Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (203)

Search Parameters:
Keywords = canopy height model (CHM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12334 KiB  
Article
Canopy Height Integration for Precise Forest Aboveground Biomass Estimation in Natural Secondary Forests of Northeast China Using Gaofen-7 Stereo Satellite Data
by Caixia Liu, Huabing Huang, Zhiyu Zhang, Wenyi Fan and Di Wu
Remote Sens. 2025, 17(1), 47; https://doi.org/10.3390/rs17010047 - 27 Dec 2024
Viewed by 554
Abstract
Accurate estimates of forest aboveground biomass (AGB) are necessary for the accurate tracking of forest carbon stock. Gaofen-7 (GF-7) is the first civilian sub-meter three-dimensional (3D) mapping satellite from China. It is equipped with a laser altimeter system and a dual-line array stereoscopic [...] Read more.
Accurate estimates of forest aboveground biomass (AGB) are necessary for the accurate tracking of forest carbon stock. Gaofen-7 (GF-7) is the first civilian sub-meter three-dimensional (3D) mapping satellite from China. It is equipped with a laser altimeter system and a dual-line array stereoscopic mapping camera, which enables it to synchronously generate full-waveform LiDAR data and stereoscopic images. The bulk of existing research has examined how accurate GF-7 is for topographic measurements of bare land or canopy height. The measurement of forest aboveground biomass has not received as much attention as it deserves. This study aimed to assess the GF-7 stereo imaging capability, displayed as topographic features for aboveground biomass estimation in forests. The aboveground biomass model was constructed using the random forest machine learning technique, which was accomplished by combining the use of in situ field measurements, pairs of GF-7 stereo images, and the corresponding generated canopy height model (CHM). Findings showed that the biomass estimation model had an accuracy of R2 = 0.76, RMSE = 7.94 t/ha, which was better than the inclusion of forest canopy height (R2 = 0.30, RMSE = 21.02 t/ha). These results show that GF-7 has considerable application potential in gathering large-scale high-precision forest aboveground biomass using a restricted amount of field data. Full article
Show Figures

Figure 1

8 pages, 2806 KiB  
Proceeding Paper
Constructing Rasterized Covariates from LiDAR Point Cloud Data via Structured Query Language
by Rory Pittman and Baoxin Hu
Proceedings 2024, 110(1), 1; https://doi.org/10.3390/proceedings2024110001 - 3 Dec 2024
Cited by 1 | Viewed by 511
Abstract
For point cloud data compiled over larger spatial domains, the rasterization of features is effectively streamlined by means of structured query language (SQL). This comprises enhanced control with filtering data and implementing specific metrics for summarization to derive environmental covariates. LiDAR (light detection [...] Read more.
For point cloud data compiled over larger spatial domains, the rasterization of features is effectively streamlined by means of structured query language (SQL). This comprises enhanced control with filtering data and implementing specific metrics for summarization to derive environmental covariates. LiDAR (light detection and ranging) point cloud data were analyzed via SQL to generate rasterized covariates of the digital terrain model (DTM), canopy height model (CHM), and a gap fraction for a boreal study region in Northern Ontario, Canada. These features, along with topographic covariates computed from the DTM, were later ascertained as important for subsequent tree species classification research. Full article
(This article belongs to the Proceedings of The 31st International Conference on Geoinformatics)
Show Figures

Figure 1

19 pages, 6073 KiB  
Article
Effective UAV Photogrammetry for Forest Management: New Insights on Side Overlap and Flight Parameters
by Atman Dhruva, Robin J. L. Hartley, Todd A. N. Redpath, Honey Jane C. Estarija, David Cajes and Peter D. Massam
Forests 2024, 15(12), 2135; https://doi.org/10.3390/f15122135 - 2 Dec 2024
Viewed by 1323
Abstract
Silvicultural operations such as planting, pruning, and thinning are vital for the forest value chain, requiring efficient monitoring to prevent value loss. While effective, traditional field plots are time-consuming, costly, spatially limited, and rely on assumptions that they adequately represent a wider area. [...] Read more.
Silvicultural operations such as planting, pruning, and thinning are vital for the forest value chain, requiring efficient monitoring to prevent value loss. While effective, traditional field plots are time-consuming, costly, spatially limited, and rely on assumptions that they adequately represent a wider area. Alternatively, unmanned aerial vehicles (UAVs) can cover large areas while keeping operators safe from hazards including steep terrain. Despite their utility, optimal flight parameters to ensure flight efficiency and data quality remain under-researched. This study evaluated the impact of forward and side overlap and flight altitude on the quality of two- and three-dimensional spatial data products from UAV photogrammetry (UAV-SfM) for assessing stand density in a recently thinned Pinus radiata D. Don plantation. A contemporaneously acquired UAV laser scanner (ULS) point cloud provided reference data. The results indicate that the optimal UAV-SfM flight parameters are 90% forward and 85% side overlap at a 120 m altitude. Flights at an 80 m altitude offered marginal resolution improvement (2.2 cm compared to 3.2 cm ground sample distance/GSD) but took longer and were more error-prone. Individual tree detection (ITD) for stand density assessment was then applied to both UAV-SfM and ULS canopy height models (CHMs). Manual cleaning of the detected ULS tree peaks provided ground truth for both methods. UAV-SfM had a lower recall (0.85 vs. 0.94) but a higher precision (0.97 vs. 0.95) compared to ULS. Overall, the F-score indicated no significant difference between a prosumer-grade photogrammetric UAV and an industrial-grade ULS for stand density assessments, demonstrating the efficacy of affordable, off-the-shelf UAV technology for forest managers. Furthermore, in addressing the knowledge gap regarding optimal UAV flight parameters for conducting operational forestry assessments, this study provides valuable insights into the importance of side overlap for orthomosaic quality in forest environments. Full article
(This article belongs to the Special Issue Image Processing for Forest Characterization)
Show Figures

Graphical abstract

21 pages, 7085 KiB  
Article
Space-Based Mapping of Pre- and Post-Hurricane Mangrove Canopy Heights Using Machine Learning with Multi-Sensor Observations
by Boya Zhang, Daniel Gann, Shimon Wdowinski, Chaohao Lin, Erin Hestir, Lukas Lamb-Wotton, Khandker S. Ishtiaq, Kaleb Smith and Yuepeng Li
Remote Sens. 2024, 16(21), 3992; https://doi.org/10.3390/rs16213992 - 28 Oct 2024
Cited by 1 | Viewed by 1289
Abstract
Coastal mangrove forests provide numerous ecosystem services, which can be disrupted by natural disturbances, mainly hurricanes. Canopy height (CH) is a key parameter for estimating carbon storage. Airborne Light Detection and Ranging (LiDAR) is widely viewed as the most accurate method for estimating [...] Read more.
Coastal mangrove forests provide numerous ecosystem services, which can be disrupted by natural disturbances, mainly hurricanes. Canopy height (CH) is a key parameter for estimating carbon storage. Airborne Light Detection and Ranging (LiDAR) is widely viewed as the most accurate method for estimating CH but data are often limited in spatial coverage and are not readily available for rapid impact assessment after hurricane events. Hence, we evaluated the use of systematically acquired space-based Synthetic Aperture Radar (SAR) and optical observations with airborne LiDAR to predict CH across expansive mangrove areas in South Florida that were severely impacted by Category 3 Hurricane Irma in 2017. We used pre- and post-Irma LiDAR-derived canopy height models (CHMs) to train Random Forest regression models that used features of Sentinel-1 SAR time series, Landsat-8 optical, and classified mangrove maps. We evaluated (1) spatial transfer learning to predict regional CH for both time periods and (2) temporal transfer learning coupled with species-specific error correction models to predict post-Irma CH using models trained by pre-Irma data. Model performance of SAR and optical data differed with time period and across height classes. For spatial transfer, SAR data models achieved higher accuracy than optical models for post-Irma, while the opposite was the case for the pre-Irma period. For temporal transfer, SAR models were more accurate for tall trees (>10 m) but optical models were more accurate for short trees. By fusing data of both sensors, spatial and temporal transfer learning achieved the root mean square errors (RMSEs) of 1.9 m and 1.7 m, respectively, for absolute CH. Predicted CH losses were comparable with LiDAR-derived reference values across height and species classes. Spatial and temporal transfer learning techniques applied to readily available spaceborne satellite data can enable conservation managers to assess the impacts of disturbances on regional coastal ecosystems efficiently and within a practical timeframe after a disturbance event. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

24 pages, 20172 KiB  
Article
Estimation of Forest Above-Ground Biomass in the Study Area of Greater Khingan Ecological Station with Integration of Airborne LiDAR, Landsat 8 OLI, and Hyperspectral Remote Sensing Data
by Lu Wang, Yilin Ju, Yongjie Ji, Armando Marino, Wangfei Zhang and Qian Jing
Forests 2024, 15(11), 1861; https://doi.org/10.3390/f15111861 - 24 Oct 2024
Cited by 3 | Viewed by 1348
Abstract
Accurate estimation of forest above-ground biomass (AGB) is significant for understanding changes in global carbon storage and addressing climate change. This study focuses on 53 samples of natural forests at the Greater Khingan Ecological Station, exploring the potential of integrating Canopy Height Model [...] Read more.
Accurate estimation of forest above-ground biomass (AGB) is significant for understanding changes in global carbon storage and addressing climate change. This study focuses on 53 samples of natural forests at the Greater Khingan Ecological Station, exploring the potential of integrating Canopy Height Model (CHM) with multi-source remote sensing (RS) data—airborne LiDAR, Landsat 8 OLI, and hyperspectral data to estimate forest AGB. Firstly, RS features with strong horizontal and vertical correlation with the forests AGB are optimized by a partial least squares algorithm (PLSR). Then, multivariate linear stepwise regression (MLSR) and K-nearest neighbor with fast iterative features selection (KNN-FIFS) are applied to estimate forest AGB using seven different data combinations. Finally, the leave-one-out cross-validation method is selected for the validation of the estimation results. The results are as follows: (1) When forest AGB is estimated using a single data source, the inversion results of using LiDAR are better, with R2 = 0.76 and RMSE = 21.78 Mg/ha. (2) The estimation accuracy of two models showed obvious improvement after using fused CHM into RS information. The MLSR model showed the best performance, with R2 increased by 0.41 and RMSE decreased to 14.15 Mg/ha. (3) The estimation results based on the KNN-FIFS model using the combined data of LiDAR, CHM + Landsat 8 OLI, and CHM + Hyperspectral imaging were the best in this study, with R2 = 0.85 and RMSE = 18.17 Mg/ha. The results of the study show that fusing CHM into multi-spectral data and hyperspectral data can improve the estimation accuracy a lot; the forest AGB estimation accuracies of the multi-source RS data are better than the single data source. This study provides an effective method for estimating forest AGB using multi-source data integrated with CHM to improve estimation accuracy. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

20 pages, 14699 KiB  
Article
The Early Prediction of Kimchi Cabbage Heights Using Drone Imagery and the Long Short-Term Memory (LSTM) Model
by Seung-hwan Go and Jong-hwa Park
Drones 2024, 8(9), 499; https://doi.org/10.3390/drones8090499 - 18 Sep 2024
Cited by 1 | Viewed by 852
Abstract
Accurate and timely crop growth prediction is crucial for efficient farm management and food security, particularly given challenges like labor shortages and climate change. This study presents a novel method for the early prediction of Kimchi cabbage heights using drone imagery and a [...] Read more.
Accurate and timely crop growth prediction is crucial for efficient farm management and food security, particularly given challenges like labor shortages and climate change. This study presents a novel method for the early prediction of Kimchi cabbage heights using drone imagery and a long short-term memory (LSTM) model. High-resolution drone images were used to generate a canopy height model (CHM) for estimating plant heights at various growth stages. Missing height data were interpolated using a logistic growth curve, and an LSTM model was trained on this time series data to predict the final height at harvest well before the actual harvest date. The model trained on data from 44 days after planting (DAPs) demonstrated the highest accuracy (R2 = 0.83, MAE = 2.48 cm, and RMSE = 3.26 cm). Color-coded maps visualizing the predicted Kimchi cabbage heights revealed distinct growth patterns between different soil types, highlighting the model’s potential for site-specific management. Considering the trade-off between accuracy and prediction timing, the model trained on DAP 36 data (MAE = 2.77 cm) was deemed most suitable for practical applications, enabling timely interventions in cultivation management. This research demonstrates the feasibility and effectiveness of integrating drone imagery, logistic growth curves, and LSTM models for the early and accurate prediction of Kimchi cabbage heights, facilitating data-driven decision-making in precision agriculture for improved crop management and yield optimization. Full article
Show Figures

Figure 1

23 pages, 11793 KiB  
Article
Detecting Canopy Gaps in Uneven-Aged Mixed Forests through the Combined Use of Unmanned Aerial Vehicle Imagery and Deep Learning
by Nyo Me Htun, Toshiaki Owari, Satoshi Tsuyuki and Takuya Hiroshima
Drones 2024, 8(9), 484; https://doi.org/10.3390/drones8090484 - 13 Sep 2024
Viewed by 1261
Abstract
Canopy gaps and their associated processes play an important role in shaping forest structure and dynamics. Understanding the information about canopy gaps allows forest managers to assess the potential for regeneration and plan interventions to enhance regeneration success. Traditional field surveys for canopy [...] Read more.
Canopy gaps and their associated processes play an important role in shaping forest structure and dynamics. Understanding the information about canopy gaps allows forest managers to assess the potential for regeneration and plan interventions to enhance regeneration success. Traditional field surveys for canopy gaps are time consuming and often inaccurate. In this study, canopy gaps were detected using unmanned aerial vehicle (UAV) imagery of two sub-compartments of an uneven-aged mixed forest in northern Japan. We compared the performance of U-Net and ResU-Net (U-Net combined with ResNet101) deep learning models using RGB, canopy height model (CHM), and fused RGB-CHM data from UAV imagery. Our results showed that the ResU-Net model, particularly when pre-trained on ImageNet (ResU-Net_2), achieved the highest F1-scores—0.77 in Sub-compartment 42B and 0.79 in Sub-compartment 16AB—outperforming the U-Net model (0.52 and 0.63) and the non-pre-trained ResU-Net model (ResU-Net_1) (0.70 and 0.72). ResU-Net_2 also achieved superior overall accuracy values of 0.96 and 0.97, outperforming previous methods that used UAV datasets with varying methodologies for canopy gap detection. These findings underscore the effectiveness of the ResU-Net_2 model in detecting canopy gaps in uneven-aged mixed forests. Furthermore, when these trained models were applied as transfer models to detect gaps specifically caused by selection harvesting using pre- and post-UAV imagery, they showed considerable potential, achieving moderate F1-scores of 0.54 and 0.56, even with a limited training dataset. Overall, our study demonstrates that combining UAV imagery with deep learning techniques, particularly pre-trained models, significantly improves canopy gap detection accuracy and provides valuable insights for forest management and future research. Full article
Show Figures

Figure 1

11 pages, 11077 KiB  
Article
Forage Height and Above-Ground Biomass Estimation by Comparing UAV-Based Multispectral and RGB Imagery
by Hongquan Wang, Keshav D. Singh, Hari P. Poudel, Manoj Natarajan, Prabahar Ravichandran and Brandon Eisenreich
Sensors 2024, 24(17), 5794; https://doi.org/10.3390/s24175794 - 6 Sep 2024
Viewed by 1112
Abstract
Crop height and biomass are the two important phenotyping traits to screen forage population types at local and regional scales. This study aims to compare the performances of multispectral and RGB sensors onboard drones for quantitative retrievals of forage crop height and biomass [...] Read more.
Crop height and biomass are the two important phenotyping traits to screen forage population types at local and regional scales. This study aims to compare the performances of multispectral and RGB sensors onboard drones for quantitative retrievals of forage crop height and biomass at very high resolution. We acquired the unmanned aerial vehicle (UAV) multispectral images (MSIs) at 1.67 cm spatial resolution and visible data (RGB) at 0.31 cm resolution and measured the forage height and above-ground biomass over the alfalfa (Medicago sativa L.) breeding trials in the Canadian Prairies. (1) For height estimation, the digital surface model (DSM) and digital terrain model (DTM) were extracted from MSI and RGB data, respectively. As the resolution of the DTM is five times less than that of the DSM, we applied an aggregation algorithm to the DSM to constrain the same spatial resolution between DSM and DTM. The difference between DSM and DTM was computed as the canopy height model (CHM), which was at 8.35 cm and 1.55 cm for MSI and RGB data, respectively. (2) For biomass estimation, the normalized difference vegetation index (NDVI) from MSI data and excess green (ExG) index from RGB data were analyzed and regressed in terms of ground measurements, leading to empirical models. The results indicate better performance of MSI for above-ground biomass (AGB) retrievals at 1.67 cm resolution and better performance of RGB data for canopy height retrievals at 1.55 cm. Although the retrieved height was well correlated with the ground measurements, a significant underestimation was observed. Thus, we developed a bias correction function to match the retrieval with the ground measurements. This study provides insight into the optimal selection of sensor for specific targeted vegetation growth traits in a forage crop. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 5704 KiB  
Article
Error Analysis and Accuracy Improvement in Forest Canopy Height Estimation Based on GEDI L2A Product: A Case Study in the United States
by Yi Li, Shijuan Gao, Haiqiang Fu, Jianjun Zhu, Qing Hu, Dong Zeng and Yonghui Wei
Forests 2024, 15(9), 1536; https://doi.org/10.3390/f15091536 - 31 Aug 2024
Cited by 3 | Viewed by 1198
Abstract
Various error factors influence the inversion of forest canopy height using GEDI full-waveform LiDAR data, and the interaction of these factors impacts the accuracy of forest canopy height estimation. From an error perspective, there is still a lack of methods to fully correct [...] Read more.
Various error factors influence the inversion of forest canopy height using GEDI full-waveform LiDAR data, and the interaction of these factors impacts the accuracy of forest canopy height estimation. From an error perspective, there is still a lack of methods to fully correct the impact of various error factors on the retrieval of forest canopy height from GEDI. From the modeling perspective, establishing clear coupling models between various environments, collection parameters, and GEDI forest canopy height errors is challenging. Understanding the comprehensive impact of various environments and collection parameters on the accuracy of GEDI data is crucial for extracting high-quality and precise forest canopy heights. First, we quantitatively assessed the accuracy of GEDI L2A data in forest canopy height inversion and conducted an error analysis. A GEDI forest canopy height error correction model has been developed, taking into account both forest density and terrain effects. This study elucidated the influence of forest density and terrain on the error in forest canopy height estimation, ultimately leading to an improvement in the accuracy of forest canopy height inversion. In light of the identified error patterns, quality control criteria for GEDI footprints are formulated, and a correction model for GEDI forest canopy height is established to achieve high-precision inversion. We selected 19 forest areas located in the United States with high-accuracy Digital Terrain Models (DTMs) and Canopy Height Models (CHMs) to analyze the error factors of GEDI forest canopy heights and assess the proposed accuracy improvement for GEDI forest canopy heights. The findings reveal a decrease in the corrected RMSE value of forest canopy height from 5.60 m to 4.19 m, indicating a 25.18% improvement in accuracy. Full article
Show Figures

Figure 1

24 pages, 16499 KiB  
Article
Estimating Maize Crop Height and Aboveground Biomass Using Multi-Source Unmanned Aerial Vehicle Remote Sensing and Optuna-Optimized Ensemble Learning Algorithms
by Yafeng Li, Changchun Li, Qian Cheng, Fuyi Duan, Weiguang Zhai, Zongpeng Li, Bohan Mao, Fan Ding, Xiaohui Kuang and Zhen Chen
Remote Sens. 2024, 16(17), 3176; https://doi.org/10.3390/rs16173176 - 28 Aug 2024
Cited by 1 | Viewed by 1799
Abstract
Accurately assessing maize crop height (CH) and aboveground biomass (AGB) is crucial for understanding crop growth and light-use efficiency. Unmanned aerial vehicle (UAV) remote sensing, with its flexibility and high spatiotemporal resolution, has been widely applied in crop phenotyping studies. Traditional canopy height [...] Read more.
Accurately assessing maize crop height (CH) and aboveground biomass (AGB) is crucial for understanding crop growth and light-use efficiency. Unmanned aerial vehicle (UAV) remote sensing, with its flexibility and high spatiotemporal resolution, has been widely applied in crop phenotyping studies. Traditional canopy height models (CHMs) are significantly influenced by image resolution and meteorological factors. In contrast, the accumulated incremental height (AIH) extracted from point cloud data offers a more accurate estimation of CH. In this study, vegetation indices and structural features were extracted from optical imagery, nadir and oblique photography, and LiDAR point cloud data. Optuna-optimized models, including random forest regression (RFR), light gradient boosting machine (LightGBM), gradient boosting decision tree (GBDT), and support vector regression (SVR), were employed to estimate maize AGB. Results show that AIH99 has higher accuracy in estimating CH. LiDAR demonstrated the highest accuracy, while oblique photography and nadir photography point clouds were slightly less accurate. Fusion of multi-source data achieved higher estimation accuracy than single-sensor data. Embedding structural features can mitigate spectral saturation, with R2 ranging from 0.704 to 0.939 and RMSE ranging from 0.338 to 1.899 t/hm2. During the entire growth cycle, the R2 for LightGBM and RFR were 0.887 and 0.878, with an RMSE of 1.75 and 1.76 t/hm2. LightGBM and RFR also performed well across different growth stages, while SVR showed the poorest performance. As the amount of nitrogen application gradually decreases, the accumulation and accumulation rate of AGB also gradually decrease. This high-throughput crop-phenotyping analysis method offers advantages, such as speed and high accuracy, providing valuable references for precision agriculture management in maize fields. Full article
Show Figures

Graphical abstract

21 pages, 10720 KiB  
Article
Synergy of UAV-LiDAR Data and Multispectral Remote Sensing Images for Allometric Estimation of Phragmites Australis Aboveground Biomass in Coastal Wetland
by Chentian Ge, Chao Zhang, Yuan Zhang, Zhekui Fan, Mian Kong and Wentao He
Remote Sens. 2024, 16(16), 3073; https://doi.org/10.3390/rs16163073 - 21 Aug 2024
Viewed by 1140
Abstract
Quantifying the vegetation aboveground biomass (AGB) is crucial for evaluating environment quality and estimating blue carbon in coastal wetlands. In this study, a UAV-LiDAR was first employed to quantify the canopy height model (CHM) of coastal Phragmites australis (common reed). Statistical correlations were [...] Read more.
Quantifying the vegetation aboveground biomass (AGB) is crucial for evaluating environment quality and estimating blue carbon in coastal wetlands. In this study, a UAV-LiDAR was first employed to quantify the canopy height model (CHM) of coastal Phragmites australis (common reed). Statistical correlations were explored between two multispectral remote sensing data (Sentinel-2 and JL-1) and reed biophysical parameters (CHM, density, and AGB) estimated from UAV-LiDAR data. Consequently, the reed AGB was separately estimated and mapped with UAV-LiDAR, Sentinel-2, and JL-1 data through the allometric equations (AEs). Results show that UAV-LiDAR-derived CHM at pixel size of 4 m agrees well with the observed stem height (R2 = 0.69). Reed height positively correlates with the basal diameter and negatively correlates with plant density. The optimal AGB inversion model was derived from Sentinel-2 data and JL-1 data with R2 = 0.58, RMSE = 216.86 g/m2 and R2 = 0.50, RMSE = 244.96 g/m2, respectively. This study illustrated that the synergy of UAV-LiDAR data and multispectral remote sensing images has great potential in coastal reed monitoring. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

16 pages, 15433 KiB  
Article
Identifying Even- and Uneven-Aged Forest Stands Using Low-Resolution Nationwide Lidar Data
by Anže Martin Pintar and Mitja Skudnik
Forests 2024, 15(8), 1407; https://doi.org/10.3390/f15081407 - 11 Aug 2024
Cited by 2 | Viewed by 1085
Abstract
In uneven-aged forests, trees of different diameters, heights, and ages are located in a small area, which is due to the felling of individual trees or groups of trees, as well as small-scale natural disturbances. In this article, we present an objective method [...] Read more.
In uneven-aged forests, trees of different diameters, heights, and ages are located in a small area, which is due to the felling of individual trees or groups of trees, as well as small-scale natural disturbances. In this article, we present an objective method for classifying forest stands into even- and uneven-aged stands based on freely available low-resolution (with an average recording density of 5 points/m2) national lidar data. The canopy closure, dominant height, and canopy height diversity from the canopy height model and the voxels derived from lidar data were used to classify the forest stands. Both approaches for determining forest structural diversity (canopy height diversity—CHDCHM and CHDV) yielded similar results, namely two clusters of even- and uneven-aged stands, although the differences in vertical diversity between even- and uneven-aged stands were greater when using CHM. The first analysis, using CHM for the CHD assessment, estimated the uneven-aged forest area as 49.3%, whereas the second analysis using voxels estimated it as 34.3%. We concluded that in areas with low laser scanner density, CHM analysis is a more appropriate method for assessing forest stand height heterogeneity. The advantage of detecting uneven-aged structures with voxels is that we were able to detect shade-tolerant species of varying age classes beneath a dense canopy of mature, dominant trees. The CHDCHM values were estimated to be 1.83 and 1.86 for uneven-aged forests, whereas they were 1.57 and 1.58 for mature even-aged forests. The CHDV values were estimated as 1.50 and 1.62 for uneven-aged forests, while they were 1.33 and 1.48 for mature even-aged forests. The classification of stands based on lidar data was validated with data from measurements on permanent sample plots. Statistically significantly lower average values of the homogeneity index and higher values of the Shannon–Wiener index from field measurements confirm the success of the classification of stands based on lidar data as uneven-aged forests. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

18 pages, 11915 KiB  
Article
Detection of Individual Corn Crop and Canopy Delineation from Unmanned Aerial Vehicle Imagery
by Freda Dorbu and Leila Hashemi-Beni
Remote Sens. 2024, 16(14), 2679; https://doi.org/10.3390/rs16142679 - 22 Jul 2024
Cited by 1 | Viewed by 1113
Abstract
Precise monitoring of individual crop growth and health status is crucial for precision agriculture practices. However, traditional inspection methods are time-consuming, labor-intensive, prone to human error, and may not provide the comprehensive coverage required for the detailed analysis of crop variability across an [...] Read more.
Precise monitoring of individual crop growth and health status is crucial for precision agriculture practices. However, traditional inspection methods are time-consuming, labor-intensive, prone to human error, and may not provide the comprehensive coverage required for the detailed analysis of crop variability across an entire field. This research addresses the need for efficient and high-resolution crop monitoring by leveraging Unmanned Aerial Vehicle (UAV) imagery and advanced computational techniques. The primary goal was to develop a methodology for the precise identification, extraction, and monitoring of individual corn crops throughout their growth cycle. This involved integrating UAV-derived data with image processing, computational geometry, and machine learning techniques. Bi-weekly UAV imagery was captured at altitudes of 40 m and 70 m from 30 April to 11 August, covering the entire growth cycle of the corn crop from planting to harvest. A time-series Canopy Height Model (CHM) was generated by analyzing the differences between the Digital Terrain Model (DTM) and the Digital Surface Model (DSM) derived from the UAV data. To ensure the accuracy of the elevation data, the DSM was validated against Ground Control Points (GCPs), adhering to standard practices in remote sensing data verification. Local spatial analysis and image processing techniques were employed to determine the local maximum height of each crop. Subsequently, a Voronoi data model was developed to delineate individual crop canopies, successfully identifying 13,000 out of 13,050 corn crops in the study area. To enhance accuracy in canopy size delineation, vegetation indices were incorporated into the Voronoi model segmentation, refining the initial canopy area estimates by eliminating interference from soil and shadows. The proposed methodology enables the precise estimation and monitoring of crop canopy size, height, biomass reduction, lodging, and stunted growth over time by incorporating advanced image processing techniques and integrating metrics for quantitative assessment of fields. Additionally, machine learning models were employed to determine relationships between the canopy sizes, crop height, and normalized difference vegetation index, with Polynomial Regression recording an R-squared of 11% compared to other models. This work contributes to the scientific community by demonstrating the potential of integrating UAV technology, computational geometry, and machine learning for accurate and efficient crop monitoring at the individual plant level. Full article
(This article belongs to the Special Issue Aerial Remote Sensing System for Agriculture)
Show Figures

Figure 1

21 pages, 4299 KiB  
Article
A Hybrid Method for Individual Tree Detection in Broadleaf Forests Based on UAV-LiDAR Data and Multistage 3D Structure Analysis
by Susu Deng, Sishuo Jing and Huanxin Zhao
Forests 2024, 15(6), 1043; https://doi.org/10.3390/f15061043 - 17 Jun 2024
Cited by 5 | Viewed by 1508
Abstract
Individual tree detection and segmentation in broadleaf forests have always been great challenges due to the overlapping crowns, irregular crown shapes, and multiple peaks in large crowns. Unmanned aerial vehicle (UAV)-borne light detection and ranging (LiDAR) is a powerful tool for acquiring high-density [...] Read more.
Individual tree detection and segmentation in broadleaf forests have always been great challenges due to the overlapping crowns, irregular crown shapes, and multiple peaks in large crowns. Unmanned aerial vehicle (UAV)-borne light detection and ranging (LiDAR) is a powerful tool for acquiring high-density point clouds that can be used for both trunk detection and crown segmentation. A hybrid method that combines trunk detection and crown segmentation is proposed to detect individual trees in broadleaf forests based on UAV-LiDAR data. A trunk point distribution indicator-based approach is first applied to detect potential trunk positions. The treetops extracted from a canopy height model (CHM) and the crown segments obtained by applying a marker-controlled watershed segmentation to the CHM are used to identify potentially false trunk positions. Finally, the three-dimensional structures of trunks and branches are analyzed at each potentially false trunk position to distinguish between true and false trunk positions. The method was evaluated on three plots in subtropical urban broadleaf forests with varying proportions of evergreen trees. The F-score in three plots ranged from 0.723 to 0.829, which are higher values than the F-scores derived by a treetop detection method (0.518–0.588) and a point cloud-based individual tree segmentation method (0.479–0.514). The influences of the CHM resolution (0.25 and 0.1 m) and the data acquisition season (leaf-off and leaf-on) on the final individual tree detection result were also evaluated. The results indicated that using the CHM with a 0.25 m resolution resulted in under-segmentation of crowns and higher F-scores. The data acquisition season had a small influence on the individual tree detection result when using the hybrid method. The proposed hybrid method needs to specify parameters based on prior knowledge of the forest. In addition, the hybrid method was evaluated in small-scale urban broadleaf forests. Further research should evaluate the hybrid method in natural forests over large areas, which differ in forest structures compared to urban forests. Full article
(This article belongs to the Topic Individual Tree Detection (ITD) and Its Applications)
Show Figures

Figure 1

24 pages, 12363 KiB  
Article
Upscaling Forest Canopy Height Estimation Using Waveform-Calibrated GEDI Spaceborne LiDAR and Sentinel-2 Data
by Junjie Wang, Xin Shen and Lin Cao
Remote Sens. 2024, 16(12), 2138; https://doi.org/10.3390/rs16122138 - 13 Jun 2024
Cited by 2 | Viewed by 1901
Abstract
Forest canopy height is a fundamental parameter of forest structure, and plays a pivotal role in understanding forest biomass allocation, carbon stock, forest productivity, and biodiversity. Spaceborne LiDAR (Light Detection and Ranging) systems, such as GEDI (Global Ecosystem Dynamics Investigation), provide large-scale estimation [...] Read more.
Forest canopy height is a fundamental parameter of forest structure, and plays a pivotal role in understanding forest biomass allocation, carbon stock, forest productivity, and biodiversity. Spaceborne LiDAR (Light Detection and Ranging) systems, such as GEDI (Global Ecosystem Dynamics Investigation), provide large-scale estimation of ground elevation, canopy height, and other forest parameters. However, these measurements may have uncertainties influenced by topographic factors. This study focuses on the calibration of GEDI L2A and L1B data using an airborne LiDAR point cloud, and the combination of Sentinel-2 multispectral imagery, 1D convolutional neural network (CNN), artificial neural network (ANN), and random forest (RF) for upscaling estimated forest height in the Guangxi Gaofeng Forest Farm. First, various environmental (i.e., slope, solar elevation, etc.) and acquisition parameters (i.e., beam type, Solar elevation, etc.) were used to select and optimize the L2A footprint. Second, pseudo-waveforms were simulated from the airborne LiDAR point cloud and were combined with a 1D CNN model to calibrate the L1B waveform data. Third, the forest height extracted from the calibrated L1B waveforms and selected L2A footprints were compared and assessed, utilizing the CHM derived from the airborne LiDAR point cloud. Finally, the forest height data with higher accuracy were combined with Sentinel-2 multispectral imagery for an upscaling estimation of forest height. The results indicate that through optimization using environmental and acquisition parameters, the ground elevation and forest canopy height extracted from the L2A footprint are generally consistent with airborne LiDAR data (ground elevation: R2 = 0.99, RMSE = 4.99 m; canopy height: R2 = 0.42, RMSE = 5.16 m). Through optimizing, ground elevation extraction error was reduced by 45.5% (RMSE), and the canopy height extraction error was reduced by 30.3% (RMSE). After training a 1D CNN model to calibrate the forest height, the forest height information extracted using L1B has a high accuracy (R2 = 0.84, RMSE = 3.13 m). Compared to the optimized L2A data, the RMSE was reduced by 2.03 m. Combining the more accurate L1B forest height data with Sentinel-2 multispectral imagery and using RF and ANN for the upscaled estimation of the forest height, the RF model has the highest accuracy (R2 = 0.64, RMSE = 4.59 m). The results show that the extrapolation and inversion of GEDI, combined with multispectral remote sensing data, serve as effective tools for obtaining forest height distribution on a large scale. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

Back to TopTop