Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = conformal antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 22092 KiB  
Article
Design of Shared-Aperture Base Station Antenna with a Conformal Radiation Pattern
by Changpeng Ji, Xin Ning and Wei Dai
Electronics 2025, 14(2), 225; https://doi.org/10.3390/electronics14020225 - 7 Jan 2025
Viewed by 397
Abstract
Aiming at solving the problem of radiation pattern distortion caused by coupling between antennas in different frequency bands in traditional shared-aperture base station array antennas, a new shared-aperture array antenna integrating high-frequency filtering units and medium-frequency electromagnetic transparent antenna units is proposed. Without [...] Read more.
Aiming at solving the problem of radiation pattern distortion caused by coupling between antennas in different frequency bands in traditional shared-aperture base station array antennas, a new shared-aperture array antenna integrating high-frequency filtering units and medium-frequency electromagnetic transparent antenna units is proposed. Without adding additional decoupling structures, it is possible to effectively reduce the coupling of different frequencies, while weakening common-mode and scattering interferences, making the radiation pattern conformal. The array consists of an electromagnetic transparent antenna unit in the medium-frequency (1.71–2.70 GHz) band and four filtering antenna units in the high-frequency (3.30–3.70 GHz) band. The four high-frequency antenna units form two 2 × 1 linear arrays arranged on both sides of the medium-frequency antenna unit and share a reflector. The simulation and measurement results show that the voltage standing wave ratio (VSWR) in the working frequency band is less than 1.50, the average gain in the medium-frequency band is 8.80 dBi, the average gain in the high-frequency band is 12.20 dBi, and the radiation pattern is normal. It is suitable for the field of shared-aperture base station antennas. Full article
Show Figures

Figure 1

19 pages, 5764 KiB  
Article
A Cross-Shaped Slotted Patch Sensor Antenna for Ice and Frost Detection
by Rula Alrawashdeh
Technologies 2025, 13(1), 5; https://doi.org/10.3390/technologies13010005 - 25 Dec 2024
Viewed by 592
Abstract
Beyond data transmission, antennas have recently been utilized as sensors, offering the advantage of reducing hardware requirements and power consumption compared to systems where sensors are separate from antennas. Patch antennas, in particular, are widely used across various applications, including sensing, due to [...] Read more.
Beyond data transmission, antennas have recently been utilized as sensors, offering the advantage of reducing hardware requirements and power consumption compared to systems where sensors are separate from antennas. Patch antennas, in particular, are widely used across various applications, including sensing, due to their attractive features like compact size and conformability. In addition, they can be easily designed in different ways to sense variations in certain variables. Adding a slot to the patch antenna introduces several advantages, including multiband, wideband operation, and improved impedance bandwidth. Slots also provide a concentrated region of electromagnetic fields, which increases the antenna’s sensitivity for sensing and detection purposes. In this paper, a rectangular patch antenna with a cross slot is designed and proposed for water, ice, and frost detection. Detection is achieved by measuring variations in the resonant frequency in response to water, ice accumulation, and frost. The results indicate that the proposed antenna can detect both water and ice accretion with a frequency shift of up to 1.538, 0.358, and 0.056 GHz, respectively, which reflects good sensitivity levels of the antenna. The effect of the slot on strengthening the near electric field and antenna sensitivity is discussed in this paper. The antenna is fabricated and measured and the indicators of each detection scale have been extracted. The proposed antenna has a simple structure and a small size of (40 × 40 × 1.53 m3). In addition, it can be precisely used to sense different environmental parameters such as frost and ice. Thus, it can serve as a strong candidate for detecting natural disasters like frost damage. Furthermore, the findings in this paper offer valuable insights into how the presence and structure of slots influence the sensitivity response of patch antennas, supporting ongoing research in this field. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

19 pages, 5444 KiB  
Article
Two-Dimensional Directions Determination for GNSS Spoofing Source Based on MEMS-Based Dual-GNSS/INS Integration
by Chengzhong Zhang, Dingjie Wang and Jie Wu
Remote Sens. 2024, 16(23), 4568; https://doi.org/10.3390/rs16234568 - 5 Dec 2024
Viewed by 569
Abstract
Satellite navigation spoofing is a major challenge in the field of satellite/inertial integrated navigation security. To effectively enhance the anti-spoofing capability of a low-cost GNSS/MEMS-SINS integrated navigation system, this paper proposes a method integrating a dual-antenna global navigation satellite system (GNSS) and a [...] Read more.
Satellite navigation spoofing is a major challenge in the field of satellite/inertial integrated navigation security. To effectively enhance the anti-spoofing capability of a low-cost GNSS/MEMS-SINS integrated navigation system, this paper proposes a method integrating a dual-antenna global navigation satellite system (GNSS) and a micro-inertial measurement unit (MIMU) to determine the two-dimensional directions of spoofing signal sources. The proposed method evaluates whether the single-difference carrier-phase measurements conform to the corresponding directions given in ephemeris files and employs micro-inertial navigation technology to determine the two-dimensional directions of the signal source. Based on a set of short-baseline dual-station measurements, the accuracy of the proposed method in determining the two-dimensional azimuths of satellites in synchronous orbits is verified, and the deviation from the real value is evaluated. The experimental results show that the proposed method can effectively identify the spoofed satellite signals while providing high-precision direction information at three different distances: 100 m, 10 km, and 36,000 km. The two-dimensional angle errors do not exceed 0.2 rad, 0.05 rad, and 0.01 rad, respectively. Full article
Show Figures

Figure 1

19 pages, 10874 KiB  
Article
The Effects of Mechanical Loading on Resonant Response of a Conformal Load-Bearing Antenna System
by Shouxun Lu, Kelvin J. Nicholson, Joel Patniotis, John Wang and Wing Kong Chiu
Sensors 2024, 24(19), 6206; https://doi.org/10.3390/s24196206 - 25 Sep 2024
Viewed by 619
Abstract
Glass fibre-reinforced polymer (GFRP) is a suitable substrate material for constructing a Conformal Load-Bearing Antenna Structure (CLAS). The relative permittivity of the CLAS substrate, which determines its resonant frequency, is affected by damage sustained by GFRP. This paper investigates the effects of damage [...] Read more.
Glass fibre-reinforced polymer (GFRP) is a suitable substrate material for constructing a Conformal Load-Bearing Antenna Structure (CLAS). The relative permittivity of the CLAS substrate, which determines its resonant frequency, is affected by damage sustained by GFRP. This paper investigates the effects of damage (induced by mechanically loading the substrate) on the resonant response of the CLAS. Decoupling the antenna from the substrate was essential to evaluate the CLAS’s true response to the induced damage. This paper details a systematic investigation examining how the frequency response of a “pristine” antenna and a surface-mounted antenna respond to a substrate subjected to quasi-statically induced mechanical damage and cyclic fatigue loading. The results demonstrate that the resonant frequency of the CLAS varies as a function of the substrate’s mechanical damage. The prepared CLAS is tolerant to a certain degree of mechanical loading and related damage with its resonant frequency remaining within an acceptable bandwidth. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 431 KiB  
Article
Computationally Efficient Direction Finding for Conformal MIMO Radar
by Haochen Wang, Zhiyu Yu and Fangqing Wen
Sensors 2024, 24(18), 6065; https://doi.org/10.3390/s24186065 - 19 Sep 2024
Viewed by 851
Abstract
The use of conformal arrays offers a significant advancement in Multiple-Input–Multiple-Output (MIMO) radar, enabling the placement of antennas on irregular surfaces. For joint Direction-of-Departure (DOD) and Direction-of-Arrival (DOA) estimation in conformal-array MIMO radar, the current spectrum-searching methods are computationally too expensive, while the [...] Read more.
The use of conformal arrays offers a significant advancement in Multiple-Input–Multiple-Output (MIMO) radar, enabling the placement of antennas on irregular surfaces. For joint Direction-of-Departure (DOD) and Direction-of-Arrival (DOA) estimation in conformal-array MIMO radar, the current spectrum-searching methods are computationally too expensive, while the existing rotation-invariant method may suffer from phase ambiguity caused by the non-Nyquist spacing of the sensors. In this paper, an improved rotationally invariant technique is proposed. The core function of the proposed algorithm is to estimate the phase differences between the adjacent sensors; then, it eliminates phase ambiguity via the previous estimated standard phase difference. Thereafter, DODs and DOAs are obtained via Least Squares (LS) fitting. The proposed method provides closed-form estimates for joint DOD and DOA estimation, which is much more efficient than the existing spectrum-searching techniques. Numerical simulations show that the proposed algorithm can accurately determine 2D DODs and DOAs of targets, only requiring approximately 1% of the running time required by existing spectrum-searching approaches. Full article
Show Figures

Figure 1

15 pages, 6393 KiB  
Article
Flexible Graphene Film-Based Antenna Sensor for Large Strain Monitoring of Steel Structures
by Shun Weng, Jingqi Zhang, Ke Gao, Hongping Zhu and Tingjun Peng
Sensors 2024, 24(13), 4388; https://doi.org/10.3390/s24134388 - 6 Jul 2024
Viewed by 1122
Abstract
In the field of wireless strain monitoring, it is difficult for the traditional metal-made antenna sensor to conform well with steel structures and monitor large strain deformation. To solve this problem, this study proposes a flexible antenna strain sensor based on a ductile [...] Read more.
In the field of wireless strain monitoring, it is difficult for the traditional metal-made antenna sensor to conform well with steel structures and monitor large strain deformation. To solve this problem, this study proposes a flexible antenna strain sensor based on a ductile graphene film, which features a 6.7% elongation at break and flexibility due to the microscopic wrinkle structure and layered stacking structure of the graphene film. Because of the use of eccentric embedding in the feeding form, the sensor can be miniaturized and can simultaneously monitor strain in two directions. The sensing mechanism of the antenna is analyzed using a void model, and an antenna is designed based on operating frequencies of 3 GHz and 3.5 GHz. The embedding size is optimized using a Smith chart and impedance matching principle. Both the simulation and experimental results verify that the resonant frequency and strain magnitude are linearly inversely proportional. The experimental results show that the strain sensitivity is 1.752 kHz/με along the geometric length and 1.780 kHz/με along the width, with correlation coefficients of 0.99173 and 0.99295, respectively. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

13 pages, 8672 KiB  
Article
Efficient Parallel FDTD Method Based on Non-Uniform Conformal Mesh
by Kaihui Liu, Tao Huang, Liang Zheng, Xiaolin Jin, Guanjie Lin, Luo Huang, Wenjing Cai, Dapeng Gong and Chunwang Fang
Appl. Sci. 2024, 14(11), 4364; https://doi.org/10.3390/app14114364 - 21 May 2024
Viewed by 1517
Abstract
The finite-difference time-domain (FDTD) method is a versatile electromagnetic simulation technique, widely used for solving various broadband problems. However, when dealing with complex structures and large dimensions, especially when applying perfectly matched layer (PML) absorbing boundaries, tremendous computational burdens will occur. To reduce [...] Read more.
The finite-difference time-domain (FDTD) method is a versatile electromagnetic simulation technique, widely used for solving various broadband problems. However, when dealing with complex structures and large dimensions, especially when applying perfectly matched layer (PML) absorbing boundaries, tremendous computational burdens will occur. To reduce the computational time and memory, this paper presents a Message Passing Interface (MPI) parallel scheme based on non-uniform conformal FDTD, which is suitable for convolutional perfectly matched layer (CPML) absorbing boundaries, and adopts a domain decomposition approach, dividing the entire computational domain into several subdomains. More importantly, only one magnetic field exchange is required during the iterations, and the electric field update is divided into internal and external parts, facilitating the synchronous communication of magnetic fields between adjacent subdomains and internal electric field updates. Finally, unmanned helicopters, helical antennas, 100-period folded waveguides, and 16 × 16 phased array antennas are designed to verify the accuracy and efficiency of the algorithm. Moreover, we conducted parallel tests on a supercomputing platform, showing its satisfactory reduction in computational time and excellent parallel efficiency. Full article
(This article belongs to the Special Issue Parallel Computing and Grid Computing: Technologies and Applications)
Show Figures

Figure 1

18 pages, 25487 KiB  
Article
3D-Printed Conformal Meta-Lens with Multiple Beam-Shaping Functionalities for Mm-Wave Sensing Applications
by Noureddine Melouki, Fahad Ahmed, Peyman PourMohammadi, Hassan Naseri, Mohamed Sedigh Bizan, Amjad Iqbal and Tayeb A. Denidni
Sensors 2024, 24(9), 2826; https://doi.org/10.3390/s24092826 - 29 Apr 2024
Cited by 1 | Viewed by 2127
Abstract
In this paper, a 3D conformal meta-lens designed for manipulating electromagnetic beams via height-to-phase control is proposed. The structure consists of a 40 × 20 array of tunable unit cells fabricated using 3D printing, enabling full 360° phase compensation. A novel automatic synthesizing [...] Read more.
In this paper, a 3D conformal meta-lens designed for manipulating electromagnetic beams via height-to-phase control is proposed. The structure consists of a 40 × 20 array of tunable unit cells fabricated using 3D printing, enabling full 360° phase compensation. A novel automatic synthesizing method (ASM) with an integrated optimization process based on genetic algorithm (GA) is adopted here to create the meta-lens. Simulation using CST Microwave Studio and MATLAB reveals the antenna’s beam deflection capability by adjusting phase compensations for each unit cell. Various beam scanning techniques are demonstrated, including single-beam, dual-beam generation, and orbital angular momentum (OAM) beam deflection at different angles of 0°, 10°, 15°, 25°, 30°, and 45°. A 3D-printed prototype of the dual-beam feature has been fabricated and measured for validation purposes, with good agreement between both simulation and measurement results, with small discrepancies due to 3D printing’s low resolution and fabrication errors. This meta-lens shows promise for low-cost, high-gain beam deflection in mm-wave wireless communication systems, especially for sensing applications, with potential for wider 2D beam scanning and independent beam deflection enhancements. Full article
(This article belongs to the Special Issue New Advances in 3D Printed Material-Based Sensors)
Show Figures

Figure 1

14 pages, 3667 KiB  
Communication
Wireless Temperature Measurement for Curved Surfaces Based on AlN Surface Acoustic Wave Resonators
by Huali Liu, Zhixin Zhou and Liang Lou
Micromachines 2024, 15(5), 562; https://doi.org/10.3390/mi15050562 - 25 Apr 2024
Cited by 1 | Viewed by 1161
Abstract
In this paper, we propose a novel method for temperature measurement using surface acoustic wave (SAW) temperature sensors on curved or irregular surfaces. We integrate SAW resonators onto flexible printed circuit boards (FPCBs) to ensure better conformity of the temperature sensor with the [...] Read more.
In this paper, we propose a novel method for temperature measurement using surface acoustic wave (SAW) temperature sensors on curved or irregular surfaces. We integrate SAW resonators onto flexible printed circuit boards (FPCBs) to ensure better conformity of the temperature sensor with the surface of the object under test. Compared to traditional rigid PCBs, FPCBs offer greater dynamic flexibility, lighter weight, and thinner thickness, which make them an ideal choice for making SAW devices working for temperature measurements under curved surfaces. We design a temperature sensor array consisting of three devices with different operating frequencies to measure the temperature at multiple points on the surface of the object. To distinguish between different target points in the sensor array, each sensor operates at a different frequency, and the operating frequency bands do not overlap. This differentiation is achieved using Frequency Division Multiple Access (FDMA) technology. Experimental results indicate that the frequency temperature coefficients of these sensors are −30.248 ppm/°C, −30.195 ppm/°C, and −30.115 ppm/°C, respectively. In addition, the sensor array enables wireless communication via antenna and transceiver circuits. This innovation heralds enhanced adaptability and applicability for SAW temperature sensor applications. Full article
(This article belongs to the Special Issue Micro/Nano Sensors: Fabrication and Applications)
Show Figures

Figure 1

28 pages, 13458 KiB  
Article
Crescent Antennas as Sensors: Case of Sensing Brain Pathology
by Usman Anwar, Tughrul Arslan and Peter Lomax
Sensors 2024, 24(4), 1305; https://doi.org/10.3390/s24041305 - 18 Feb 2024
Viewed by 1393
Abstract
Microstrip crescent antennas offer compactness, conformability, low profile, high sensitivity, multi-band operability, cost-effectiveness and ease of fabrication in contrast to bulky, rigid horn, helical and Vivaldi antennas. This work presents crescent sensors for monitoring brain pathology associated with stroke and atrophy. Single- and [...] Read more.
Microstrip crescent antennas offer compactness, conformability, low profile, high sensitivity, multi-band operability, cost-effectiveness and ease of fabrication in contrast to bulky, rigid horn, helical and Vivaldi antennas. This work presents crescent sensors for monitoring brain pathology associated with stroke and atrophy. Single- and multi-element crescent sensors are designed and validated by software simulations. The fabricated sensors are integrated with glasses and experimentally evaluated using a realistic brain phantom. The performance of the sensors is compared in terms of peak gain, directivity, radiation performance, flexibility and detection capability. The crescent sensors can detect the pathologies through the monitoring of backscattered electromagnetic signals that are triggered by dielectric variations in the affected tissues. The proposed sensors can effectively detect stroke and brain atrophy targets with a volume of 25 mm3 and 56 mm3, respectively. The safety of the sensors is examined through the evaluation of Specific Absorption Rate (peak SAR < 1.25 W/Kg, 100 mW), temperature increase within brain tissues (max: 0.155 °C, min: 0.115 °C) and electric field analysis. The results suggest that the crescent sensors can provide a flexible, portable and non-invasive solution to monitor degenerative brain pathology. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

12 pages, 3159 KiB  
Article
Deeply Implanted Conformal Antenna for Real-Time Bio-Telemetry Applications
by Ladislau Matekovits, Farzad Mir, Gianluca Dassano and Ildiko Peter
Sensors 2024, 24(4), 1170; https://doi.org/10.3390/s24041170 - 10 Feb 2024
Cited by 5 | Viewed by 1886
Abstract
The design and experimental verification of a deeply implanted conformal printed antenna is presented. The hip implant acts as the ground plane for a coaxial-cable-fed trapezoidal radiator designed to transmit biological signals collected within the body by proper biosensors. The arrangement, consisting of [...] Read more.
The design and experimental verification of a deeply implanted conformal printed antenna is presented. The hip implant acts as the ground plane for a coaxial-cable-fed trapezoidal radiator designed to transmit biological signals collected within the body by proper biosensors. The arrangement, consisting of a metallic (or equivalent) hip implant, bio-compatible gypsum-based dielectric, and conformal radiator, was tested when the hosting 3D-printed plastic bone was immersed in tissue-like liquid contained in a plastic bucket. The dimensions of the set-up are similar to a human leg. Matching and radiation characteristics are presented in the industrial, scientific, and medical (ISM) frequency band (2.4–2.5 GHz), showing the feasibility of the proposed arrangement. Full article
(This article belongs to the Special Issue Microwave Sensors and Antenna Topology)
Show Figures

Figure 1

13 pages, 14158 KiB  
Article
Flexible Symmetric-Defection Antenna with Bending and Thermal Insensitivity for Miniaturized UAV
by Xueli Nan, Tongtong Kang, Zhonghe Zhang, Xin Wang, Jiale Zhang, Yusheng Lei, Libo Gao, Jianli Cui and Hongcheng Xu
Micromachines 2024, 15(1), 159; https://doi.org/10.3390/mi15010159 - 21 Jan 2024
Cited by 3 | Viewed by 1887
Abstract
Flexible conformal-enabled antennas have great potential for various developable surface-built unmanned aerial vehicles (UAVs) due to their superior mechanical compliance as well as maintaining excellent electromagnetic features. However, it remains a challenge that the antenna holds bending and thermal insensitivity to negligibly shift [...] Read more.
Flexible conformal-enabled antennas have great potential for various developable surface-built unmanned aerial vehicles (UAVs) due to their superior mechanical compliance as well as maintaining excellent electromagnetic features. However, it remains a challenge that the antenna holds bending and thermal insensitivity to negligibly shift resonant frequency during conformal attachment and aerial flight, respectively. Here, we report a flexible symmetric-defection antenna (FSDA) with bending and thermal insensitivity. By engraving a symmetric defection on the reflective ground, the radiated unit attached to the soft polydimethylsiloxane (PDMS) makes the antenna resonate at the ISM microwave band (resonant frequency = 2.44 GHz) and conformal with a miniaturized UAV. The antenna is also insensitive to both the bending-conformal attachment (20 mm < r < 70 mm) and thermal radiation (20~100 °C) due to the symmetric peripheral-current field along the defection and the low-change thermal effect of the PDMS, respectively. Therefore, the antenna in a non-bending state almost keeps the same impedance matching and radiation when it is attached to a cylinder-back of a UAV. The flexible antenna with bending and thermal insensitivity will pave the way for more conformal or wrapping applications. Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors, 3rd Edition)
Show Figures

Figure 1

10 pages, 7107 KiB  
Proceeding Paper
M-Shaped Conformal Antenna with FSS Backing for Gain Enhancement
by Madhavi Devi Lanka and Subbarao Chalasani
Eng. Proc. 2023, 59(1), 143; https://doi.org/10.3390/engproc2023059143 - 4 Jan 2024
Cited by 3 | Viewed by 986
Abstract
A frequency selective surface (FSS) integrated conformal antenna is modelled and analytical study is presented in this article. A novel antenna design known as the “M-shaped Conformal Antenna with FSS Backing for Gain Improvement” makes use of both the conformal structure and FSS [...] Read more.
A frequency selective surface (FSS) integrated conformal antenna is modelled and analytical study is presented in this article. A novel antenna design known as the “M-shaped Conformal Antenna with FSS Backing for Gain Improvement” makes use of both the conformal structure and FSS technology to increase gain. The geometric shape of the M-shaped antenna, which might resemble the letter “M” or a collection of M-shaped parts, is what gives it its name. This structure can be created to alter the antenna’s resonance frequency, increase bandwidth, or adjust the emission pattern. The radiation pattern of the antenna may be precisely controlled by combining an M-shaped construction with an FSS. You may customize the radiation pattern to concentrate energy in particular directions or sectors, boosting gain and coverage, when necessary, by modifying the FSS’s geometry and physical characteristics. The combination of features makes it extremely ideal for a variety of applications where optimum gain is a crucial need, such as aerospace, communications, and radar arrays. It also enables fine control of the radiation pattern, frequency-selective gain, and interference elimination. The designed antenna consists of an M-shaped model on the visible sideways along with a complement split ring resonator and a defective ground structure on the bottom side. Antenna resonating at wideband cover several lower band wireless communication applications like Bluetooth, Wireless Fidelity (Wi-Fi), Manufacturing Communication and Pharma, Long Term Evolution-LTE, advanced 5G, and Wireless LAN with impedance bandwidth of 65%. The FSS beneath the antenna structure acts as reflector and providing additional gain and efficiency improvement of 22% and 12%, respectively. The prototype measurement supporting the simulation results with good matching in reflection coefficient and gain. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

13 pages, 3336 KiB  
Article
Modulation of Ferrocene–Ferrocene Interactions by Varying Their Reciprocal Positions in L-Dap/Aib Helical Peptides
by Annalisa Bisello, Barbara Biondi, Roberta Cardena, Renato Schiesari, Marco Crisma, Fernando Formaggio and Saverio Santi
Inorganics 2023, 11(12), 482; https://doi.org/10.3390/inorganics11120482 - 16 Dec 2023
Cited by 1 | Viewed by 1729
Abstract
In this work, we developed two new polyfunctional hybrid systems in which the presence of Fc redox “antennas” on peptide scaffolds allows for a modulation of their electronic properties. Specifically, we synthesized two helical hexapeptides containing four Aib (α-amionoisobutyric acid) and two L [...] Read more.
In this work, we developed two new polyfunctional hybrid systems in which the presence of Fc redox “antennas” on peptide scaffolds allows for a modulation of their electronic properties. Specifically, we synthesized two helical hexapeptides containing four Aib (α-amionoisobutyric acid) and two L-Dap (2,3-diamino propionic acid) residues. L-Dap side chains were then functionalized with Fc moieties. The structures of the two 310 helical peptides, namely Z-Aib-L-Dap(Fc)-Aib-Aib-L-Dap(Fc)-Aib-NH-iPr and Z-Aib-L-Dap(Fc)-Aib-L-Dap(Fc)-Aib-Aib-NH-iPr, were investigated by X-ray diffraction, 2D-NMR, CD and IR spectroscopies. Due to the helical conformation, in Z-Aib-L-Dap(Fc)-Aib-Aib-L-Dap(Fc)-Aib-NH-iPr, the Fc groups are located on the same face of the helix, but in Z-Aib-L-Dap(Fc)-Aib-L-Dap(Fc)-Aib-Aib-NH-iPr, they are located on opposite faces. Surprisingly, two bands were found through DPV for Z-Aib-L-Dap(Fc)-Aib-L-Dap(Fc)-Aib-Aib-NH-iPr, indicating an electrostatic interaction between the Fc groups despite their longer reciprocal distance with respect to that in Z-Aib-L-Dap(Fc)-Aib-Aib-L-Dap(Fc)-Aib-NH-iPr. CD experiments at different concentrations evidenced aggregation for Z-Aib-L-Dap(Fc)-Aib-L-Dap(Fc)-Aib-Aib-NH-iPr, even at high dilutions, thus suggesting that the Fc-Fc electrostatic interaction could be of an intermolecular nature. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Organometallic Chemistry)
Show Figures

Graphical abstract

17 pages, 7253 KiB  
Article
A Lattice-Hinge-Design-Based Stretchable Textile Microstrip Patch Antenna for Wireless Strain Sensing at 2.45 GHz
by Abdul Wahab Memon, Benny Malengier, Patrick Van Torre and Lieva Van Langenhove
Sensors 2023, 23(21), 8946; https://doi.org/10.3390/s23218946 - 3 Nov 2023
Cited by 1 | Viewed by 1641
Abstract
The manuscript presents a novel approach to designing and fabricating a stretchable patch antenna designed for strain sensing and the wireless communication of sensing data at the same time. The challenge lies in combining flexible and stretchable textile materials with different physical morphologies, [...] Read more.
The manuscript presents a novel approach to designing and fabricating a stretchable patch antenna designed for strain sensing and the wireless communication of sensing data at the same time. The challenge lies in combining flexible and stretchable textile materials with different physical morphologies, which can hinder the adhesion among multiple layers when stacked up, resisting the overall stretchability of the antenna. The proposed antenna design overcomes this challenge by incorporating a lattice hinge pattern into the non-stretchable conductive e-textile, transforming it into a stretchable structure. The innovative design includes longitudinal cuts inserted in both the patch and the ground plane of the antenna, allowing it to stretch along in the perpendicular direction. Implementing the lattice hinge pattern over the conductive layers of the proposed patch antenna, in combination with a 2 mm thick Polydimethylsiloxane (PDMS) substrate, achieves a maximum of 25% stretchability compared to its counterpart antenna without a lattice hinge design. The stretchable textile antenna resonates around a frequency of 2.45 GHz and exhibits a linear resonant frequency shift when strained up to 25%. This characteristic makes it suitable for use as a strain sensor. Additionally, the lattice hinge design enhances the conformability and flexibility of the antenna compared to that of a solid patch antenna. The realized antenna gains in the E and H-plane are measured as 2.21 dBi and 2.34 dBi, respectively. Overall, the presented design offers a simple and effective solution for fabricating a stretchable textile patch antenna for normal use or as a sensing element, opening up possibilities for applications in the communication and sensing fields. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop