Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = canopy spectral response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2818 KiB  
Article
Early Detection of Water Stress in Kauri Seedlings Using Multitemporal Hyperspectral Indices and Inverted Plant Traits
by Mark Jayson B. Felix, Russell Main, Michael S. Watt, Mohammad-Mahdi Arpanaei and Taoho Patuawa
Remote Sens. 2025, 17(3), 463; https://doi.org/10.3390/rs17030463 - 29 Jan 2025
Viewed by 723
Abstract
Global climate variability is projected to result in more frequent and severe droughts, which can have adverse effects on New Zealand’s endemic tree species such as the iconic kauri (Agathis australis). Several studies have investigated the physiological response of kauri to [...] Read more.
Global climate variability is projected to result in more frequent and severe droughts, which can have adverse effects on New Zealand’s endemic tree species such as the iconic kauri (Agathis australis). Several studies have investigated the physiological response of kauri to medium- and long-term water stress; however, no research has used hyperspectral technology for the early detection and characterization of water stress in this species. In this study, physiological (stomatal conductance (gs), assimilation rate (A), equivalent water thickness (EWT)) and leaf-level hyperspectral measurements were recorded over a ten-week period on 100 potted kauri seedlings subjected to control (well-watered) and drought treatments. In addition, plant functional traits (PTs) were retrieved from spectral reflectance data via inversion of the PROSPECT-D radiative transfer model. These data were used to (i) identify key PTs and narrow-band hyperspectral indices (NBHIs) associated with the expression of water stress and (ii) develop classification models based on single-date and multitemporal datasets for the early detection of water stress. A significant decline in soil water content and physiological responses (gs and A) occurred among the trees in the drought treatment in weeks 2 and 4, respectively. Although no significant treatment differences (p > 0.05) were observed in EWT across the whole duration of the experiment, lower mean values in the drought treatment were apparent from week 4 onwards. In contrast, several spectral bands and NBHIs exhibited significant differences the week after water was withheld. The number and category of significant NBHIs varied up to week 4, after which a substantial increase in the number of significant indices was observed until week 10. However, despite this increase, the single-date models did not show good model performance (F1 score > 0.70) until weeks 9 and 10. In contrast, when multitemporal datasets were used, the classification performance ranged from good to outstanding from weeks 2 to 10. This improvement was largely due to the enhanced temporal and feature representation in the multitemporal models. Among the input NBHIs, water indices emerged as the most important predictors, followed by photochemical indices. Furthermore, a comparison of inverted and measured EWT showed good correspondence (mean absolute percentage error (MAPE) = 8.49%, root mean squared error (RMSE) = 0.0026 g/cm2), highlighting the potential use of radiative transfer modelling for high-throughput drought monitoring. Future research is recommended to scale these measurements to the canopy level, which could prove valuable in detecting and characterizing drought stress at a larger scale. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

16 pages, 2595 KiB  
Article
New Hyperspectral Geometry Ratio Index for Monitoring Rice Blast Disease from Leaf Scale to Canopy Scale
by Qiong Zheng, Yihao Chen, Qing Xia, Yunfei Zhang, Dan Li, Hao Jiang, Chongyang Wang, Longlong Zhao, Wenjiang Huang, Yingying Dong and Chuntao Wang
Remote Sens. 2024, 16(24), 4681; https://doi.org/10.3390/rs16244681 - 15 Dec 2024
Viewed by 624
Abstract
Rice blast is a highly damaging disease that greatly impacts both the quality and yield of rice. Timely identification and monitoring of this disease are essential for effective agricultural management and for ensuring optimal crop performance. The spectral vegetation index has been widely [...] Read more.
Rice blast is a highly damaging disease that greatly impacts both the quality and yield of rice. Timely identification and monitoring of this disease are essential for effective agricultural management and for ensuring optimal crop performance. The spectral vegetation index has been widely used in the identification of crop diseases. However, a limitation of these indices is that they cannot identify diseases at different scales. This study aimed to address these issues by developing the rice blast-specific hyperspectral Geometry Ratio Vegetation Index (GRVIRB) for monitoring rice blast disease at the leaf and canopy scales. The sensitive bands for identifying rice blast disease were 688 nm, 756 nm, and 1466 nm using the successive projection algorithm. Based on these three sensitive bands and the spectral response mechanism of rice blast, the GRVIRB was designed. GRVIRB demonstrated high classification accuracy using SVM (support vector machine) and LDA (Linear Discriminant Analysis) models in leaf-scale and canopy-scale datasets from 2020 and 2021, surpassing the current vegetation indices of rice blast detection. It is demonstrated that the GRVIRB has excellent robustness and universality for rice blast detection from leaf to canopy scales in different years. Additionally, the research suggests that the new hyperspectral vegetation index can serve as a valuable reference for studies conducted at both unmanned aerial vehicle and satellite scales. Full article
Show Figures

Figure 1

20 pages, 13662 KiB  
Article
Unmanned Aerial Vehicle (UAV) Hyperspectral Imagery Mining to Identify New Spectral Indices for Predicting the Field-Scale Yield of Spring Maize
by Yue Zhang, Yansong Wang, Hang Hao, Ziqi Li, Yumei Long, Xingyu Zhang and Chenzhen Xia
Sustainability 2024, 16(24), 10916; https://doi.org/10.3390/su162410916 - 12 Dec 2024
Viewed by 976
Abstract
A nondestructive approach for accurate crop yield prediction at the field scale is vital for precision agriculture. Considerable progress has been made in the use of the spectral index (SI) derived from unmanned aerial vehicle (UAV) hyperspectral images to predict crop yields before [...] Read more.
A nondestructive approach for accurate crop yield prediction at the field scale is vital for precision agriculture. Considerable progress has been made in the use of the spectral index (SI) derived from unmanned aerial vehicle (UAV) hyperspectral images to predict crop yields before harvest. However, few studies have explored the most sensitive wavelengths and SIs for crop yield prediction, especially for different nitrogen fertilization levels and soil types. This study aimed to investigate the appropriate wavelengths and their combinations to explore the ability of new SIs derived from UAV hyperspectral images to predict yields during the growing season of spring maize. In this study, the hyperspectral canopy reflectance measurement method, a field-based high-throughput method, was evaluated in three field experiments (Wang-Jia-Qiao (WJQ), San-Ke-Shu (SKS), and Fu-Jia-Jie (FJJ)) since 2009 with different soil types (alluvial soil, black soil, and aeolian sandy soil) and various nitrogen (N) fertilization levels (0, 168, 240, 270, and 312 kg/ha) in Lishu County, Northeast China. The measurements of canopy spectral reflectance and maize yield were conducted at critical growth stages of spring maize, including the jointing, silking, and maturity stages, in 2019 and 2020. The best wavelengths and new SIs, including the difference spectral index, ratio spectral index, and normalized difference spectral index forms, were obtained from the contour maps constructed by the coefficient of determination (R2) from the linear regression models between the yield and all possible SIs screened from the 450 to 950 nm wavelengths. The new SIs and eight selected published SIs were subsequently used to predict maize yield via linear regression models. The results showed that (1) the most sensitive wavelengths were 640–714 nm at WJQ, 450–650 nm and 750–950 nm at SKS, and 450–700 nm and 750–950 nm at FJJ; (2) the new SIs established here were different across the three experimental fields, and their performance in maize yield prediction was generally better than that of the published SIs; and (3) the new SIs presented different responses to various N fertilization levels. This study demonstrates the potential of exploring new spectral characteristics from remote sensing technology for predicting the field-scale crop yield in spring maize cropping systems before harvest. Full article
Show Figures

Figure 1

22 pages, 5568 KiB  
Article
Unlocking the Secrets of Corn: Physiological Responses and Rapid Forecasting in Varied Drought Stress Environments
by Wenlong Song, Kaizheng Xiang, Yizhu Lu, Mengyi Li, Hongjie Liu, Long Chen, Xiuhua Chen and Haider Abbas
Remote Sens. 2024, 16(22), 4302; https://doi.org/10.3390/rs16224302 - 18 Nov 2024
Viewed by 753
Abstract
Understanding the intricate relationship between drought stress and corn yield is crucial for ensuring food security and sustainable agriculture in the face of climate change. This study investigates the subtle effects of drought stress on corn physiological, morphological, and spectral characteristics at different [...] Read more.
Understanding the intricate relationship between drought stress and corn yield is crucial for ensuring food security and sustainable agriculture in the face of climate change. This study investigates the subtle effects of drought stress on corn physiological, morphological, and spectral characteristics at different growth stages, in order to construct a new drought index to characterize drought characteristics, so as to provide valuable insights for maize recovery mechanism and yield prediction. Specific conclusions are as follows. Firstly, the impact of drought stress on corn growth and development shows a gradient effect, with the most significant effects observed during the elongation stage and tasseling stage. Notably, Soil and Plant Analyzer Development (SPAD) and Leaf Area Index (LAI) are significantly affected during the silking stage, while plant height and stem width remain relatively unaffected. Secondly, spectral feature analysis reveals that, from the elongation stage to the silking stage, canopy reflectance exhibits peak–valley variations. Drought severity correlates positively with reflectance in the visible and shortwave infrared bands and negatively with reflectance in the near-infrared band. Canopy spectra during the silking stage are more affected by moderate and severe drought stress. Thirdly, LAI shows a significant positive correlation with yield, indicating its reliability in explaining yield variations. Finally, the yield-related drought index (YI) constructed based on Convolutional Neural Network (CNN), Random Forest (RF) and Multiple Linear Regression (MLR) methods has a good effect on revealing drought characteristics (R = 0.9332, p < 0.001). This study underscores the importance of understanding corn responses to drought stress at various growth stages for effective yield prediction and agricultural management strategies. Full article
Show Figures

Figure 1

22 pages, 16238 KiB  
Article
Spectroscopic Phenological Characterization of Mangrove Communities
by Christopher Small and Daniel Sousa
Remote Sens. 2024, 16(15), 2796; https://doi.org/10.3390/rs16152796 - 30 Jul 2024
Viewed by 1454
Abstract
Spaceborne spectroscopic imaging offers the potential to improve our understanding of biodiversity and ecosystem services, particularly for challenging and rich environments like mangroves. Understanding the signals present in large volumes of high-dimensional spectroscopic observations of vegetation communities requires the characterization of seasonal phenology [...] Read more.
Spaceborne spectroscopic imaging offers the potential to improve our understanding of biodiversity and ecosystem services, particularly for challenging and rich environments like mangroves. Understanding the signals present in large volumes of high-dimensional spectroscopic observations of vegetation communities requires the characterization of seasonal phenology and response to environmental conditions. This analysis leverages both spectroscopic and phenological information to characterize vegetation communities in the Sundarban riverine mangrove forest of the Ganges–Brahmaputra delta. Parallel analyses of surface reflectance spectra from NASA’s EMIT imaging spectrometer and MODIS vegetation abundance time series (2000–2022) reveal the spectroscopic and phenological diversity of the Sundarban mangrove communities. A comparison of spectral and temporal feature spaces rendered with low-order principal components and 3D embeddings from Uniform Manifold Approximation and Projection (UMAP) reveals similar structures with multiple spectral and temporal endmembers and multiple internal amplitude continua for both EMIT reflectance and MODIS Enhanced Vegetation Index (EVI) phenology. The spectral and temporal feature spaces of the Sundarban represent independent observations sharing a common structure that is driven by the physical processes controlling tree canopy spectral properties and their temporal evolution. Spectral and phenological endmembers reside at the peripheries of the mangrove forest with multiple outward gradients in amplitude of reflectance and phenology within the forest. Longitudinal gradients of both phenology and reflectance amplitude coincide with LiDAR-derived gradients in tree canopy height and sub-canopy ground elevation, suggesting the influence of surface hydrology and sediment deposition. RGB composite maps of both linear (PC) and nonlinear (UMAP) 3D feature spaces reveal a strong contrast between the phenological and spectroscopic diversity of the eastern Sundarban and the less diverse western Sundarban. Full article
(This article belongs to the Special Issue Remote Sensing of Land Surface Phenology II)
Show Figures

Figure 1

21 pages, 16351 KiB  
Article
Fine-Scale Quantification of the Effect of Maize Tassel on Canopy Reflectance with 3D Radiative Transfer Modeling
by Youyi Jiang, Zhida Cheng, Guijun Yang, Dan Zhao, Chengjian Zhang, Bo Xu, Haikuan Feng, Ziheng Feng, Lipeng Ren, Yuan Zhang and Hao Yang
Remote Sens. 2024, 16(15), 2721; https://doi.org/10.3390/rs16152721 - 25 Jul 2024
Viewed by 1008
Abstract
Quantifying the effect of maize tassel on canopy reflectance is essential for creating a tasseling progress monitoring index, aiding precision agriculture monitoring, and understanding vegetation canopy radiative transfer. Traditional field measurements often struggle to detect the subtle reflectance differences caused by tassels due [...] Read more.
Quantifying the effect of maize tassel on canopy reflectance is essential for creating a tasseling progress monitoring index, aiding precision agriculture monitoring, and understanding vegetation canopy radiative transfer. Traditional field measurements often struggle to detect the subtle reflectance differences caused by tassels due to complex environmental factors and challenges in controlling variables. The three-dimensional (3D) radiative transfer model offers a reliable method to study this relationship by accurately simulating interactions between solar radiation and canopy structure. This study used the LESS (large-scale remote sensing data and image simulation framework) model to analyze the impact of maize tassels on visible and near-infrared reflectance in heterogeneous 3D scenes by modifying the structural and optical properties of canopy components. We also examined the anisotropic characteristics of tassel effects on canopy reflectance and explored the mechanisms behind these effects based on the quantified contributions of the optical properties of canopy components. The results showed that (1) the effect of tassels under different planting densities mainly manifests in the near-infrared band of the canopy spectrum, with a variation magnitude of ±0.04. In contrast, the impact of tassels on different leaf area index (LAI) shows a smaller response difference, with a magnitude of ±0.01. As tassels change from green to gray during growth, their effect on reducing canopy reflectance increases. (2) The effect of maize tassel on canopy reflectance varied with spectral bands and showed an obvious directional effect. In the red band at the same sun position, the difference in tassel effect caused by the observed zenith angle on canopy reflectance reaches 200%, while in the near-infrared band, the difference is as high as 400%. The hotspot effect of the canopy has a significant weakening effect on the shadow effect of the tassel. (3) The non-transmittance optical properties of maize tassels reduce canopy reflectance, while their high reflectance increases it. Thus, the dual effects of tassels create a game in canopy reflectance, with the final outcome mainly depending on the sensitivity of the canopy spectrum to transmittance. This study demonstrates the potential of using 3D radiative transfer models to quantify the effects of crop fine structure on canopy reflectance and provides some insights for optimizing crop structure and implementing precision agriculture management (such as selective breeding of crop optimal plant type). Full article
Show Figures

Figure 1

13 pages, 1427 KiB  
Article
Influence of Spotted Lanternfly (Lycorma delicatula) on Multiple Maple (Acer spp.) Species Canopy Foliar Spectral and Chemical Profiles
by Elisabeth G. Joll, Matthew D. Ginzel, Kelli Hoover and John J. Couture
Remote Sens. 2024, 16(15), 2706; https://doi.org/10.3390/rs16152706 - 24 Jul 2024
Viewed by 1476
Abstract
Invasive species have historically disrupted environments by outcompeting, displacing, and extirpating native species, resulting in significant environmental and economic damage. Developing approaches to detect the presence of invasive species, favorable habitats for their establishment, and predicting their potential spread are underutilized management strategies [...] Read more.
Invasive species have historically disrupted environments by outcompeting, displacing, and extirpating native species, resulting in significant environmental and economic damage. Developing approaches to detect the presence of invasive species, favorable habitats for their establishment, and predicting their potential spread are underutilized management strategies to effectively protect the environment and the economy. Spotted lanternfly (SLF, Lycorma delicatula) is a phloem-feeding planthopper native to China that poses a severe threat to horticultural and forest products in the United States. Tools are being developed to contain the spread and damage caused by SLF; however, methods to rapidly detect novel infestations or low-density populations are lacking. Vegetation spectroscopy is an approach that can represent vegetation health through changes in the reflectance and absorption of radiation based on plant physiochemical status. Here, we hypothesize that SLF infestations change the spectral and chemical characteristics of tree canopies. To test this hypothesis, we used a full range spectroradiometer to sample canopy foliage of silver maple (Acer saccharinum) and red maple (Acer rubrum) trees in a common garden in Berks County, Pennsylvania that were exposed to varying levels of SLF infestation. Foliar spectral profiles separated between SLF infestation levels, and the magnitude of separation was greater for the zero-SLF control compared with higher infestation levels. We found the red-edge and portions of the NIR and SWIR regions were most strongly related to SLF infestation densities and that corresponding changes in vegetation indexes related to levels of chlorophyll were influenced by SLF infestations, although we found no change in foliar levels of chlorophyll. We found no influence of SLF densities on levels of primary metabolites (i.e., pigments, nonstructural carbohydrates, carbon, and nitrogen), but did find an increase in the phenolic compound ferulic acid in response to increasing SLF infestations; this response was only in red maple, suggesting a possible species-specific response related to SLF feeding. By identifying changes in spectral and chemical properties of canopy leaves in response to SLF infestation, we can link them together to potentially better understand how trees respond to SLF feeding pressure and more rapidly identify SLF infestations. Full article
Show Figures

Figure 1

19 pages, 5541 KiB  
Article
Application of Normalized Radar Backscatter and Hyperspectral Data to Augment Rangeland Vegetation Fractional Classification
by Matthew Rigge, Brett Bunde, Kory Postma, Simon Oliver and Norman Mueller
Remote Sens. 2024, 16(13), 2315; https://doi.org/10.3390/rs16132315 - 25 Jun 2024
Cited by 2 | Viewed by 1599
Abstract
Rangeland ecosystems in the western United States are vulnerable to climate change, fire, and anthropogenic disturbances, yet classification of rangeland areas remains difficult due to frequently sparse vegetation canopies that increase the influence of soils and senesced vegetation, the overall abundance of senesced [...] Read more.
Rangeland ecosystems in the western United States are vulnerable to climate change, fire, and anthropogenic disturbances, yet classification of rangeland areas remains difficult due to frequently sparse vegetation canopies that increase the influence of soils and senesced vegetation, the overall abundance of senesced vegetation, heterogeneity of life forms, and limited ground-based data. The Rangeland Condition Monitoring Assessment and Projection (RCMAP) project provides fractional vegetation cover maps across western North America using Landsat imagery and artificial intelligence from 1985 to 2023 at yearly time-steps. The objectives of this case study are to apply hyperspectral data from several new data streams, including Sentinel Synthetic Aperture Radar (SAR) and Earth Surface Mineral Dust Source Investigation (EMIT), to the RCMAP model. We run a series of five tests (Landsat-base model, base + SAR, base + EMIT, base + SAR + EMIT, and base + Landsat NEXT [LNEXT] synthesized from EMIT) over a difficult-to-classify region centered in southwest Montana, USA. Our testing results indicate a clear accuracy benefit of adding SAR and EMIT data to the RCMAP model, with a 7.5% and 29% relative increase in independent accuracy (R2), respectively. The ability of SAR data to observe vegetation height allows for more accurate classification of vegetation types, whereas EMIT’s continuous characterization of the spectral response boosts discriminatory power relative to multispectral data. Our spectral profile analysis reveals the enhanced classification power with EMIT is related to both the improved spectral resolution and representation of the entire domain as compared to legacy Landsat. One key finding is that legacy Landsat bands largely miss portions of the electromagnetic spectrum where separation among important rangeland targets exists, namely in the 900–1250 nm and 1500–1780 nm range. Synthesized LNEXT data include these gaps, but the reduced spectral resolution compared to EMIT results in an intermediate 18% increase in accuracy relative to the base run. Here, we show the promise of enhanced classification accuracy using EMIT data, and to a smaller extent, SAR. Full article
Show Figures

Figure 1

26 pages, 11284 KiB  
Article
Using Unmanned Aerial Vehicles and Multispectral Sensors to Model Forage Yield for Grasses of Semiarid Landscapes
by Alexander Hernandez, Kevin Jensen, Steve Larson, Royce Larsen, Craig Rigby, Brittany Johnson, Claire Spickermann and Stephen Sinton
Grasses 2024, 3(2), 84-109; https://doi.org/10.3390/grasses3020007 - 17 May 2024
Cited by 3 | Viewed by 1547
Abstract
Forage yield estimates provide relevant information to manage and quantify ecosystem services in grasslands. We fitted and validated prediction models of forage yield for several prominent grasses used in restoration projects in semiarid areas. We used field forage harvests from three different sites [...] Read more.
Forage yield estimates provide relevant information to manage and quantify ecosystem services in grasslands. We fitted and validated prediction models of forage yield for several prominent grasses used in restoration projects in semiarid areas. We used field forage harvests from three different sites in Northern Utah and Southern California, USA, in conjunction with multispectral, high-resolution UAV imagery. Different model structures were tested with simple models using a unique predictor, the forage volumetric 3D space, and more complex models, where RGB, red edge, and near-infrared spectral bands and associated vegetation indices were used as predictors. We found that for most dense canopy grasses, using a simple linear model structure could explain most (R2 0.7) of the variability of the response variable. This was not the case for sparse canopy grasses, where a full multispectral dataset and a non-parametric model approach (random forest) were required to obtain a maximum R2 of 0.53. We developed transparent protocols to model forage yield where, in most circumstances, acceptable results could be obtained with affordable RGB sensors and UAV platforms. This is important as users can obtain rapid estimates with inexpensive sensors for most of the grasses included in this study. Full article
Show Figures

Figure 1

26 pages, 4686 KiB  
Article
Winter Durum Wheat Disease Severity Detection with Field Spectroscopy in Phenotyping Experiment at Leaf and Canopy Level
by Dessislava Ganeva, Lachezar Filchev, Eugenia Roumenina, Rangel Dragov, Spasimira Nedyalkova and Violeta Bozhanova
Remote Sens. 2024, 16(10), 1762; https://doi.org/10.3390/rs16101762 - 16 May 2024
Cited by 3 | Viewed by 1435
Abstract
Accurate disease severity assessment is critical for plant breeders, as it directly impacts crop yield. While hyperspectral remote sensing has shown promise for disease severity assessment in breeding experiments, most studies have focused on either leaf or canopy levels, neglecting the valuable insights [...] Read more.
Accurate disease severity assessment is critical for plant breeders, as it directly impacts crop yield. While hyperspectral remote sensing has shown promise for disease severity assessment in breeding experiments, most studies have focused on either leaf or canopy levels, neglecting the valuable insights gained from a combined approach. Moreover, many studies have centered on experiments involving a single disease and a few genotypes. However, this approach needs to accurately represent the challenges encountered in field conditions, where multiple diseases could occur simultaneously. To address these gaps, our current study analyses a combination of diseases, yellow rust, brown rust, and yellow leaf spots, collectively evaluated as the percentage of the diseased leaf area relative to the total leaf area (DA) at both leaf and canopy levels, using hyperspectral data from an ASD field spectrometer. We quantitatively estimate overall disease severity across fifty-two winter durum wheat genotypes categorized into early (medium milk) and late (late milk) groups based on the phenophase. Chlorophyll content (CC) within each group is studied concerning infection response, and a correlation analysis is conducted for each group with nine vegetation indices (VI) known for their sensitivity to rust and leaf spot infection in wheat. Subsequent parametric (linear and polynomial) and nonparametric (partial least squares and kernel ridge) regression analyses were performed using all available spectral bands. We found a significant reduction in Leaf CC (>30%) in the late group and Canopy CC (<10%) for both groups. YROI and LRDSI_1 are the VIs that exhibited notable and strong negative correlations with Leaf CC in the late group, with a Pearson coefficient of −0.73 and −0.72, respectively. Interestingly, spectral signatures between the early and late disease groups at both leaf and canopy levels exhibit opposite trends. The regression analysis showed we could retrieve leaf CC only for the late group, with R2 of 0.63 and 0.42 for the cross-validation and test datasets, respectively. Canopy CC retrieval required separate models for each group: the late group achieved R2 of 0.61 and 0.37 (cross-validation and test), while the early group achieved R2 of 0.48 and 0.50. Similar trends were observed for canopy DA, with separate models for early and late groups achieving comparable R2 values of 0.53 and 0.51 (cross-validation) and 0.35 and 0.36 (test), respectively. All of our models had medium accuracy and tended to overfit. In this study, we analyzed the spectral response mechanism associated with durum wheat diseases, offering a novel crop disease severity assessment approach. Additionally, our findings serve as a foundation for detecting resistant wheat varieties, which is the most economical and environmentally friendly management strategy for wheat leaf diseases on a large scale in the future. Full article
(This article belongs to the Special Issue Spectral Imaging Technology for Crop Disease Detection)
Show Figures

Figure 1

26 pages, 8046 KiB  
Article
Improving Wheat Leaf Nitrogen Concentration (LNC) Estimation across Multiple Growth Stages Using Feature Combination Indices (FCIs) from UAV Multispectral Imagery
by Xiangxiang Su, Ying Nian, Hu Yue, Yongji Zhu, Jun Li, Weiqiang Wang, Yali Sheng, Qiang Ma, Jikai Liu, Wenhui Wang and Xinwei Li
Agronomy 2024, 14(5), 1052; https://doi.org/10.3390/agronomy14051052 - 15 May 2024
Cited by 9 | Viewed by 1488
Abstract
Leaf nitrogen concentration (LNC) is a primary indicator of crop nitrogen status, closely related to the growth and development dynamics of crops. Accurate and efficient monitoring of LNC is significant for precision field crop management and enhancing crop productivity. However, the biochemical properties [...] Read more.
Leaf nitrogen concentration (LNC) is a primary indicator of crop nitrogen status, closely related to the growth and development dynamics of crops. Accurate and efficient monitoring of LNC is significant for precision field crop management and enhancing crop productivity. However, the biochemical properties and canopy structure of wheat change across different growth stages, leading to variations in spectral responses that significantly impact the estimation of wheat LNC. This study aims to investigate the construction of feature combination indices (FCIs) sensitive to LNC across multiple wheat growth stages, using remote sensing data to develop an LNC estimation model that is suitable for multiple growth stages. The research employs UAV multispectral remote sensing technology to acquire canopy imagery of wheat during the early (Jointing stage and Booting stage) and late (Early filling and Late filling stages) in 2021 and 2022, extracting spectral band reflectance and texture metrics. Initially, twelve sensitive spectral feature combination indices (SFCIs) were constructed using spectral band information. Subsequently, sensitive texture feature combination indices (TFCIs) were created using texture metrics as an alternative to spectral bands. Machine learning algorithms, including partial least squares regression (PLSR), random forest regression (RFR), support vector regression (SVR), and Gaussian process regression (GPR), were used to integrate spectral and texture information, enhancing the estimation performance of wheat LNC across growth stages. Results show that the combination of Red, Red edge, and Near-infrared bands, along with texture metrics such as Mean, Correlation, Contrast, and Dissimilarity, has significant potential for LNC estimation. The constructed SFCIs and TFCIs both enhanced the responsiveness to LNC across multiple growth stages. Additionally, a sensitive index, the Modified Vegetation Index (MVI), demonstrated significant improvement over NDVI, correcting the over-saturation concerns of NDVI in time-series analysis and displaying outstanding potential for LNC estimation. Spectral information outperforms texture information in estimation capability, and their integration, particularly with SVR, achieves the highest precision (coefficient of determination (R2) = 0.786, root mean square error (RMSE) = 0.589%, and relative prediction deviation (RPD) = 2.162). In conclusion, the sensitive FCIs developed in this study improve LNC estimation performance across multiple growth stages, enabling precise monitoring of wheat LNC. This research provides insights and technical support for the construction of sensitive indices and the precise management of nitrogen nutrition status in field crops. Full article
Show Figures

Figure 1

19 pages, 11073 KiB  
Article
Optimal Integration of Optical and SAR Data for Improving Alfalfa Yield and Quality Traits Prediction: New Insights into Satellite-Based Forage Crop Monitoring
by Jiang Chen, Tong Yu, Jerome H. Cherney and Zhou Zhang
Remote Sens. 2024, 16(5), 734; https://doi.org/10.3390/rs16050734 - 20 Feb 2024
Cited by 8 | Viewed by 2498
Abstract
Global food security and nutrition is suffering from unprecedented challenges. To reach a world without hunger and malnutrition by implementing precision agriculture, satellite remote sensing plays an increasingly important role in field crop monitoring and management. Alfalfa, a global widely distributed forage crop, [...] Read more.
Global food security and nutrition is suffering from unprecedented challenges. To reach a world without hunger and malnutrition by implementing precision agriculture, satellite remote sensing plays an increasingly important role in field crop monitoring and management. Alfalfa, a global widely distributed forage crop, requires more attention to predict its yield and quality traits from satellite data since it supports the livestock industry. Meanwhile, there are some key issues that remain unknown regarding alfalfa remote sensing from optical and synthetic aperture radar (SAR) data. Using Sentinel-1 and Sentinel-2 satellite data, this study developed, compared, and further integrated new optical- and SAR-based satellite models for improving alfalfa yield and quality traits prediction, i.e., crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), and neutral detergent fiber digestibility (NDFD). Meanwhile, to better understand the physical mechanism of alfalfa optical remote sensing, a unified hybrid leaf area index (LAI) retrieval scheme was developed by coupling the PROSAIL radiative transfer model, spectral response function of the desired optical satellite, and a random forest (RF) model, denoted as a scalable optical satellite-based LAI retrieval framework. Compared to optical vegetation indices (VIs) that only capture canopy information, the results indicate that LAI had the highest correlation (r = 0.701) with alfalfa yield due to its capacity in delivering the vegetation structure characteristics. For alfalfa quality traits, optical chlorophyll VIs presented higher correlations than LAI. On the other hand, LAI did not provide a significant additional contribution for predicting alfalfa parameters in the RF developed optical prediction model using VIs as inputs. In addition, the optical-based model outperformed the SAR-based model for predicting alfalfa yield, CP, and NDFD, while the SAR-based model showed better performance for predicting ADF and NDF. The integration of optical and SAR data contributed to higher accuracy than either optical or SAR data separately. Compared to a traditional embedded integration approach, the combination of multisource heterogeneous optical and SAR satellites was optimized by multiple linear regression (yield: R2 = 0.846 and RMSE = 0.0354 kg/m2; CP: R2 = 0.636 and RMSE = 1.57%; ADF: R2 = 0.559 and RMSE = 1.926%; NDF: R2 = 0.58 and RMSE = 2.097%; NDFD: R2 = 0.679 and RMSE = 2.426%). Overall, this study provides new insights into forage crop yield prediction for large-scale fields using multisource heterogeneous satellites. Full article
(This article belongs to the Special Issue Smart Agriculture Based on Remote Sensing and Artificial Intelligence)
Show Figures

Figure 1

19 pages, 4574 KiB  
Article
Automated Hyperspectral Feature Selection and Classification of Wildlife Using Uncrewed Aerial Vehicles
by Daniel McCraine, Sathishkumar Samiappan, Leon Kohler, Timo Sullivan and David J. Will
Remote Sens. 2024, 16(2), 406; https://doi.org/10.3390/rs16020406 - 20 Jan 2024
Cited by 4 | Viewed by 2203
Abstract
Timely and accurate detection and estimation of animal abundance is an important part of wildlife management. This is particularly true for invasive species where cost-effective tools are needed to enable landscape-scale surveillance and management responses, especially when targeting low-density populations residing in dense [...] Read more.
Timely and accurate detection and estimation of animal abundance is an important part of wildlife management. This is particularly true for invasive species where cost-effective tools are needed to enable landscape-scale surveillance and management responses, especially when targeting low-density populations residing in dense vegetation and under canopies. This research focused on investigating the feasibility and practicality of using uncrewed aerial systems (UAS) and hyperspectral imagery (HSI) to classify animals in the wild on a spectral—rather than spatial—basis, in the hopes of developing methods to accurately classify animal targets even when their form may be significantly obscured. We collected HSI of four species of large mammals reported as invasive species on islands: cow (Bos taurus), horse (Equus caballus), deer (Odocoileus virginianus), and goat (Capra hircus) from a small UAS. Our objectives of this study were to (a) create a hyperspectral library of the four mammal species, (b) study the efficacy of HSI for animal classification by only using the spectral information via statistical separation, (c) study the efficacy of sequential and deep learning neural networks to classify the HSI pixels, (d) simulate five-band multispectral data from HSI and study its effectiveness for automated supervised classification, and (e) assess the ability of using HSI for invasive wildlife detection. Image classification models using sequential neural networks and one-dimensional convolutional neural networks were developed and tested. The results showed that the information from HSI derived using dimensionality reduction techniques were sufficient to classify the four species with class F1 scores all above 0.85. The performances of some classifiers were capable of reaching an overall accuracy over 98%and class F1 scores above 0.75, thus using only spectra to classify animals to species from existing sensors is feasible. This study discovered various challenges associated with the use of HSI for animal detection, particularly intra-class and seasonal variations in spectral reflectance and the practicalities of collecting and analyzing HSI data over large meaningful areas within an operational context. To make the use of spectral data a practical tool for wildlife and invasive animal management, further research into spectral profiles under a variety of real-world conditions, optimization of sensor spectra selection, and the development of on-board real-time analytics are needed. Full article
Show Figures

Figure 1

17 pages, 10304 KiB  
Article
Side Lighting of Red, Blue and Green Spectral Combinations Altered the Growth, Yield and Quality of Lettuce (Lactuca sativa L. cv. “Yidali”) in Plant Factory
by Ren Chen, Zhenwei Wang, Wenke Liu, Yuteng Ding, Qishuan Zhang and Shurong Wang
Plants 2023, 12(24), 4147; https://doi.org/10.3390/plants12244147 - 13 Dec 2023
Cited by 2 | Viewed by 1783
Abstract
A plant factory with artificial lighting (PFAL) usually uses top lighting for cultivation. The light from the upper part of the canopy cannot penetrate the entire lettuce canopy, however, resulting in uneven vertical spatial light in the canopy, and accelerating the senescence of [...] Read more.
A plant factory with artificial lighting (PFAL) usually uses top lighting for cultivation. The light from the upper part of the canopy cannot penetrate the entire lettuce canopy, however, resulting in uneven vertical spatial light in the canopy, and accelerating the senescence of both the bottom and side leaves of the plant canopy. Therefore, in this study, the performance of lettuce in hydroponics was investigated upon supplemental side lighting with different spectral LEDs in a PFAL. A set of short-term side lighting treatments, including no side lamps (CK), red (R), blue (B), red + blue (RB), and red + blue + green (RGB) LED lamps (150 μmol·m−2·s−1, respectively), was employed for an additional 2 h per day after normal top lighting for 6 days before harvest. The results showed that the lettuce canopy was relatively loose and had a large crown size under side lighting compared with CK. Side lighting, irrespective of spectral qualities, significantly increased the fresh weight, and the R, B, RB, and RGB treatments increased the shoot fresh weight of lettuce plants by 34%, 19%, 31%, and 34%, and increased the fresh weight of leaf layer 2 by 50%, 17%, 44%, and 48%, respectively. The side lighting of different spectral qualities had a significant impact on the nutritional quality of the first row of lettuce at the edge of the top lighting illuminated area. Treatment B significantly promoted the chlorophyll content of leaf layer 3; the soluble sugar contents from leaf layer 1, 2, and 3; the starch contents in leaf layers 2 and 3; and the content of phenolics in the leaf layers 3; and significantly reduced the nitrate content in leaf layers 2 and 3. RGB significantly increased soluble sugar content by 91%, and the starch content in leaf layer 1, as well as the leaf chlorophyll and flavonoid content of leaf layer 3, while R had opposite effect completely. RB significantly increased the leaf chlorophyll content of leaf layer 3 and the nitrate content in leaf layer 1, but the overall effect was lower than that of RGB. In summary, side lighting of any type could effectively improve lettuce yield, solve the problem of inconsistent lettuce plant size caused by the edge effect of top lighting, and affect the nutritional quality of lettuce. B and RGB performed best. There was spatial response diversity of lettuce plants to side lighting spectral qualities. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

20 pages, 8325 KiB  
Article
Evaluation of the Monitoring Capability of 20 Vegetation Indices and 5 Mainstream Satellite Band Settings for Drought in Spring Wheat Using a Simulation Method
by Chang Xiao, Yinan Wu and Xiufang Zhu
Remote Sens. 2023, 15(19), 4838; https://doi.org/10.3390/rs15194838 - 6 Oct 2023
Cited by 2 | Viewed by 1582
Abstract
This study simulated the canopy reflectance of spring wheat at five distinct growth stages (jointing, booting, heading, flowering, and pustulation) and under four drought scenarios (no drought, mild drought, moderate drought, and severe drought) using the PROSAIL radiative transfer model, and it identified [...] Read more.
This study simulated the canopy reflectance of spring wheat at five distinct growth stages (jointing, booting, heading, flowering, and pustulation) and under four drought scenarios (no drought, mild drought, moderate drought, and severe drought) using the PROSAIL radiative transfer model, and it identified the wavelength range most sensitive to drought. Additionally, the efficacy of 5 mainstream satellites (Sentinel-2, Landsat 8, Worldview-2, MODIS, and GF-2) and 20 commonly utilized remote sensing vegetation indicators (NDVI, SAVI, EVI, ARVI, GVMI, LSWI, VSDI, NDGI, SWIRR, NDWI, PRI, NDII, MSI, WI, SRWI, DSWI, NDREI1, NDREI2, ZMI, and MTCI) in drought monitoring was evaluated. The results indicated that the spectral response characteristics of spring wheat canopy reflectance vary significantly across the growth stages. Notably, the wavelength ranges of 1405–1505 nm and 2140–2190 nm were identified as optimal for drought monitoring throughout the growth period. Considering only the spectral bands, MODIS band 7 was determined to be the most suitable satellite band for monitoring drought in spring wheat at different growth stages. Among the 20 indices examined, WI, MSI, and SRWI, followed by LSWI and GVMI calculated using MODIS bands 2 and 6 as well as bands 8 and 11 of Sentinel-2, demonstrated superior capabilities in differentiating drought scenarios. These conclusions have important implications because they provide valuable guidance for selecting remote sensing drought monitoring data and vegetation indices, and they present insights for future research on the design of new remote sensing indices for assisting drought monitoring and the configuration of remote sensing satellite sensors. Full article
(This article belongs to the Special Issue Remote Sensing for Agrometeorology II)
Show Figures

Figure 1

Back to TopTop