Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,862)

Search Parameters:
Keywords = cancellability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1217 KiB  
Article
Doherty Power Amplifier Design via Differential Combining
by Jorge Julian Moreno Rubio and Abdolhamid Noori
Electronics 2024, 13(19), 3961; https://doi.org/10.3390/electronics13193961 (registering DOI) - 8 Oct 2024
Viewed by 189
Abstract
This paper introduces a novel differential combiner designed to effectively address parasitic capacitances of transistors used in power amplifier (PA) designs with precise compensation at a specified frequency. The combiner consists of a λ/4 transmission line with an integrated capacitor of [...] Read more.
This paper introduces a novel differential combiner designed to effectively address parasitic capacitances of transistors used in power amplifier (PA) designs with precise compensation at a specified frequency. The combiner consists of a λ/4 transmission line with an integrated capacitor of value 2COUT at its midpoint, which ensures accurate cancellation of parasitic effects. This design connects the drain pins of two transistors, which are considered identical in this configuration. By eliminating the need for complex parasitic compensation techniques, this method significantly simplifies the design process of Doherty Power Amplifiers (DPAs). Extensive simulations validate the effectiveness of this approach, highlighting its potential as a versatile and straightforward solution for next-generation communication systems. Full article
Show Figures

Figure 1

26 pages, 7106 KiB  
Article
Optimization of DC Energy Storage in Tokamak Poloidal Coils
by Alessandro Lampasi, Riccardo Testa, Bhavana Gudala, Cristina Terlizzi, Sabino Pipolo and Sandro Tenconi
Appl. Sci. 2024, 14(19), 8975; https://doi.org/10.3390/app14198975 - 5 Oct 2024
Viewed by 313
Abstract
Tokamaks are a very promising option to exploit nuclear fusion as a programmable and safe energy source. A very critical issue for the practical use of tokamaks consists of the power flow required to initiate and sustain the fusion process, in particular in [...] Read more.
Tokamaks are a very promising option to exploit nuclear fusion as a programmable and safe energy source. A very critical issue for the practical use of tokamaks consists of the power flow required to initiate and sustain the fusion process, in particular in the poloidal field coils. This flow can be managed by introducing a DC energy storage based on supercapacitors. Because such storage may be the most expensive and largest part of the poloidal power supply system, an excessive size would cancel its potential advantages. This paper presents innovative strategies to optimize the DC storage in poloidal power supply systems. The proposed solution involves the sharing of the DC storage between different coil circuits. The study is supported by novel analytical formulas and by a circuital model developed for this application. The obtained results show that this method and the related algorithms can noticeably reduce the overall size of the storage and the power exchange with the grid, providing a practical contribution toward the feasibility and the effectiveness of nuclear fusion systems. Full article
(This article belongs to the Special Issue Novel Approaches and Challenges in Nuclear Fusion Engineering)
Show Figures

Figure 1

34 pages, 11872 KiB  
Review
Are Modern Market-Available Multi-Rotor Drones Ready to Automatically Inspect Industrial Facilities?
by Ntmitrii Gyrichidi, Alexandra Khalyasmaa, Stanislav Eroshenko and Alexey Romanov
Drones 2024, 8(10), 549; https://doi.org/10.3390/drones8100549 - 3 Oct 2024
Viewed by 257
Abstract
Industrial inspection is a well-known application area for unmanned aerial vehicles (UAVs), but are modern market-available drones fully suitable for inspections of larger-scale industrial facilities? This review summarizes the pros and cons of aerial large-scale facility inspection, distinguishing it from other inspection scenarios [...] Read more.
Industrial inspection is a well-known application area for unmanned aerial vehicles (UAVs), but are modern market-available drones fully suitable for inspections of larger-scale industrial facilities? This review summarizes the pros and cons of aerial large-scale facility inspection, distinguishing it from other inspection scenarios implemented with drones. Moreover, based on paper analysis and additionally performed experimental studies, it reveals specific issues related to modern commercial drone software and demonstrates that market-available UAVs (including DJI and Autel Robotics) more or less suffer from the same problems. The discovered issues include a Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) shift, an identification of multiple images captured from the same point, limitations of custom mission generation with external tools and mission length, an incorrect flight time prediction, an unpredictable time of reaching a waypoint with a small radius, deviation from the pre-planned route line between two waypoints, a high pitch angle during acceleration/deceleration, an automatic landing cancellation in a strong wind, and flight monitoring issues related to ground station software. Finally, on the basis of the paper review, we propose solutions to these issues, which helped us overcome them during the first autonomous inspection of a 2400 megawatts thermal power plant. Full article
Show Figures

Figure 1

15 pages, 311 KiB  
Article
Real Ghosts of Complex Hadamard Products
by Edoardo Ballico
Symmetry 2024, 16(10), 1300; https://doi.org/10.3390/sym16101300 - 2 Oct 2024
Viewed by 438
Abstract
For all integers n1 and k2, the Hadamard product v1vk of k elements of Kn+1 (with K being the complex numbers or real numbers) is the element [...] Read more.
For all integers n1 and k2, the Hadamard product v1vk of k elements of Kn+1 (with K being the complex numbers or real numbers) is the element vKn+1 which is the coordinate-wise product of v1,,vk (introduced by Cueto, Morton, and Sturmfels for a model in Algebraic Statistics). This product induces a rational map h:Pn(K)kPn(K). When K=C, k=2 and Xi(C)Pn(C), i=1,2 are irreducible, we prove four theorems for the case dimX2(C)=1, three of them with X2(C) as a line. We discuss the existence (non-existence) of a cancellation law for ★-products and use the symmetry group of the Hadamard product. In the second part, we work over R. Under mild assumptions, we prove that by knowing X1(R)Xk(R), we know X1(C)Xk(C). The opposite, i.e., taking and multiplying a set of complex entries that are invariant for the complex conjugation and then seeing what appears in the screen Pn(R), very often provides real ghosts, i.e., images that do not come from a point of X1(R)××Xk(R). We discuss a case in which we certify the existence of real ghosts as well as a few cases in which we certify the non-existence of these ghosts, and ask several open questions. We also provide a scenario in which ghosts are not a problem, where the Hadamard data are used to test whether the images cover the full screen. Full article
(This article belongs to the Section Mathematics)
11 pages, 4168 KiB  
Article
Digital Active EMI Filter for Smart Electronic Power Converters
by Michele Darisi, Tommaso Caldognetto, Davide Biadene and Marco Stellini
Electronics 2024, 13(19), 3889; https://doi.org/10.3390/electronics13193889 - 30 Sep 2024
Viewed by 408
Abstract
Electronic power converters are widespread and crucial components in modern energy scenarios. Beyond mere electrical energy conversion, their electronic structure allows several functionalities to be naturally embedded in them, including energy management, diagnosis, communication, etc. The operation of the converter itself, or the [...] Read more.
Electronic power converters are widespread and crucial components in modern energy scenarios. Beyond mere electrical energy conversion, their electronic structure allows several functionalities to be naturally embedded in them, including energy management, diagnosis, communication, etc. The operation of the converter itself, or the system interfaced by the same, commonly produces undesired electromagnetic interferences (EMIs) that should comply with prescribed limits. This paper presents a digital active EMI filter designed to mitigate such disturbances. The proposed hardware implementation can acquire and analyze the common-mode (CM) noise affecting the circuit and inject a compensation signal to attenuate the measured interference. A novel adaptive algorithm is introduced to compute the necessary signals for effective noise cancellation. The implementation is integrated within a single printed circuit board interfaced with a field-programmable gate array (FPGA) running the control algorithm. The digital filter’s efficacy in EMI reduction is demonstrated using a synchronous buck converter with gallium nitride (GaN) power devices, achieving significant noise reduction. Additionally, potential functionalities are envisioned to fully exploit the capabilities of the proposal beyond EMI filtering, like fault detection, predictive maintenance, smart converter optimization, and communication. Full article
Show Figures

Figure 1

33 pages, 15412 KiB  
Article
Improved Performance of the Permanent Magnet Synchronous Motor Sensorless Control System Based on Direct Torque Control Strategy and Sliding Mode Control Using Fractional Order and Fractal Dimension Calculus
by Marcel Nicola, Claudiu-Ionel Nicola, Dan Selișteanu, Cosmin Ionete and Dorin Șendrescu
Appl. Sci. 2024, 14(19), 8816; https://doi.org/10.3390/app14198816 - 30 Sep 2024
Viewed by 645
Abstract
This article starts from the premise that one of the global control strategies of the Permanent Magnet Synchronous Motor (PMSM), namely the Direct Torque Control (DTC) control strategy, is characterized by the fact that the internal flux and torque control loop usually uses [...] Read more.
This article starts from the premise that one of the global control strategies of the Permanent Magnet Synchronous Motor (PMSM), namely the Direct Torque Control (DTC) control strategy, is characterized by the fact that the internal flux and torque control loop usually uses ON–OFF controllers with hysteresis, which offer easy implementation and very short response times, but the oscillations introduced by them must be cancelled by the external speed loop controller. Typically, this is a PI speed controller, whose performance is good around global operating points and for relatively small variations in external parameters and disturbances, caused in particular by load torque variation. Exploiting the advantages of the DTC strategy, this article presents a way to improve the performance of the sensorless control system (SCS) of the PMSM using the Proportional Integrator (PI), PI Equilibrium Optimizer Algorithm (EOA), Fractional Order (FO) PI, Tilt Integral Derivative (TID) and FO Lead–Lag under constant flux conditions. Sliding Mode Control (SMC) and FOSMC are proposed under conditions where the flux is variable. The performance indicators of the control system are the usual ones: response time, settling time, overshoot, steady-state error and speed ripple, plus another one given by the fractal dimension (FD) of the PMSM rotor speed signal, and the hypothesis that the FD of the controlled signal is higher when the control system performs better is verified. The article also presents the basic equations of the PMSM, based on which the synthesis of integer and fractional controllers, the synthesis of an observer for estimating the PMSM rotor speed, electromagnetic torque and stator flux are presented. The comparison of the performance for the proposed control systems and the demonstration of the parametric robustness are performed by numerical simulations in Matlab/Simulink using Simscape Electrical and Fractional-Order Modelling and Control (FOMCON). Real-time control based on an embedded system using a TMS320F28379D controller demonstrates the good performance of the PMSM-SCS based on the DTC strategy in a complete Hardware-In-the-Loop (HIL) implementation. Full article
(This article belongs to the Special Issue Control Systems for Next Generation Electric Applications)
Show Figures

Figure 1

20 pages, 408 KiB  
Article
String Invention, Viable 3-3-1 Model, Dark Matter Black Holes
by Holger B. Nielsen
Entropy 2024, 26(10), 830; https://doi.org/10.3390/e26100830 - 30 Sep 2024
Viewed by 355
Abstract
With our very limited memories, we provide a brief review of Paul Frampton’s memories of the discovery of the Veneziano model, with this indeed being string theory, with Y. Nambu, and, secondly, his 3-3-1 theory. The latter is, indeed, a non-excluded replacement for [...] Read more.
With our very limited memories, we provide a brief review of Paul Frampton’s memories of the discovery of the Veneziano model, with this indeed being string theory, with Y. Nambu, and, secondly, his 3-3-1 theory. The latter is, indeed, a non-excluded replacement for the Standard Model with triangle anomalies being cancelled, as they must in a truly viable theory. It even needs (essentially) three as the family number! Moreover, primordial black holes as dark matter is mentioned. We end with a review of my own very speculative, utterly recent idea that for the purpose of the classical approximation, we could, using the functional integral as our rudimentary assumption taken over from quantum mechanics, obtain the equations of motion without the, in our opinion, very mysterious imaginary unit i, which usually occurs as a factor in the exponent of the functional integrand, which is this i times the action. The functional integral without the mysterious i leads to the prediction of some of the strongest features in cosmology, and also seems to argue for as few black holes as possible and for the cosmological constant being zero. Full article
Show Figures

Figure 1

17 pages, 6781 KiB  
Communication
An Iterative Orthogonal Frequency Division Multiplexing Receiver with Sequential Inter-Carrier Interference Canceling Modified Delay and Doppler Profiler for an Underwater Multipath Channel
by Suguru Kuniyoshi, Shiho Oshiro, Rie Saotome and Tomohisa Wada
J. Mar. Sci. Eng. 2024, 12(10), 1712; https://doi.org/10.3390/jmse12101712 - 27 Sep 2024
Viewed by 362
Abstract
In 2023, we proposed the modified delay and Doppler profiler (mDDP) as an inter-carrier interference (ICI) countermeasure for underwater acoustic orthogonal frequency division multiplexing (OFDM) mobile communications in a multipath environment. However, the performance improvement in the computer simulation and pool experiments was [...] Read more.
In 2023, we proposed the modified delay and Doppler profiler (mDDP) as an inter-carrier interference (ICI) countermeasure for underwater acoustic orthogonal frequency division multiplexing (OFDM) mobile communications in a multipath environment. However, the performance improvement in the computer simulation and pool experiments was not significant. In a subsequent study, the accuracy of the channel transfer function (CTF), which is the input for the mDDP channel parameter estimation, was considered insufficient. Then a sequential ICI canceling mDDP was devised. This paper presents simulations of underwater OFDM communications using an iterative one- to three-step mDDP. The non-reflective pool experiment conditions are a two-wave multipath environment where the receiving transducer moves at a speed of 0.25 m/s and is subjected to a Doppler shift in the opposite direction. As NumCOL, the number of taps in the multitap equalizer which removes ICI, was increased, the bit error rate (BER) of 0.0526661 at NumCOL = 1 was significantly reduced by a factor of approximately 45 to a BER of 0.0011655 at NumCOL = 51 for the sequential ICI canceling mDDP. Full article
(This article belongs to the Special Issue Underwater Acoustic Communication and Network, 2nd Edition)
Show Figures

Figure 1

23 pages, 5284 KiB  
Article
Leveraging Machine Learning for Optimized Mechanical Properties and 3D Printing of PLA/cHAP for Bone Implant
by Francis T. Omigbodun, Norman Osa-Uwagboe, Amadi Gabriel Udu and Bankole I. Oladapo
Biomimetics 2024, 9(10), 587; https://doi.org/10.3390/biomimetics9100587 - 27 Sep 2024
Viewed by 541
Abstract
This study explores the fabrication and characterisation of 3D-printed polylactic acid (PLA) scaffolds reinforced with calcium hydroxyapatite (cHAP) for bone tissue engineering applications. By varying the cHAP content, we aimed to enhance PLA scaffolds’ mechanical and thermal properties, making them suitable for load-bearing [...] Read more.
This study explores the fabrication and characterisation of 3D-printed polylactic acid (PLA) scaffolds reinforced with calcium hydroxyapatite (cHAP) for bone tissue engineering applications. By varying the cHAP content, we aimed to enhance PLA scaffolds’ mechanical and thermal properties, making them suitable for load-bearing biomedical applications. The results indicate that increasing cHAP content improves the tensile and compressive strength of the scaffolds, although it also increases brittleness. Notably, incorporating cHAP at 7.5% and 10% significantly enhances thermal stability and mechanical performance, with properties comparable to or exceeding those of human cancellous bone. Furthermore, this study integrates machine learning techniques to predict the mechanical properties of these composites, employing algorithms such as XGBoost and AdaBoost. The models demonstrated high predictive accuracy, with R2 scores of 0.9173 and 0.8772 for compressive and tensile strength, respectively. These findings highlight the potential of using data-driven approaches to optimise material properties autonomously, offering significant implications for developing custom-tailored scaffolds in bone tissue engineering and regenerative medicine. The study underscores the promise of PLA/cHAP composites as viable candidates for advanced biomedical applications, particularly in creating patient-specific implants with improved mechanical and thermal characteristics. Full article
Show Figures

Figure 1

17 pages, 5175 KiB  
Article
Reliability Enhancement Methods for Relaxation Oscillator with Delay Time Cancellation
by Kunpeng Xu, Hongguang Dai, Zhanxia Wu, Zhibo Huang, Guoqiang Zhang, Xiaopeng Yu, Wechang Wang and Gang Xuan
J. Low Power Electron. Appl. 2024, 14(4), 47; https://doi.org/10.3390/jlpea14040047 - 26 Sep 2024
Viewed by 442
Abstract
Relaxation oscillators are preferred in low-frequency applications due to their lower power consumption and superior temperature stability. However, frequency errors arise from variations in the comparator’s offset voltage and delay time due to PVT changes. To address these issues, this paper proposes the [...] Read more.
Relaxation oscillators are preferred in low-frequency applications due to their lower power consumption and superior temperature stability. However, frequency errors arise from variations in the comparator’s offset voltage and delay time due to PVT changes. To address these issues, this paper proposes the low-power delay time cancellation (DTC) technique and several enhancement methods, including a novel offset trimming approach, an error state detection and recovery (ESDAR) circuit, and a specialized frequency-trimming method. Simulation results for an 8 MHz relaxation oscillator in a 40 nm CMOS process show that the proposed DTC technique and enhancements improve frequency variation due to power supply fluctuations to ±0.05% and reduce temperature-induced frequency variation to ±0.4%. Full article
Show Figures

Figure 1

19 pages, 5669 KiB  
Article
Evaluation of Bone Turnover around Short Finned Implants in Atrophic Posterior Maxilla: A Finite Element Study
by Andrii Kondratiev, Vladislav Demenko, Igor Linetskiy, Hans-Werner Weisskircher and Larysa Linetska
Prosthesis 2024, 6(5), 1170-1188; https://doi.org/10.3390/prosthesis6050084 - 24 Sep 2024
Viewed by 307
Abstract
Background/Objectives: Dental implants have emerged as a modern solution for edentulous jaws, showing high success rates. However, the implant’s success often hinges on the patient’s bone quality and quantity, leading to higher failure rates in poor bone sites. To address this issue, [...] Read more.
Background/Objectives: Dental implants have emerged as a modern solution for edentulous jaws, showing high success rates. However, the implant’s success often hinges on the patient’s bone quality and quantity, leading to higher failure rates in poor bone sites. To address this issue, short implants have become a viable alternative to traditional approaches like bone sinus lifting. Among these, Bicon® short implants with a plateau design are popular for their increased surface area, offering potential advantages over threaded implants. Despite their promise, the variability in patient-specific bone quality remains a critical factor influencing implant success and bone turnover regulated by bone strains. Excessive strains can lead to bone loss and implant failure according to Frost’s “Mechanostat” theory. To better understand the implant biomechanical environment, numerical simulation (FEA) is invaluable for correlating implant and bone parameters with strain fields in adjacent bone. The goal was to establish key relationships between short implant geometry, bone quality and quantity, and strain levels in the adjacent bone of patient-dependent elasticity to mitigate the risk of implant failure by avoiding pathological strains. Methods: Nine Bicon Integra-CP™ implants were chosen. Using CT scans, three-dimensional models of the posterior maxilla were created in Solidworks 2022 software to represent the most challenging scenario with minimal available bone, and the implant models were positioned in the jaw with the implant apex supported by the sinus cortical bone. Outer dimensions of the maxilla segment models were determined based on a prior convergence test. Implants and abutments were considered as a single unit made of titanium alloy. The bone segments simulated types III/IV bone by different cancellous bone elasticities and by variable cortical bone elasticity moduli selected based on an experimental data range. Both implants and bone were treated as linearly elastic and isotropic materials. Boundary conditions were restraining the disto-mesial and cranial surfaces of the bone segments. The bone–implant assemblies were subjected to oblique loads, and the bone’s first principal strain fields were analyzed. Maximum strain values were compared with the “minimum effective strain pathological” threshold of 3000 microstrain to assess the implant prognosis. Results: Physiological strains ranging from 490 to 3000 microstrain were observed in the crestal cortical bone, with no excessive strains detected at the implant neck area across different implant dimensions and cortical bone elasticity. In cancellous bone, maximum strains were observed at the first fin tip and were influenced by the implant diameter and length, as well as bone quality and cortical bone elasticity. In the spectrum of modeled bone elasticity and implant dimensions, increasing implant diameter from 4.5 to 6.0 mm resulted in a reduction in maximum strains by 34% to 52%, depending on bone type and cortical bone elasticity. Similarly, increasing implant length from 5.0 to 8.0 mm led to a reduction in maximum strains by 15% to 37%. Additionally, a two-fold reduction in cancellous bone elasticity modulus (type IV vs. III) corresponded to an increase in maximum strains by 16% to 59%. Also, maximum strains increased by 86% to 129% due to a decrease in patient-dependent cortical bone elasticity from the softest to the most rigid bone. Conclusions: The findings have practical implications for dental practitioners planning short finned implants in the posterior maxilla. In cases where the quality of cortical bone is uncertain and bone height is insufficient, wider 6.0 mm diameter implants should be preferred to mitigate the risk of pathological strains. Further investigations of cortical bone architecture and elasticity in the posterior maxilla are recommended to develop comprehensive clinical recommendations considering bone volume and quality limitations. Such research can potentially enable the placement of narrower implants in cases of insufficient bone. Full article
Show Figures

Figure 1

24 pages, 2090 KiB  
Review
The Potential Challenges and Limitations of Implementing Modern Office Design Features in Residential Spaces: A SPAR-4-SLR Approach
by James Olabode Bamidele Rotimi, Taofeeq Durojaye Moshood and Funmilayo Ebun Rotimi
Buildings 2024, 14(10), 3037; https://doi.org/10.3390/buildings14103037 - 24 Sep 2024
Viewed by 729
Abstract
The COVID-19 pandemic has significantly altered how people work, with an increasing number transitioning to working from home (WFH). This paradigm shift has raised various challenges in adapting living spaces to meet the needs of remote work. Dedicated workspaces or home offices need [...] Read more.
The COVID-19 pandemic has significantly altered how people work, with an increasing number transitioning to working from home (WFH). This paradigm shift has raised various challenges in adapting living spaces to meet the needs of remote work. Dedicated workspaces or home offices need to be customized for creativity and productivity. Thus, this systematic literature review explores the potential challenges and limitations of implementing modern office design features in residential environments. The study synthesizes findings from 108 peer-reviewed articles published within the last decade, focusing on ergonomics, productivity, work–life balance, and spatial constraints. The study found several challenges in translating office design features to home settings. Firstly, spatial limitations in residential areas often restrict the implementation of open-plan layouts and collaborative zones, which are hallmarks of modern office designs. Secondly, the integration of ergonomic furniture and adjustable workstations are limited by budget constraints and the dual-purpose nature of many home spaces. Furthermore, the review highlights the psychological challenges of maintaining work–life boundaries when professional and personal spaces overlap. Noise pollution and distractions emerge as significant factors impacting productivity in home offices, which contrasts controlled modern office environments. The review suggests that the complete replication of modern office design in homes may be impractical; a hybrid approach that adapts key features to residential constraints could enhance home office productivity. Potential solutions could include modular furniture designs, the simulation of collaborative spaces, and the development of noise-cancelling technologies specifically for home environments. This study contributes to the growing body of knowledge on remote work environments and provides valuable insights for enhancing work–life balance, environmental sustainability, and economic growth. Full article
(This article belongs to the Collection Sustainable Buildings in the Built Environment)
Show Figures

Figure 1

25 pages, 1006 KiB  
Article
Statistics of the Sum of Double Random Variables and Their Applications in Performance Analysis and Optimization of Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface-Assisted Non-Orthogonal Multi-Access Systems
by Bui Vu Minh, Phuong T. Tran, Thu-Ha Thi Pham, Anh-Tu Le, Si-Phu Le and Pavol Partila
Sensors 2024, 24(18), 6148; https://doi.org/10.3390/s24186148 - 23 Sep 2024
Viewed by 371
Abstract
For the future of sixth-generation (6G) wireless communication, simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) technology is emerging as a promising solution to achieve lower power transmission and flawless coverage. To facilitate the performance analysis of RIS-assisted networks, the statistics of the [...] Read more.
For the future of sixth-generation (6G) wireless communication, simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) technology is emerging as a promising solution to achieve lower power transmission and flawless coverage. To facilitate the performance analysis of RIS-assisted networks, the statistics of the sum of double random variables, i.e., the sum of the products of two random variables of the same distribution type, become vitally necessary. This paper applies the statistics of the sum of double random variables in the performance analysis of an integrated power beacon (PB) energy-harvesting (EH)-based NOMA-assisted STAR-RIS network to improve its outage probability (OP), ergodic rate, and average symbol error rate. Furthermore, the impact of imperfect successive interference cancellation (ipSIC) on system performance is also analyzed. The analysis provides the closed-form expressions of the OP and ergodic rate derived for both imperfect and perfect SIC (pSIC) cases. All analyses are supported by extensive simulation results, which help recommend optimized system parameters, including the time-switching factor, the number of reflecting elements, and the power allocation coefficients, to minimize the OP. Finally, the results demonstrate the superiority of the proposed framework compared to conventional NOMA and OMA systems. Full article
(This article belongs to the Special Issue 5G/6G Networks for Wireless Communication and IoT)
Show Figures

Figure 1

16 pages, 1053 KiB  
Article
Shift Pruning-Based SCL Decoding for Polar Codes
by Desheng Wang, Jihang Yin, Yonggang Xu, Xuan Yang, Jiaqi Yan and Gang Hua
Mathematics 2024, 12(18), 2937; https://doi.org/10.3390/math12182937 - 21 Sep 2024
Viewed by 240
Abstract
In the context of the high-speed development of 5G communications, high-performance decoding schemes for polar codes are a hot spot in channel coding research. Shift pruning successive cancellation list (SP-SCL) decoding aims to recover the correct path by shift pruning in the extra [...] Read more.
In the context of the high-speed development of 5G communications, high-performance decoding schemes for polar codes are a hot spot in channel coding research. Shift pruning successive cancellation list (SP-SCL) decoding aims to recover the correct path by shift pruning in the extra SCL decoding. However, the current SP-SCL decoding is inflexible in determining the shift positions. In this paper, a flexible shift pruning SCL (FSP-SCL) decoding is proposed. Firstly, the reasons for movement and the eliminated states of the correct path are analyzed in detail using the path metric range (PMR), and on this basis, the validity of the method adopted in this paper for determining the shift priority of the information bits is verified. Secondly, the FSP-SCL decoding proposes two methods for determining the shift positions. One is the log-likelihood ratio (LLR) threshold method, which compares the LLR values of the eliminated paths on the shift bit with the corresponding LLR threshold to determine the shift positions. The other is the path distance method. It combines the minimum distance between the eliminated paths and the received vector with the path metrics to determine the shift positions. Both methods are more flexible and practical, as they can calculate the corresponding shift positions online based on a specific shift bit, avoiding the high complexity caused by the simulation method. Finally, this paper designs various experimental schemes to verify the decoding performance of the FSP-SCL. The experimental results show that in terms of error-correction performance, the LLR threshold-based FSP-SCL (FSPL (LLR threshold)) decoding, the path distance-based FSP-SCL (FSPL (path distance)) decoding and the existing SP-SCL decoding are roughly equal overall. In terms of decoding complexity, FSPL (LLR threshold) decoding is slightly better than FSPL (path distance) decoding, and the decoding complexity of both is lower than that of SP-SCL decoding, with the difference being more pronounced in the medium to high SNR regions. Full article
Show Figures

Figure 1

25 pages, 2491 KiB  
Article
The Potential of Deep Learning in Underwater Wireless Sensor Networks and Noise Canceling for the Effective Monitoring of Aquatic Life
by Walaa M. Elsayed, Maazen Alsabaan, Mohamed I. Ibrahem and Engy El-Shafeiy
Sensors 2024, 24(18), 6102; https://doi.org/10.3390/s24186102 - 20 Sep 2024
Viewed by 526
Abstract
This paper describes a revolutionary design paradigm for monitoring aquatic life. This unique methodology addresses issues such as limited memory, insufficient bandwidth, and excessive noise levels by combining two approaches to create a comprehensive predictive filtration system, as well as multiple-transfer route analysis. [...] Read more.
This paper describes a revolutionary design paradigm for monitoring aquatic life. This unique methodology addresses issues such as limited memory, insufficient bandwidth, and excessive noise levels by combining two approaches to create a comprehensive predictive filtration system, as well as multiple-transfer route analysis. This work focuses on proposing a novel filtration learning approach for underwater sensor nodes. This model was created by merging two adaptive filters, the finite impulse response (FIR) and the adaptive line enhancer (ALE). The FIR integrated filter eliminates unwanted noise from the signal by obtaining a linear response phase and passes the signal without distortion. The goal of the ALE filter is to properly separate the noise signal from the measured signal, resulting in the signal of interest. The cluster head level filters are the adaptive cuckoo filter (ACF) and the Kalman filter. The ACF assesses whether an emitter node is part of a set or not. The Kalman filter improves the estimation of state values for a dynamic underwater sensor networking system. It uses distributed learning long short-term memory (LSTM-CNN) technology to ensure that the anticipated value of the square of the gap between the prediction and the correct state is the smallest possible. Compared to prior methods, our suggested deep filtering–learning model achieved 98.5% of the sensory filtration method in the majority of the obtained data and close to 99.1% of an adaptive prediction method, while also consuming little energy during lengthy monitoring. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop