Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,753)

Search Parameters:
Keywords = channel capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5556 KiB  
Article
Declining Bank Erosion Rate Driven by Hydrological Alterations of a Small Sub-Alpine River
by Alexandra Pusztai-Eredics and Tímea Kiss
Hydrology 2024, 11(8), 114; https://doi.org/10.3390/hydrology11080114 (registering DOI) - 31 Jul 2024
Abstract
In the 21st century, climate change and its consequences are getting more serious. The changes in temperature and precipitation alter the run-off conditions, subsequently influencing the channel processes of rivers. The study aims to analyse the hydrological changes in a small, sub-alpine river [...] Read more.
In the 21st century, climate change and its consequences are getting more serious. The changes in temperature and precipitation alter the run-off conditions, subsequently influencing the channel processes of rivers. The study aims to analyse the hydrological changes in a small, sub-alpine river (Rába/Raab River, Central Europe) and the bank erosional processes (1951–2024). The bank erosion was determined based on topographical maps, aerial photographs, and field (RTK–GPS) surveys. Short (2–3 days) floods were common between 1950 and 1980, and low stages occurred in 65–81% of a year. However, extreme regimes developed in the 21st century, as record-high, flash floods altered with long low stages (91–96% of a year). The bank erosion shows a cyclic temporal pattern, gradually increasing until it reaches a high value (4.1–4.9 m/y), followed by a limited erosional rate (2.2–2.8 m/y). However, the magnitude of the bank erosion is decreasing. This could be explained by (1) the lower transport capacity of the more common low stages and (2) the seasonal shift of the flood waves, which appear in the growing season when the riparian vegetation can more effectively protect the banks from erosion. Full article
18 pages, 5624 KiB  
Article
Investigating the Potential of CO2 Nanobubble Systems for Enhanced Oil Recovery in Extra-Low-Permeability Reservoirs
by Liyuan Cai, Jingchun Wu, Miaoxin Zhang, Keliang Wang, Bo Li, Xin Yu, Yangyang Hou and Yang Zhao
Nanomaterials 2024, 14(15), 1280; https://doi.org/10.3390/nano14151280 - 30 Jul 2024
Viewed by 196
Abstract
Carbon Capture, Utilization, and Storage (CCUS) stands as one of the effective means to reduce carbon emissions and serves as a crucial technical pillar for achieving experimental carbon neutrality. CO2-enhanced oil recovery (CO2-EOR) represents the foremost method for CO [...] Read more.
Carbon Capture, Utilization, and Storage (CCUS) stands as one of the effective means to reduce carbon emissions and serves as a crucial technical pillar for achieving experimental carbon neutrality. CO2-enhanced oil recovery (CO2-EOR) represents the foremost method for CO2 utilization. CO2-EOR represents a favorable technical means of efficiently developing extra-low-permeability reservoirs. Nevertheless, the process known as the direct injection of CO2 is highly susceptible to gas scrambling, which reduces the exposure time and contact area between CO2 and the extra-low-permeability oil matrix, making it challenging to utilize CO2 molecular diffusion effectively. In this paper, a comprehensive study involving the application of a CO2 nanobubble system in extra-low-permeability reservoirs is presented. A modified nano-SiO2 particle with pro-CO2 properties was designed using the Pickering emulsion template method and employed as a CO2 nanobubble stabilizer. The suitability of the CO2 nanobubbles for use in extra-low-permeability reservoirs was evaluated in terms of their temperature resistance, oil resistance, dimensional stability, interfacial properties, and wetting-reversal properties. The enhanced oil recovery (EOR) effect of the CO2 nanobubble system was evaluated through core experiments. The results indicate that the CO2 nanobubble system can suppress the phenomena of channeling and gravity overlap in the formation. Additionally, the system can alter the wettability, thereby improving interfacial activity. Furthermore, the system can reduce the interfacial tension, thus expanding the wave efficiency of the repellent phase fluids. The system can also improve the ability of CO2 to displace the crude oil or water in the pore space. The CO2 nanobubble system can take advantage of its size and high mass transfer efficiency, among other advantages. Injection of the gas into the extra-low-permeability reservoir can be used to block high-gas-capacity channels. The injected gas is forced to enter the low-permeability layer or matrix, with the results of core simulation experiments indicating a recovery rate of 66.28%. Nanobubble technology, the subject of this paper, has significant practical implications for enhancing the efficiency of CO2-EOR and geologic sequestration, as well as providing an environmentally friendly method as part of larger CCUS-EOR. Full article
Show Figures

Figure 1

22 pages, 15411 KiB  
Article
Wideband Eight-Antenna Array Designs for 5G Smartphone Applications
by Guan-Long Huang, Ting-Yu Chang and Chow-Yen-Desmond Sim
Electronics 2024, 13(15), 2995; https://doi.org/10.3390/electronics13152995 - 29 Jul 2024
Viewed by 287
Abstract
This paper proposes a broadband eight-antenna array design suitable for Fifth Generation New Radio (5G NR) smartphone applications. To cover the 5G NR bands n77/n78/n79 (3300–5000 MHz) and 5G NR-U n46 band (5150–5925 MHz), the single antenna array unit applied is a modified [...] Read more.
This paper proposes a broadband eight-antenna array design suitable for Fifth Generation New Radio (5G NR) smartphone applications. To cover the 5G NR bands n77/n78/n79 (3300–5000 MHz) and 5G NR-U n46 band (5150–5925 MHz), the single antenna array unit applied is a modified loop antenna element (MLAE) that can generate three different loop modes. To yield good multi-input multi-output (MIMO) performances, the designed MLAE is further arranged as an eight-antenna array, and the experimental results show that the overlapping 6 dB bandwidth can cover the bands-of-interest (3300–5925 MHz) with good isolation and total efficiency of >10 dB and 51–84%, respectively. Finally, good MIMO performances, such as an envelope correlation coefficient (ECC) of lower than 0.1 and desirable channel capacity (CC) of 37–40 bps/Hz, were calculated across the bands-of-interest. Full article
(This article belongs to the Special Issue Advanced Antenna Technologies for B5G and 6G Applications)
Show Figures

Figure 1

29 pages, 1624 KiB  
Review
Are Aminoglycoside Antibiotics TRPing Your Metabolic Switches?
by Alfredo Franco-Obregón and Yee Kit Tai
Cells 2024, 13(15), 1273; https://doi.org/10.3390/cells13151273 - 29 Jul 2024
Viewed by 219
Abstract
Transient receptor potential (TRP) channels are broadly implicated in the developmental programs of most tissues. Amongst these tissues, skeletal muscle and adipose are noteworthy for being essential in establishing systemic metabolic balance. TRP channels respond to environmental stimuli by supplying intracellular calcium that [...] Read more.
Transient receptor potential (TRP) channels are broadly implicated in the developmental programs of most tissues. Amongst these tissues, skeletal muscle and adipose are noteworthy for being essential in establishing systemic metabolic balance. TRP channels respond to environmental stimuli by supplying intracellular calcium that instigates enzymatic cascades of developmental consequence and often impinge on mitochondrial function and biogenesis. Critically, aminoglycoside antibiotics (AGAs) have been shown to block the capacity of TRP channels to conduct calcium entry into the cell in response to a wide range of developmental stimuli of a biophysical nature, including mechanical, electromagnetic, thermal, and chemical. Paradoxically, in vitro paradigms commonly used to understand organismal muscle and adipose development may have been led astray by the conventional use of streptomycin, an AGA, to help prevent bacterial contamination. Accordingly, streptomycin has been shown to disrupt both in vitro and in vivo myogenesis, as well as the phenotypic switch of white adipose into beige thermogenic status. In vivo, streptomycin has been shown to disrupt TRP-mediated calcium-dependent exercise adaptations of importance to systemic metabolism. Alternatively, streptomycin has also been used to curb detrimental levels of calcium leakage into dystrophic skeletal muscle through aberrantly gated TRPC1 channels that have been shown to be involved in the etiology of X-linked muscular dystrophies. TRP channels susceptible to AGA antagonism are critically involved in modulating the development of muscle and adipose tissues that, if administered to behaving animals, may translate to systemwide metabolic disruption. Regenerative medicine and clinical communities need to be made aware of this caveat of AGA usage and seek viable alternatives, to prevent contamination or infection in in vitro and in vivo paradigms, respectively. Full article
Show Figures

Figure 1

14 pages, 6358 KiB  
Article
Practical Performance Analysis of MDI-QKD with Orbital Angular Momentum on UAV Relay Platform
by Dan Wu, Jiahao Li, Lan Yang, Zhifeng Deng, Jie Tang, Yuexiang Cao, Ying Liu, Haoran Hu, Ya Wang, Huicun Yu, Jiahua Wei, Huazhi Lun, Xingyu Wang and Lei Shi
Entropy 2024, 26(8), 635; https://doi.org/10.3390/e26080635 - 27 Jul 2024
Viewed by 244
Abstract
The integration of terrestrial- and satellite-based quantum key distribution (QKD) experiments has markedly advanced global-scale quantum networks, showcasing the growing maturity of quantum technologies. Notably, the use of unmanned aerial vehicles (UAVs) as relay nodes has emerged as a promising method to overcome [...] Read more.
The integration of terrestrial- and satellite-based quantum key distribution (QKD) experiments has markedly advanced global-scale quantum networks, showcasing the growing maturity of quantum technologies. Notably, the use of unmanned aerial vehicles (UAVs) as relay nodes has emerged as a promising method to overcome the inherent limitations of fiber-based and low-Earth orbit (LEO) satellite connections. This paper introduces a protocol for measurement-device-independent QKD (MDI-QKD) using photon orbital angular momentum (OAM) encoding, with UAVs as relay platforms. Leveraging UAV mobility, the protocol establishes a secure and efficient link, mitigating threats from untrusted UAVs. Photon OAM encoding addresses reference frame alignment issues exacerbated by UAV jitter. A comprehensive analysis of atmospheric turbulence, state-dependent diffraction (SDD), weather visibility, and pointing errors on free-space OAM-state transmission systems was conducted. This analysis elucidates the relationship between the key generation rate and propagation distance for the proposed protocol. Results indicate that considering SDD significantly decreases the key rate, halving previous data results. Furthermore, the study identifies a maximum channel loss capacity of 26 dB for the UAV relay platform. This result is pivotal in setting realistic parameters for the deployment of UAV-based quantum communications and lays the foundation for practical implementation strategies in the field. Full article
(This article belongs to the Special Issue Progress in Quantum Key Distribution)
Show Figures

Figure 1

27 pages, 7324 KiB  
Article
Computational Fluid Dynamic Investigation of Local Flow-Field Conditions in Lab Polymer Electrolyte Membrane Fuel Cells to Identify Degradation Stressors and Performance Enhancers
by Margherita Bulgarini, Augusto Della Torre, Andrea Baricci, Amedeo Grimaldi, Luca Marocco, Riccardo Mereu, Gianluca Montenegro and Angelo Onorati
Energies 2024, 17(15), 3643; https://doi.org/10.3390/en17153643 - 24 Jul 2024
Viewed by 318
Abstract
The use of polymer electrolyte membrane (PEM) fuel cells as an alternative to internal combustion engines can significantly contribute to the decarbonization of the transport sector, especially for heavy-duty applications. However, degradation is still an issue for this type of component, affecting their [...] Read more.
The use of polymer electrolyte membrane (PEM) fuel cells as an alternative to internal combustion engines can significantly contribute to the decarbonization of the transport sector, especially for heavy-duty applications. However, degradation is still an issue for this type of component, affecting their durability and performance. In this scenario, a detailed analysis of the anodic and cathodic distributors’ flow-field geometry may help to identify some local stressors that trigger the degradation mechanism, such as local hot spots and reactants not having a uniform distribution. A computational fluid dynamic (CFD) methodology is able to provide a volumetric description of a PEM fuel cell so it can be a useful tool to better understand the physical phenomena that govern the component operations. In this work, the open-source simulation library openFuelCell2 is adopted for a detailed analysis of two different PEM fuel cells characterized by standard distributor geometries, namely a parallel channel geometry and a serpentine configuration. The library, based on the OpenFOAM code, has been extended with a novel implementation accounting for the catalytic activity reduction due to the platinum oxide (PtOx) formation occurring under certain particular conditions. The adopted methodology is firstly validated resorting to experimental data acquired for the two different fuel cell configurations. The analysis highlights that the PtOx formation leads to a reduction in the fuel cell performance reaching up to 60–80% when operating at high voltages. Then, the effect of the distributor geometries on the component performance is investigated by resorting to in-plane and through-plane physical quantity distribution, such as reactant concentration, pressure or velocity fields. While the parallel flow channel configuration shows some diffusion losses under the rib, the serpentine channel geometry configuration can achieve some local performance peaks thanks to the convective flow in the gas diffusion layer (GDL) driven by local pressure gradients. Furthermore, the local enhancement in terms of higher current density under the rib is associated with an effective heat removal due to the high thermal capacity of the bipolar plate, avoiding the generation of local hot spots. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy III)
Show Figures

Figure 1

29 pages, 1550 KiB  
Article
Green Financial Policy, Resource Allocation and Corporate Environmental Responsibility
by Xueying Yuan, Lixia Shang and Jinhua Xu
Sustainability 2024, 16(15), 6273; https://doi.org/10.3390/su16156273 - 23 Jul 2024
Viewed by 454
Abstract
Green finance policy has emerged as a powerful driver for sustainable development worldwide, which has arisen at the top of the political agenda. Drawing on resource allocation theory, this study empirically investigates whether and how green finance policy affects corporate environmental responsibility in [...] Read more.
Green finance policy has emerged as a powerful driver for sustainable development worldwide, which has arisen at the top of the political agenda. Drawing on resource allocation theory, this study empirically investigates whether and how green finance policy affects corporate environmental responsibility in achieving sustainable development goals on a micro level. Taking China’s green finance reform and innovation (GFRI) pilot policy as a quasi-natural experiment, this paper employs the difference-in-differences model to investigate the impact of green finance policy on corporate environmental responsibility. The evidence shows that the GFRI policy significantly promotes corporate environmental responsibility. The results hold robust after a series of checks such as parallel trend examination, placebo test, exclusion of other policies, and alternative variable measurement. Moreover, this study explores the potential mechanism channels from the perspective of resource allocation theory. Specifically, green finance policy ultimately accelerates corporate environmental responsibility through financing capacity and environmental protection supervision. The heterogeneity analysis shows that the positive impact of the GFRI policy on corporate environmental responsibility is more pronounced for companies in areas with superior green development, strong law enforcement, and higher levels of pollution. The above findings indicate that the formal institution of government-led green financial policy can positively affect corporate environmental responsibility, with regional green development and law enforcement factors enhancing the effectiveness of these policies. Furthermore, the level of local pollution further intensifies the corporate sensibility to such policy effects. Overall, our study sheds light on the significant role of green financial policy in fostering a sustainable economy, helping reconcile the mixed evidence on the financial function of green finance policy on the firm level. Full article
Show Figures

Figure 1

25 pages, 1679 KiB  
Article
Industrial Sustainable Development: The Development Trend of Programmable Logic Controller Technology
by Kai-Chao Yao, Cheng-Lung Lin and Chih-Hsuan Pan
Sustainability 2024, 16(14), 6230; https://doi.org/10.3390/su16146230 - 21 Jul 2024
Viewed by 428
Abstract
Programmable Logic Controllers (PLCs) are indispensable for current and future industrial development, especially in smart factories, smart home technology, automated production lines, and machinery manufacturing. This study presents the trends in PLC software and hardware development through a technology roadmap and offers relevant [...] Read more.
Programmable Logic Controllers (PLCs) are indispensable for current and future industrial development, especially in smart factories, smart home technology, automated production lines, and machinery manufacturing. This study presents the trends in PLC software and hardware development through a technology roadmap and offers relevant suggestions to help industries achieve sustainable development, enhance market competitiveness, and provide references for research. Through expert interviews and fuzzy Delphi analysis, this study points out that future PLC development needs to focus on editing interfaces, syntax, Central Processing Units, Memory Units, and Communication Modules. Specific recommendations include visualizing regional/global label settings and connection settings, adding Python, JAVA, LabVIEW, and Scratch syntax, improving instruction execution speed, expanding program and expansion capacities, and adopting dual-channel Ethernet and connections to external networks and wireless networks. Fuzzy hierarchical analysis shows that Communication Modules are the most important component, followed by Central Processing Units and syntax expansion, and, finally, program and expansion capacity enhancements. These suggestions aim to promote product innovation and social environment demand evaluation, enhance product competitiveness, and achieve sustainable development goals. Full article
Show Figures

Figure 1

17 pages, 6385 KiB  
Article
Multi-Scale Spatial Attention-Based Multi-Channel 2D Convolutional Network for Soil Property Prediction
by Guolun Feng, Zhiyong Li, Junbo Zhang and Mantao Wang
Sensors 2024, 24(14), 4728; https://doi.org/10.3390/s24144728 - 21 Jul 2024
Viewed by 395
Abstract
Visible near-infrared spectroscopy (VNIR) is extensively researched for obtaining soil property information due to its rapid, cost-effective, and environmentally friendly advantages. Despite its widespread application and significant achievements in soil property analysis, current soil prediction models continue to suffer from low accuracy. To [...] Read more.
Visible near-infrared spectroscopy (VNIR) is extensively researched for obtaining soil property information due to its rapid, cost-effective, and environmentally friendly advantages. Despite its widespread application and significant achievements in soil property analysis, current soil prediction models continue to suffer from low accuracy. To address this issue, we propose a convolutional neural network model that can achieve high-precision soil property prediction by creating 2D multi-channel inputs and applying a multi-scale spatial attention mechanism. Initially, we explored two-dimensional multi-channel inputs for seven soil properties in the public LUCAS spectral dataset using the Gramian Angular Field (GAF) method and various preprocessing techniques. Subsequently, we developed a convolutional neural network model with a multi-scale spatial attention mechanism to improve the network’s extraction of relevant spatial contextual information. Our proposed model showed superior performance in a statistical comparison with current state-of-the-art techniques. The RMSE (R²) values for various soil properties were as follows: organic carbon content (OC) of 19.083 (0.955), calcium carbonate content (CaCO3) of 24.901 (0.961), nitrogen content (N) of 0.969 (0.933), cation exchange capacity (CEC) of 6.52 (0.803), pH in H2O of 0.366 (0.927), clay content of 4.845 (0.86), and sand content of 12.069 (0.789). Our proposed model can effectively extract features from visible near-infrared spectroscopy data, contributing to the precise detection of soil properties. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

23 pages, 1097 KiB  
Article
Beam-Hopping-Based Resource Allocation in Integrated Satellite-Terrestrial Networks
by Mengying Zhang, Xiumei Yang and Zhiyong Bu
Sensors 2024, 24(14), 4699; https://doi.org/10.3390/s24144699 - 19 Jul 2024
Viewed by 284
Abstract
The integrated satellite-terrestrial network (ISTN) provides a promising solution to achieve high-data-rate and ubiquitous connectivity in next-generation communication networks. Considering the scarce spectrum resources and unevenly distributed traffic demands, we investigate the resource allocation algorithms for ISTNs, where the beam-hopping (BH)-based satellite system [...] Read more.
The integrated satellite-terrestrial network (ISTN) provides a promising solution to achieve high-data-rate and ubiquitous connectivity in next-generation communication networks. Considering the scarce spectrum resources and unevenly distributed traffic demands, we investigate the resource allocation algorithms for ISTNs, where the beam-hopping (BH)-based satellite system and terrestrial systems share the same frequency band. Taking advantage of the scheduling flexibility of BH technology, the dynamical protection zones are constructed to avoid co-channel interference and improve the spectrum efficiency. Since both spectrum efficiency and user fairness are the key optimization indexes in practical systems, two resource allocation problems are formulated to maximize the weighted sum of capacity (MWSC) and maximize the minimum capacity-to-demand ratio (MMCDR) of ISTNs, respectively. By reformulating the problems as mixed-integer linear programming problems, optimal solutions are obtained. To reduce the computational complexity, two greedy suboptimal algorithms are proposed for the MWSC and MMCDR, respectively. The simulation results show that the proposed algorithms achieve higher spectrum efficiency and guarantee fairness between the satellite and terrestrial systems. It is also shown that both the greedy algorithms perform similarly to the optimal algorithms while having much lower complexity. Full article
(This article belongs to the Special Issue 6G Space-Air-Ground Communication Networks and Key Technologies)
Show Figures

Figure 1

14 pages, 4940 KiB  
Article
The Impact of the Three Gorges Reservoir Operations on Hydraulic Characteristics in the Backwater Region: A Comprehensive 2D Modeling Study
by Yaqian Xu, Shengde Yu, Defu Liu, Jun Ma and Mingying Chuo
Water 2024, 16(14), 2045; https://doi.org/10.3390/w16142045 - 19 Jul 2024
Viewed by 355
Abstract
The Three Gorges Reservoir (TGR), a landmark of human engineering, has significantly altered the hydrodynamics and ecology of its surrounding environment. Our research explores the hydrodynamic and ecological changes in the TGR, focusing on their implications for reservoir-induced water quality and water resource [...] Read more.
The Three Gorges Reservoir (TGR), a landmark of human engineering, has significantly altered the hydrodynamics and ecology of its surrounding environment. Our research explores the hydrodynamic and ecological changes in the TGR, focusing on their implications for reservoir-induced water quality and water resource issues. We designed a 2D hydrodynamic and water quality model and implemented 15 operational scenarios with an advanced dynamic storage capacity method for the TGR during flood season, drawdown and impoundment periods. Our simulations well reproduced and predicted water levels, discharge rates, and thermal conditions of the TGR, providing critical insights. The dynamic storage capacity method significantly improved the precision of water level simulations. This approach achieved modeling errors below 0.2 m when compared to real measurements from seven stations. We performed a detailed analysis of the sensitive, sub-sensitive, and insensitive areas during three reservoir operation periods. The drawdown period showed the most extensive impact range (468 km river channel), while the impoundment period had the least impact range (76 km river channel). Furthermore, we quantified the delay of temperature waves during these periods, observing a maximum delay of approximately 120 km and a minimum delay of less than 10 km, which underscores the variability in hydrodynamic responses under different operational scenarios. Our findings reveal the complex sensitivities of the TGR to varied operational modes, aiding in the development of eutrophication and water resources control strategies. Our modeling application provides different operational scenarios and insights for ecological management strategies in large dam systems globally, informing future water resource management and policy-making, ensuring sustainable and effective management of large reservoir systems. Full article
Show Figures

Graphical abstract

13 pages, 246 KiB  
Article
Effects of Drought on Child Protection in Hard-to-Reach Communities in Kenya
by Samuel Mburu, Irene Wali, Sarah Mukisa, Nancy Sironga and Hussein Adan
Soc. Sci. 2024, 13(7), 375; https://doi.org/10.3390/socsci13070375 - 19 Jul 2024
Viewed by 355
Abstract
This study aimed to assess child protection-related needs among drought-affected populations in selected arid counties in Kenya. The specific objectives included: to understand the different underlying vulnerabilities that children and adolescents face during drought with a gender and disability lens; to assess the [...] Read more.
This study aimed to assess child protection-related needs among drought-affected populations in selected arid counties in Kenya. The specific objectives included: to understand the different underlying vulnerabilities that children and adolescents face during drought with a gender and disability lens; to assess the current or potential presence of emergency risks and their likelihood of occurrence, the capacities, and coping mechanisms of families; identify emerging areas of concern regarding children and adolescents, including those with disability; and informing the interventions through development partners and relevant government ministries. This study adopted a non-experimental design that utilized a mixed-methods approach. The quantitative data collection involved a survey of 1800 households. The information was collected about children (i.e., individuals aged 0–17), their caregivers, and their households. Two methods were used to collect qualitative data. These included Key Informant Interviews (KIIs) and Focus Group Discussions (FGDs). The study established that during drought and in the recovery period, there were increased cases of children dropping out of school mainly due to the migration of families. Child labour and household chores were also mentioned as other vulnerabilities that children and adolescents faced during drought. The findings also noted an inter-linkage between female genital mutilation (FGM), child marriage, and teenage pregnancy across all communities under study. The difficulties occasioned by drought forced many families in ASAL counties to prepare their girls for marriage through the practice of FGM. Despite the high occurrences of sexual violence against children, child marriage, teenage pregnancy, and neglect, the child protection services available for affected children were low. This study recommends strengthening child protection structures at the community level by building the recruitment and capacity of child protection volunteers; sensitizing both parents and children to knowing the proper reporting channels in case of child protection issues; and strengthening the engagement of grassroots organisations, community-based groups, and local-level networks to prevent and respond to child protection concerns. Full article
(This article belongs to the Collection Child Abuse and Child Protection)
17 pages, 287 KiB  
Article
Priority-Based Capacity Allocation for Hierarchical Distributors with Limited Production Capacity
by Jun Tong, Xiaotao Zhou and Lei Lei
Mathematics 2024, 12(14), 2237; https://doi.org/10.3390/math12142237 - 18 Jul 2024
Viewed by 294
Abstract
This paper studies the issue of capacity allocation in multi-rank distribution channel management, a topic that has been significantly overlooked in the existing literature. Departing from conventional approaches, hierarchical priority rules are introduced as constraints, and an innovative assignment integer programming model focusing [...] Read more.
This paper studies the issue of capacity allocation in multi-rank distribution channel management, a topic that has been significantly overlooked in the existing literature. Departing from conventional approaches, hierarchical priority rules are introduced as constraints, and an innovative assignment integer programming model focusing on capacity selection is formulated. This model goes beyond merely optimizing profit or cost, aiming instead to enhance the overall business orientation of the firm. We propose a greedy algorithm and a priority-based binary particle swarm optimization (PB-BPSO) algorithm. Our numerical results indicate that both algorithms exhibit strong optimization capabilities and rapid solution speeds, especially in large-scale scenarios. Moreover, the model is validated through empirical tests using real-world data. The results demonstrate that the proposed approaches can provide actionable strategies to operators, in practice. Full article
(This article belongs to the Special Issue Machine Learning Methods and Mathematical Modeling with Applications)
Show Figures

Figure 1

20 pages, 2243 KiB  
Article
A Comparative Study of Phase I and II Hepatic Microsomal Biotransformation of Phenol in Three Species of Salmonidae: Hydroquinone, Catechol, and Phenylglucuronide Formation
by Richard C. Kolanczyk, Laura E. Solem, Patricia K. Schmieder and James M. McKim
Fishes 2024, 9(7), 284; https://doi.org/10.3390/fishes9070284 - 17 Jul 2024
Viewed by 378
Abstract
The in vitro biotransformation of phenol at 11 °C was studied using pre-spawn adult rainbow (Oncorhynchus mykiss) (RBT), brook (Salvelinus fontinalis) (BKT), and lake trout (Salvelinus namaycush) (LKT) hepatic microsomal preparations. The incubations were optimized for time, [...] Read more.
The in vitro biotransformation of phenol at 11 °C was studied using pre-spawn adult rainbow (Oncorhynchus mykiss) (RBT), brook (Salvelinus fontinalis) (BKT), and lake trout (Salvelinus namaycush) (LKT) hepatic microsomal preparations. The incubations were optimized for time, cofactor concentration, pH, and microsomal protein concentration. Formation of Phase I ring-hydroxylation and Phase II glucuronidation metabolites was quantified using HPLC with dual-channel electrochemical and UV detection. The biotransformation of phenol over a range of substrate concentrations (1 to 180 mM) was quantified, and the Michaelis–Menten kinetics constants, Km and Vmax, for the formation of hydroquinone (HQ), catechol (CAT), and phenylglucuronide (PG) were calculated. Species differences were noted in the Km values for Phase I enzyme production of HQ and CAT, with the following rank order of apparent enzyme affinity for substrate: RBT > BKT = LKT. However, no apparent differences in the Km for Phase II metabolism of phenol to PG were detected. Conversely, while there were no apparent differences in Vmax between species for HQ or CAT formation, the apparent maximum capacity for PG formation was significantly less in LKT than that observed for RBT and BKT. These experiments provide a means to quantify metabolic activation and deactivation of xenobiotics in fish, to compare activation and deactivation reactions across species, and to act as a guide for future predictions of new chemical biotransformation pathways and rates in fish. These experiments provided the necessary rate and capacity (Km and Vmax) inputs that are required to parameterize a fish physiologically based toxicokinetic (PB-TK) model for a reactive chemical that is readily biotransformed, such as phenol. In the future, an extensive database of these rate and capacity parameters on important fish species for selected chemical structures will be needed to allow the effective use of predictive models for reactive, biotransformation chemicals in aquatic toxicology and environmental risk assessment. Full article
(This article belongs to the Special Issue Advances in Rainbow Trout)
Show Figures

Figure 1

8 pages, 4241 KiB  
Article
Design of X-Band Circulator and Isolator for High-Peak-Power Applications
by Tao Tang, Xiexun Zhang, Maged A. Aldhaeebi and Thamer S. Almoneef
Micromachines 2024, 15(7), 916; https://doi.org/10.3390/mi15070916 - 16 Jul 2024
Viewed by 410
Abstract
This paper presents a design of a X-band circulator–isolator for handling high-peak-power applications. The device consists of two cascade-connected ferrite circulators, with one dedicated to transmission and the other to small-signal reception coupled with high-power signal isolation. To improve the power capacity, a [...] Read more.
This paper presents a design of a X-band circulator–isolator for handling high-peak-power applications. The device consists of two cascade-connected ferrite circulators, with one dedicated to transmission and the other to small-signal reception coupled with high-power signal isolation. To improve the power capacity, a layer of poly-tetra fluoroethylene (PTFE) film is placed above and below the circulator’s and the isolator’s center conductors. Measurement results show that the device is capable of withstanding a peak power of 7000 W, with an insertion loss of <0.3 dB at the transmitting port. Similarly, it sustains a peak power of 6000 W with an insertion loss of <0.5 dB at the reception port. Moreover, the proposed design achieved isolation between the transmitting and receiving ends of >20 dB with a VSWR < 1.2 at each port. Thermal analysis shows that the maximum relative ambient temperature rise is 15.11  C. These findings show that the proposed device achieves low-loss transmission of high-peak-power signals in the transmit channel and reverse isolation of high-peak-power signals in the receive channel. Full article
Show Figures

Figure 1

Back to TopTop