zhang, Chencan Du, Zhibo Zhang, Jiawei Du, Yuming Tu and Zhongqi Ren
Separations 2024, 11(10), 284; https://doi.org/10.3390/separations11100284 - 2 Oct 2024
Viewed by 477
Abstract
The gas–liquid multiphase process plays a crucial role in the chemical industry, and the utilization of packed beds enhances separation efficiency by increasing the contact area and promoting effective gas–liquid interaction during the separation process. This paper primarily reviews the progress from fundamental [...] Read more.
The gas–liquid multiphase process plays a crucial role in the chemical industry, and the utilization of packed beds enhances separation efficiency by increasing the contact area and promoting effective gas–liquid interaction during the separation process. This paper primarily reviews the progress from fundamental research to practical application of gas–liquid multiphase processes in packed bed reactors, focusing on advancements in fluid mechanics (flow patterns, liquid holdup, and pressure drop) and the mechanisms governing gas–liquid interactions within these reactors. Firstly, we present an overview of recent developments in understanding gas–liquid flow patterns; subsequently we summarize liquid holdup and pressure drop characteristics within packed beds. Furthermore, we analyze the underlying mechanisms involved in bubble breakup and coalescence phenomena occurring during continuous flow of gas–liquid dispersions, providing insights for reactor design and operation strategies. Finally, we summarize applications of packed bed reactors in carbon dioxide absorption, chemical reactions, and wastewater treatment while offering future perspectives. These findings serve as valuable references for optimizing gas–liquid separation processes. Full article
Show Figures

Figure 1

24 pages, 1196 KiB  
Article
The Mathematical Simulation of South Korea’s Financial and Economic Impacts from Real Estate Bubbles: Lessons from the China Evergrande Collapse
by Dongxue Wang and Yugang He
Mathematics 2024, 12(19), 3058; https://doi.org/10.3390/math12193058 - 29 Sep 2024
Viewed by 921
Abstract
This study investigates the macroeconomic and financial repercussions of a real estate bubble burst in South Korea through the application of Bayesian estimation and impulse response function analysis. By utilizing this approach tailored to the specific economic conditions of South Korea, the research [...] Read more.
This study investigates the macroeconomic and financial repercussions of a real estate bubble burst in South Korea through the application of Bayesian estimation and impulse response function analysis. By utilizing this approach tailored to the specific economic conditions of South Korea, the research effectively captures the complex ripple effects across a range of financial and macroeconomic variables. The results demonstrate that a real estate bubble burst markedly increases financial market risks, leading to heightened liquidity demands within the banking sector and necessitating adjustments in both deposit rates and bond yields. The study also emphasizes the differentiated impacts on patient and impatient households, where wealth losses drive significant shifts in consumption and labor supply behaviors, further constrained by prevailing labor market conditions. Additionally, the broader economic implications are examined, revealing the adverse effects on corporate output and investment, as well as the dynamics of international capital flows that impact foreign exchange reserves and exchange rates. These findings highlight the urgent need for proactive monitoring and policy interventions to mitigate the detrimental effects of real estate bubbles, ensuring financial stability and fostering sustainable economic growth in South Korea. Full article
Show Figures

Figure 1

22 pages, 6928 KiB  
Review
Problems of Measuring Gas Content in Oil in a Two-Phase Flow: A Review
by Cezary Edling and Paweł Śliwiński
Energies 2024, 17(19), 4800; https://doi.org/10.3390/en17194800 - 25 Sep 2024
Viewed by 360
Abstract
In view of the necessity of measuring the air content in oil in two-phase flows in the context of general industry, a review of the most popular methods of measuring the air content in oil was carried out. This review includes an assessment [...] Read more.
In view of the necessity of measuring the air content in oil in two-phase flows in the context of general industry, a review of the most popular methods of measuring the air content in oil was carried out. This review includes an assessment of their advantages and disadvantages and of whether they meet criteria such as the degree of filling, the size and number of bubbles, verification, the absence of additional pressure drops, simplicity, and repeatability. In the review, the following methods were examined: the classic trapping method, a modified trapping method, a trapping method using hydrostatic pressure loss, the pressure loss due to frictional flow resistance, the pressure loss with a rapid increase in diameter, the pressure drop in a Venturi tube, the pressure drop in an orifice, a method using the Coriolis effect, the electrical resistance method, the electrical conductivity method, the electromagnetic method, the electrical capacitance method, the thermal anemometry method, the liquid–solid contact electrification method, the photographic method, holography, light scattering, sound dispersion, the ultrasonic transit-time method, X-ray radiation, gamma radiation, neutron radiation, and fiber-optic methods. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

20 pages, 15144 KiB  
Article
Gas–Liquid Mixability Study in a Jet-Stirred Tank for Mineral Flotation
by Yehao Huang, Mingwei Gao, Baozhong Shang, Jia Yao, Weijun Peng, Xiangyu Song and Dan Mei
Appl. Sci. 2024, 14(19), 8600; https://doi.org/10.3390/app14198600 - 24 Sep 2024
Viewed by 438
Abstract
Micro- and nano-bubble jet stirring, as an emerging technology, shows great potential in complex mineral sorting. Flow field characteristics and structural parameters of the gas–liquid two-phase system can lead to uneven bubble distribution inside the reaction vessel. Gas–liquid mixing uniformity is crucial for [...] Read more.
Micro- and nano-bubble jet stirring, as an emerging technology, shows great potential in complex mineral sorting. Flow field characteristics and structural parameters of the gas–liquid two-phase system can lead to uneven bubble distribution inside the reaction vessel. Gas–liquid mixing uniformity is crucial for evaluating stirring effects, as increasing the contact area enhances reaction efficiency. To improve flotation process efficiency and resource recovery, further investigation into flow field characteristics and structural optimization is necessary. The internal flow field of the jet-stirred tank was analyzed using computational fluid dynamics (CFDs) with the Eulerian multiphase flow model and the Renormalization Group (RNG) k − ε turbulence model. Various operating (feeding and aerating volumes) and structural parameters (nozzle direction, height, inner diameter, and radius ratio) were simulated. Dimensionless variance is a statistical metric used to assess gas–liquid mixing uniformity. The results indicated bubbles accumulated in the middle of the vessel, leading to uneven mixing. Lower velocities resulted in low gas volume fractions, while excessively high velocities increased differences between the center and near-wall regions. Optimal mixing uniformity was achieved with a circumferential nozzle direction, 80 mm height, 5.0 mm inner diameter, and 0.55 radius ratio. Full article
Show Figures

Figure 1

16 pages, 13238 KiB  
Article
Transfer of Periodic Phenomena in Multiphase Capillary Flows to a Quasi-Stationary Observation Using U-Net
by Bastian Oldach, Philipp Wintermeyer and Norbert Kockmann
Computers 2024, 13(9), 230; https://doi.org/10.3390/computers13090230 - 13 Sep 2024
Viewed by 383
Abstract
Miniaturization promotes the efficiency and exploration domain in scientific fields such as computer science, engineering, medicine, and biotechnology. In particular, the field of microfluidics is a flourishing technology, which deals with the manipulation of small volumes of liquid. Dispersed droplets or bubbles in [...] Read more.
Miniaturization promotes the efficiency and exploration domain in scientific fields such as computer science, engineering, medicine, and biotechnology. In particular, the field of microfluidics is a flourishing technology, which deals with the manipulation of small volumes of liquid. Dispersed droplets or bubbles in a second immiscible liquid are of great interest for screening applications or chemical and biochemical reactions. However, since very small dimensions are characterized by phenomena that differ from those at macroscopic scales, a deep understanding of physics is crucial for effective device design. Due to small volumes in miniaturized systems, common measurement techniques are not applicable as they exceed the dimensions of the device by a multitude. Hence, image analysis is commonly chosen as a method to understand ongoing phenomena. Artificial Intelligence is now the state of the art for recognizing patterns in images or analyzing datasets that are too large for humans to handle. X-ray-based Computer Tomography adds a third dimension to images, which results in more information, but ultimately, also in more complex image analysis. In this work, we present the application of the U-Net neural network to extract certain states during droplet formation in a capillary, which forms a constantly repeated process that is captured on tens of thousands of CT images. The experimental setup features a co-flow setup that is based on 3D-printed capillaries with two different cross-sections with an inner diameter, respectively edge length of 1.6 mm. For droplet formation, water was dispersed in silicon oil. The classification into different droplet states allows for 3D reconstruction and a time-resolved 3D analysis of the present phenomena. The original U-Net was modified to process input images of a size of 688 × 432 pixels while the structure of the encoder and decoder path feature 23 convolutional layers. The U-Net consists of four max pooling layers and four upsampling layers. The training was performed on 90% and validated on 10% of a dataset containing 492 images showing different states of droplet formation. A mean Intersection over Union of 0.732 was achieved for a training of 50 epochs, which is considered a good performance. The presented U-Net needs 120 ms per image to process 60,000 images to categorize emerging droplets into 24 states at 905 angles. Once the model is trained sufficiently, it provides accurate segmentation for various flow conditions. The selected images are used for 3D reconstruction enabling the 2D and 3D quantification of emerging droplets in capillaries that feature circular and square cross-sections. By applying this method, a temporal resolution of 25–40 ms was achieved. Droplets that are emerging in capillaries with a square cross-section become bigger under the same flow conditions in comparison to capillaries with a circular cross section. The presented methodology is promising for other periodic phenomena in different scientific disciplines that focus on imaging techniques. Full article
Show Figures

Figure 1

17 pages, 6138 KiB  
Article
Theoretical and Experimental Investigation on a Novel Cavitation-Assisted Abrasive Flow Polishing Method
by Jiayu Wang, Xiaoxing Dong, Lijun Zhu and Zhenfeng Zhou
Micromachines 2024, 15(9), 1142; https://doi.org/10.3390/mi15091142 - 11 Sep 2024
Viewed by 503
Abstract
A novel polishing method is proposed to increase material removal rates through the acceleration of abrasive movements using micro-jets formed by spontaneous collapses of bubbles due to the cavitation in a special-shaped Venturi tube. The Venturi structure is optimized by numerical simulations. Process-related [...] Read more.
A novel polishing method is proposed to increase material removal rates through the acceleration of abrasive movements using micro-jets formed by spontaneous collapses of bubbles due to the cavitation in a special-shaped Venturi tube. The Venturi structure is optimized by numerical simulations. Process-related parameters for the optimal cavitation ratio are investigated for achieving maximum adaptation to polishing flat workpieces. Furthermore, this novel approach enhances processing efficiency by approximately 60% compared to traditional abrasive flow polishing. The processing method that employs cavitation bubbles within a special-shaped Venturi tube to augment the flow of abrasive particles holds significant potential for material polishing applications. Full article
Show Figures

Figure 1

20 pages, 8894 KiB  
Article
Impact of Double-Suction Pump Eye Diameter Variation on Cavitation Phenomena
by Kyungseok Oh and Junho Kim
Machines 2024, 12(9), 633; https://doi.org/10.3390/machines12090633 - 10 Sep 2024
Viewed by 544
Abstract
Cavitation phenomena in pumps are major determinants of the lifespan of both the impeller and the pump itself, causing significant vibration and noise, which are critical concerns for pump designers. This study focuses on the influence of various geometric factors of the impeller, [...] Read more.
Cavitation phenomena in pumps are major determinants of the lifespan of both the impeller and the pump itself, causing significant vibration and noise, which are critical concerns for pump designers. This study focuses on the influence of various geometric factors of the impeller, including the shape of the blade leading edge, blade inlet angle, number and thickness of blades, surface roughness, wrap angle, impeller outlet width, inlet hub diameter, and tip clearance. The pump analyzed in this study, which exhibited issues of vibration and noise in actual industrial settings, was evaluated by varying only the shroud diameter based on Gulich’s theory, while keeping other parameters constant, to assess the effects on cavitation phenomena across five different impellers. Single-phase analysis was initially conducted to evaluate the performance of each pump model, with the reliability of the numerical analysis methods validated by comparison with experimental data. Furthermore, to analyze cavitation phenomena, a multiphase flow analysis was performed using the Rayleigh–Plesset model within a computational fluid dynamics framework. Quantitative analysis of cavitation occurrence, NPSH3% head-drop performance, and bubble volume was conducted. The results confirmed that the M1 model, featuring a shroud diameter of 560 mm, exhibited superior cavitation resistance. Variations in cavitation occurrence observed under three different flow conditions demonstrated a nonlinear trend, but overall, improvements were noted within a specific diameter range. This study offers valuable insights and data for pump design applicable in real-world industrial settings. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

27 pages, 12457 KiB  
Article
Heat Transfer Model Based on Flow Pattern during Flow Boiling in Rectangular Microchannels
by Jiamin Zhu, Peng Zhang, Sicong Tan, Tao Wang, Chaohong Guo and Yuyan Jiang
Aerospace 2024, 11(9), 733; https://doi.org/10.3390/aerospace11090733 - 6 Sep 2024
Viewed by 429
Abstract
In thermal management applications using two-phase flow boiling, rectangular microchannels hold significant promise due to their ease of manufacturing and effective heat transfer characteristics. In this work, we combined experimental and theoretical analyses to propose a theoretical model based on thin liquid film [...] Read more.
In thermal management applications using two-phase flow boiling, rectangular microchannels hold significant promise due to their ease of manufacturing and effective heat transfer characteristics. In this work, we combined experimental and theoretical analyses to propose a theoretical model based on thin liquid film evaporation for predicting heat transfer performance in rectangular cross-sectional microchannels. The heat transfer model is segmented into five zones based on two-phase flow patterns and transient liquid film thickness. These zones represent different flow boiling heat transfer mechanisms over time in microchannels: the liquid slug zone, elongated bubble zone, long-side wall dryout zone, corner liquid evaporation zone, and full dryout zone. The new model comprehensively explains experimental phenomena observed, including long-side wall dryout and thinning of the liquid film on the short-side wall. To validate our model, numerical solutions were computed to study the spatial and temporal variations in heat transfer coefficients. The results exhibited a consistent trend with experimental data regarding average heat transfer coefficients. We also analyzed factors influencing flow boiling characteristics, such as microchannel aspect ratio, hydraulic diameter, measurement location, fluid mass flux, and wall heat flux. Full article
(This article belongs to the Special Issue Aerospace Human–Machine and Environmental Control Engineering)
Show Figures

Figure 1

18 pages, 10942 KiB  
Article
A Study on the Impact Erosion Effect of a Two-Phase Jet Field on a Wall at Different Impact Distances by Numerical Simulation
by Ying Li, Mingzhu Dang and Yawei Wang
Fire 2024, 7(9), 312; https://doi.org/10.3390/fire7090312 - 4 Sep 2024
Viewed by 461
Abstract
When a motor is accidentally started, the solid particles produced by fuel combustion have impact and erosion effects on the surrounding structure via gas ejection, and the structure of the bulkhead is damaged. Therefore, in this paper, the effect of solid particle phase [...] Read more.
When a motor is accidentally started, the solid particles produced by fuel combustion have impact and erosion effects on the surrounding structure via gas ejection, and the structure of the bulkhead is damaged. Therefore, in this paper, the effect of solid particle phase motion on a bulkhead was investigated. A two-dimensional SST k-ω model was used for the analysis. The grid size of the core area of a supersonic jet was selected as RN/24 by the calculation accuracy, and the resources and time consumption of the calculation were comprehensively considered. Based on the simulation of supersonic impact jets, the influence of the phase motion of solid particles was introduced, and the impact of a two-phase jet field on a wall was investigated. The addition of a particle phase created a hysteresis effect on the airflow, changing the shock structure of the pure gas-phase flow field. The rebound of the particle phase at the wall caused the waves in front of the wall to move forward and the stagnation bubble structures to disappear in some cases. The particle aggregation degree and collision angle would affect the particle erosion rate of solid bulkheads. The increase in particle jet impingement distance would change the distribution of particle aggregation and would influence the distribution of wall particle erosion rate and deposition rate. This paper would provide theoretical and engineering guidance for the safety protection design of magazines, which is of great significance for the safety assurance of ship magazines. Full article
(This article belongs to the Special Issue Protection of Ships against Fire and Personnel Evacuation)
Show Figures

Figure 1

18 pages, 712 KiB  
Article
Hybrid Water Disinfection Process Using Electrical Discharges
by Antonina P. Malyushevskaya, Piotr Koszelnik, Olena Mitryasova, Anna Yushchishina, Andrii Mats, Dorota Papciak and Monika Magdalena Zdeb
Processes 2024, 12(9), 1846; https://doi.org/10.3390/pr12091846 - 29 Aug 2024
Viewed by 487
Abstract
An analysis of the physical and chemical phenomena accompanying electrical discharges is carried out, and the main factors influencing microorganisms’ abatement are studied. The similarity of the cavitation processes in water systems induced by underwater electric discharges and ultrasound is experimentally demonstrated. The [...] Read more.
An analysis of the physical and chemical phenomena accompanying electrical discharges is carried out, and the main factors influencing microorganisms’ abatement are studied. The similarity of the cavitation processes in water systems induced by underwater electric discharges and ultrasound is experimentally demonstrated. The characteristic features of electrical discharge in the cavitation mode, providing effective water disinfection with electric discharges with a significantly reduced amount of active chlorine, are identified in order of importance. The inactivation of microorganisms is intensified, firstly, by the generation of chemically active particles from the water medium itself, due to the integral action of the electro-discharge cavitation of the whole treated volume, and by local shock waves, acoustic flows, and ultraviolet radiation in the area near the cavitating bubbles. The main advantages of electric discharge cavitation over ultrasonic range are the wider range of high-frequency acoustic radiation inherent in an electric discharge, the high intensity and power of the cavitation processes, and the possibility of a significant increase in the volume of disinfected liquid. This study allows for a better understanding and prediction of the bacterial effects that occur during a high-voltage underwater electrical discharge. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop