Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (614)

Search Parameters:
Keywords = convolutional autoencoder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1785 KiB  
Article
Representing the Information of Multiplayer Online Battle Arena (MOBA) Video Games Using Convolutional Accordion Auto-Encoder (A2E) Enhanced by Attention Mechanisms
by José A. Torres-León, Marco A. Moreno-Armendáriz and Hiram Calvo
Mathematics 2024, 12(17), 2744; https://doi.org/10.3390/math12172744 - 3 Sep 2024
Viewed by 395
Abstract
In this paper, we propose a representation of the visual information about Multiplayer Online Battle Arena (MOBA) video games using an adapted unsupervised deep learning architecture called Convolutional Accordion Auto-Encoder (Conv_A2E). Our study includes a presentation of current representations of MOBA [...] Read more.
In this paper, we propose a representation of the visual information about Multiplayer Online Battle Arena (MOBA) video games using an adapted unsupervised deep learning architecture called Convolutional Accordion Auto-Encoder (Conv_A2E). Our study includes a presentation of current representations of MOBA video game information and why our proposal offers a novel and useful solution to this task. This approach aims to achieve dimensional reduction and refined feature extraction of the visual data. To enhance the model’s performance, we tested several attention mechanisms for computer vision, evaluating algorithms from the channel attention and spatial attention families, and their combination. Through experimentation, we found that the best reconstruction of the visual information with the Conv_A2E was achieved when using a spatial attention mechanism, deformable convolution, as its mean squared error (MSE) during testing was the lowest, reaching a value of 0.003893, which means that its dimensional reduction is the most generalist and representative for this case study. This paper presents one of the first approaches to applying attention mechanisms to the case study of MOBA video games, representing a new horizon of possibilities for research. Full article
(This article belongs to the Special Issue Mathematical Optimization and Control: Methods and Applications)
Show Figures

Figure 1

20 pages, 4755 KiB  
Article
Advanced Defect Detection in Wrap Film Products: A Hybrid Approach with Convolutional Neural Networks and One-Class Support Vector Machines with Variational Autoencoder-Derived Covariance Vectors
by Tatsuki Shimizu, Fusaomi Nagata, Maki K. Habib, Koki Arima, Akimasa Otsuka and Keigo Watanabe
Machines 2024, 12(9), 603; https://doi.org/10.3390/machines12090603 - 31 Aug 2024
Viewed by 325
Abstract
This study proposes a novel approach that utilizes Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) to tackle a critical challenge: detecting defects in wrapped film products. With their delicate and reflective film wound around a core material, these products present formidable [...] Read more.
This study proposes a novel approach that utilizes Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) to tackle a critical challenge: detecting defects in wrapped film products. With their delicate and reflective film wound around a core material, these products present formidable hurdles for conventional visual inspection systems. The complex task of identifying defects, such as unwound or protruding areas, remains a daunting endeavor. Despite the power of commercial image recognition systems, they struggle to capture anomalies within wrap film products. Our research methodology achieved a 90% defect detection accuracy, establishing its practical significance compared with existing methods. We introduce a pioneering methodology centered on covariance vectors extracted from latent variables, a product of a Variational Autoencoder (VAE). These covariance vectors serve as feature vectors for training a specialized One-Class SVM (OCSVM), a key component of our approach. Unlike conventional practices, our OCSVM does not require images containing defects for training; it uses defect-free images, thus circumventing the challenge of acquiring sufficient defect samples. We compare our methodology against feature vectors derived from the fully connected layers of established CNN models, AlexNet and VGG19, offering a comprehensive benchmarking perspective. Our research represents a significant advancement in defect detection technology. By harnessing the latent variable covariance vectors from a VAE encoder, our approach provides a unique solution to the challenges faced by commercial image recognition systems. These advancements in our study have the potential to revolutionize quality control mechanisms within manufacturing industries, offering a brighter future for product integrity and customer satisfaction. Full article
Show Figures

Figure 1

26 pages, 27118 KiB  
Article
A Denoising Method Based on DDPM for Radar Emitter Signal Intra-Pulse Modulation Classification
by Shibo Yuan, Peng Li, Xu Zhou, Yingchao Chen and Bin Wu
Remote Sens. 2024, 16(17), 3215; https://doi.org/10.3390/rs16173215 - 30 Aug 2024
Viewed by 330
Abstract
Accurately classifying the intra-pulse modulations of radar emitter signals is important for radar systems and can provide necessary information for relevant military command strategy and decision making. As strong additional white Gaussian noise (AWGN) leads to a lower signal-to-noise ratio (SNR) of received [...] Read more.
Accurately classifying the intra-pulse modulations of radar emitter signals is important for radar systems and can provide necessary information for relevant military command strategy and decision making. As strong additional white Gaussian noise (AWGN) leads to a lower signal-to-noise ratio (SNR) of received signals, which results in a poor classification accuracy on the classification models based on deep neural networks (DNNs), in this paper, we propose an effective denoising method based on a denoising diffusion probabilistic model (DDPM) for increasing the quality of signals. Trained with denoised signals, classification models can classify samples denoised by our method with better accuracy. The experiments based on three DNN classification models using different modal input, with undenoised data, data denoised by the convolutional denoising auto-encoder (CDAE), and our method’s denoised data, are conducted with three different conditions. The extensive experimental results indicate that our proposed method could denoise samples with lower values of the SNR, and that it is more effective for increasing the accuracy of DNN classification models for radar emitter signal intra-pulse modulations, where the average accuracy is increased from around 3 to 22 percentage points based on three different conditions. Full article
Show Figures

Figure 1

25 pages, 7233 KiB  
Article
RUL Prediction of Rolling Bearings Based on Multi-Information Fusion and Autoencoder Modeling
by Peng Guan, Tianrui Zhang and Lianhong Zhou
Processes 2024, 12(9), 1831; https://doi.org/10.3390/pr12091831 - 28 Aug 2024
Viewed by 329
Abstract
As an important part of industrial equipment, the safe and stable operation of rolling bearings is an important guarantee for the performance of mechanical equipment. Aiming at the problem that it is difficult to characterize the running state of rolling bearings, this paper [...] Read more.
As an important part of industrial equipment, the safe and stable operation of rolling bearings is an important guarantee for the performance of mechanical equipment. Aiming at the problem that it is difficult to characterize the running state of rolling bearings, this paper mainly analyzes and processes the vibration signals of rolling bearings, extracts and fuses multi-information entropy, and monitors the running state of rolling bearings and predicts the remaining useful life prediction (RUL) through test verification. Firstly, in view of the difficulty in characterizing the bearings running state characteristics, a rolling bearings running state monitoring method based on multi-information entropy fusion and denoising autoencoder (DAE) was proposed to extract the multi-entropy index features of vibration signals to improve the accuracy of feature extraction, and to solve the problem of not obvious information representation of a single feature indicator and missing information in the feature screening process. Secondly, in view of the problems of low prediction accuracy and poor robustness and generalization in traditional RUL models, a rolling bearings RUL model combining convolutional autoencoder (CAE) and bidirectional long short-term memory network (BiLSTM) was proposed. The introduction of convolution operation made CAE have the feature of weight sharing, reducing the complexity of the model. Finally, the XJTU-SY data set was used to verify the constructed model. The results show that the condition monitoring model established in this paper can accurately evaluate the running state of the rolling bearing and accurately locate the failure time. At the same time, the residual life prediction model can realize the residual life prediction of most data sets, and has good accuracy and robustness. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

26 pages, 9607 KiB  
Article
A Global Spatial-Spectral Feature Fused Autoencoder for Nonlinear Hyperspectral Unmixing
by Mingle Zhang, Mingyu Yang, Hongyu Xie, Pinliang Yue, Wei Zhang, Qingbin Jiao, Liang Xu and Xin Tan
Remote Sens. 2024, 16(17), 3149; https://doi.org/10.3390/rs16173149 - 26 Aug 2024
Viewed by 297
Abstract
Hyperspectral unmixing (HU) aims to decompose mixed pixels into a set of endmembers and corresponding abundances. Deep learning-based HU methods are currently a hot research topic, but most existing unmixing methods still rely on per-pixel training or employ convolutional neural networks (CNNs), which [...] Read more.
Hyperspectral unmixing (HU) aims to decompose mixed pixels into a set of endmembers and corresponding abundances. Deep learning-based HU methods are currently a hot research topic, but most existing unmixing methods still rely on per-pixel training or employ convolutional neural networks (CNNs), which overlook the non-local correlations of materials and spectral characteristics. Furthermore, current research mainly focuses on linear mixing models, which limits the feature extraction capability of deep encoders and further improvement in unmixing accuracy. In this paper, we propose a nonlinear unmixing network capable of extracting global spatial-spectral features. The network is designed based on an autoencoder architecture, where a dual-stream CNNs is employed in the encoder to separately extract spectral and local spatial information. The extracted features are then fused together to form a more complete representation of the input data. Subsequently, a linear projection-based multi-head self-attention mechanism is applied to capture global contextual information, allowing for comprehensive spatial information extraction while maintaining lightweight computation. To achieve better reconstruction performance, a model-free nonlinear mixing approach is adopted to enhance the model’s universality, with the mixing model learned entirely from the data. Additionally, an initialization method based on endmember bundles is utilized to reduce interference from outliers and noise. Comparative results on real datasets against several state-of-the-art unmixing methods demonstrate the superior of the proposed approach. Full article
(This article belongs to the Topic Computer Vision and Image Processing, 2nd Edition)
Show Figures

Figure 1

21 pages, 2795 KiB  
Article
Malware Identification Method in Industrial Control Systems Based on Opcode2vec and CVAE-GAN
by Yuchen Huang, Jingwen Liu, Xuanyi Xiang, Pan Wen, Shiyuan Wen, Yanru Chen, Liangyin Chen and Yuanyuan Zhang
Sensors 2024, 24(17), 5518; https://doi.org/10.3390/s24175518 - 26 Aug 2024
Viewed by 470
Abstract
Industrial Control Systems (ICSs) have faced a significant increase in malware threats since their integration with the Internet. However, existing machine learning-based malware identification methods are not specifically optimized for ICS environments, resulting in suboptimal identification performance. In this work, we propose an [...] Read more.
Industrial Control Systems (ICSs) have faced a significant increase in malware threats since their integration with the Internet. However, existing machine learning-based malware identification methods are not specifically optimized for ICS environments, resulting in suboptimal identification performance. In this work, we propose an innovative method explicitly tailored for ICSs to enhance the performance of malware classifiers within these systems. Our method integrates the opcode2vec method based on preprocessed features with a conditional variational autoencoder–generative adversarial network, enabling classifiers based on Convolutional Neural Networks to identify malware more effectively and with some degree of increased stability and robustness. Extensive experiments validate the efficacy of our method, demonstrating the improved performance of malware classifiers in ICSs. Our method achieved an accuracy of 97.30%, precision of 92.34%, recall of 97.44%, and F1-score of 94.82%, which are the highest reported values in the experiment. Full article
(This article belongs to the Special Issue AI Technology for Cybersecurity and IoT Applications)
Show Figures

Figure 1

16 pages, 3374 KiB  
Article
P-CA: Privacy-Preserving Convolutional Autoencoder-Based Edge–Cloud Collaborative Computing for Human Behavior Recognition
by Haoda Wang, Chen Qiu, Chen Zhang, Jiantao Xu and Chunhua Su
Mathematics 2024, 12(16), 2587; https://doi.org/10.3390/math12162587 - 21 Aug 2024
Viewed by 488
Abstract
With the development of edge computing and deep learning, intelligent human behavior recognition has spawned extensive applications in smart worlds. However, current edge computing technology faces performance bottlenecks due to limited computing resources at the edge, which prevent deploying advanced deep neural networks. [...] Read more.
With the development of edge computing and deep learning, intelligent human behavior recognition has spawned extensive applications in smart worlds. However, current edge computing technology faces performance bottlenecks due to limited computing resources at the edge, which prevent deploying advanced deep neural networks. In addition, there is a risk of privacy leakage during interactions between the edge and the server. To tackle these problems, we propose an effective, privacy-preserving edge–cloud collaborative interaction scheme based on WiFi, named P-CA, for human behavior sensing. In our scheme, a convolutional autoencoder neural network is split into two parts. The shallow layers are deployed on the edge side for inference and privacy-preserving processing, while the deep layers are deployed on the server side to leverage its computing resources. Experimental results based on datasets collected from real testbeds demonstrate the effectiveness and considerable performance of the P-CA. The recognition accuracy can maintain 88%, although it could achieve about 94.8% without the mixing operation. In addition, the proposed P-CA achieves better recognition accuracy than two state-of-the-art methods, i.e., FedLoc and PPDFL, by 2.7% and 2.1%, respectively, while maintaining privacy. Full article
Show Figures

Figure 1

14 pages, 2930 KiB  
Article
Editable Co-Speech Gesture Synthesis Enhanced with Individual Representative Gestures
by Yihua Bao, Dongdong Weng and Nan Gao
Electronics 2024, 13(16), 3315; https://doi.org/10.3390/electronics13163315 - 21 Aug 2024
Viewed by 331
Abstract
Co-speech gesture synthesis is a challenging task due to the complexity and uncertainty between gestures and speech. Gestures that accompany speech (i.e., Co-Speech Gesture) are an essential part of natural and efficient embodied human communication, as they work in tandem with speech to [...] Read more.
Co-speech gesture synthesis is a challenging task due to the complexity and uncertainty between gestures and speech. Gestures that accompany speech (i.e., Co-Speech Gesture) are an essential part of natural and efficient embodied human communication, as they work in tandem with speech to convey information more effectively. Although data-driven approaches have improved gesture synthesis, existing deep learning-based methods use deterministic modeling which could lead to averaging out predicted gestures. Additionally, these methods lack control over gesture generation such as user editing of generated results. In this paper, we propose an editable gesture synthesis method based on a learned pose script, which disentangles gestures into individual representative and rhythmic gestures to produce high-quality, diverse and realistic poses. Specifically, we first detect the time of occurrence of gestures in video sequences and transform them into pose scripts. Regression models are then built to predict the pose scripts. Next, learned pose scripts are used for gesture synthesis, while rhythmic gestures are modeled using a variational auto-encoder and a one-dimensional convolutional network. Moreover, we introduce a large-scale Chinese co-speech gesture synthesis dataset with multimodal annotations for training and evaluation, which will be publicly available to facilitate future research. The proposed method allows for the re-editing of generated results by changing the pose scripts for applications such as interactive digital humans. The experimental results show that this method generates more quality, more diverse, and realistic gestures than other existing methods. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

17 pages, 5195 KiB  
Article
An Unsupervised Fault Warning Method Based on Hybrid Information Gain and a Convolutional Autoencoder for Steam Turbines
by Jinxing Zhai, Jing Ye and Yue Cao
Energies 2024, 17(16), 4098; https://doi.org/10.3390/en17164098 - 18 Aug 2024
Viewed by 517
Abstract
Renewable energy accommodation in power grids leads to frequent load changes in power plants. Sensitive turbine fault monitoring technology is critical to ensure the stable operation of the power system. Existing techniques do not use information sufficiently and are not sensitive to early [...] Read more.
Renewable energy accommodation in power grids leads to frequent load changes in power plants. Sensitive turbine fault monitoring technology is critical to ensure the stable operation of the power system. Existing techniques do not use information sufficiently and are not sensitive to early fault signs. To solve this problem, an unsupervised fault warning method based on hybrid information gain and a convolutional autoencoder (CAE) for turbine intermediate flux is proposed. A high-precision intermediate-stage flux prediction model is established using the CAE. The hybrid information gain calculation method is proposed to filter the features of multi-dimensional sensors. The Hampel filter for time series outlier detection is introduced to deal with factors such as sensor faults and noise. The proposed method achieves the highest fault diagnosis accuracy through experiments on real data compared to traditional methods. Real data experiments show that the proposed method relatively improves the diagnostic accuracy by an average of 2.12% compared to the gate recurrent unit networks, long short-term memory networks, and other traditional models. Meanwhile, the proposed hybrid information gain can effectively improve the detection accuracy of the traditional models, with a maximum of 1.89% relative accuracy improvement. The proposed method is noteworthy for its superiority and applicability. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

29 pages, 2253 KiB  
Article
Clustering Molecules at a Large Scale: Integrating Spectral Geometry with Deep Learning
by Ömer Akgüller, Mehmet Ali Balcı and Gabriela Cioca
Molecules 2024, 29(16), 3902; https://doi.org/10.3390/molecules29163902 - 17 Aug 2024
Viewed by 678
Abstract
This study conducts an in-depth analysis of clustering small molecules using spectral geometry and deep learning techniques. We applied a spectral geometric approach to convert molecular structures into triangulated meshes and used the Laplace–Beltrami operator to derive significant geometric features. By examining the [...] Read more.
This study conducts an in-depth analysis of clustering small molecules using spectral geometry and deep learning techniques. We applied a spectral geometric approach to convert molecular structures into triangulated meshes and used the Laplace–Beltrami operator to derive significant geometric features. By examining the eigenvectors of these operators, we captured the intrinsic geometric properties of the molecules, aiding their classification and clustering. The research utilized four deep learning methods: Deep Belief Network, Convolutional Autoencoder, Variational Autoencoder, and Adversarial Autoencoder, each paired with k-means clustering at different cluster sizes. Clustering quality was evaluated using the Calinski–Harabasz and Davies–Bouldin indices, Silhouette Score, and standard deviation. Nonparametric tests were used to assess the impact of topological descriptors on clustering outcomes. Our results show that the DBN + k-means combination is the most effective, particularly at lower cluster counts, demonstrating significant sensitivity to structural variations. This study highlights the potential of integrating spectral geometry with deep learning for precise and efficient molecular clustering. Full article
(This article belongs to the Special Issue Deep Learning in Molecular Science and Technology)
Show Figures

Figure 1

24 pages, 22182 KiB  
Article
Multi-Channel Multi-Scale Convolution Attention Variational Autoencoder (MCA-VAE): An Interpretable Anomaly Detection Algorithm Based on Variational Autoencoder
by Jingwen Liu, Yuchen Huang, Dizhi Wu, Yuchen Yang, Yanru Chen, Liangyin Chen and Yuanyuan Zhang
Sensors 2024, 24(16), 5316; https://doi.org/10.3390/s24165316 - 16 Aug 2024
Viewed by 374
Abstract
With the rapid development of industry, the risks factories face are increasing. Therefore, the anomaly detection algorithms deployed in factories need to have high accuracy, and they need to be able to promptly discover and locate the specific equipment causing the anomaly to [...] Read more.
With the rapid development of industry, the risks factories face are increasing. Therefore, the anomaly detection algorithms deployed in factories need to have high accuracy, and they need to be able to promptly discover and locate the specific equipment causing the anomaly to restore the regular operation of the abnormal equipment. However, the neural network models currently deployed in factories cannot effectively capture both temporal features within dimensions and relationship features between dimensions; some algorithms that consider both types of features lack interpretability. Therefore, we propose a high-precision, interpretable anomaly detection algorithm based on variational autoencoder (VAE). We use a multi-scale local weight-sharing convolutional neural network structure to fully extract the temporal features within each dimension of the multi-dimensional time series. Then, we model the features from various aspects through multiple attention heads, extracting the relationship features between dimensions. We map the attention output results to the latent space distribution of the VAE and propose an optimization method to improve the reconstruction performance of the VAE, detecting anomalies through reconstruction errors. Regarding anomaly interpretability, we utilize the VAE probability distribution characteristics, decompose the obtained joint probability density into conditional probabilities on each dimension, and calculate the anomaly score, which provides helpful value for technicians. Experimental results show that our algorithm performed best in terms of F1 score and AUC value. The AUC value for anomaly detection is 0.982, and the F1 score is 0.905, which is 4% higher than the best-performing baseline algorithm, Transformer with a Discriminator for Anomaly Detection (TDAD). It also provides accurate anomaly interpretation capability. Full article
Show Figures

Figure 1

25 pages, 8093 KiB  
Article
Enhanced Dual-Channel Model-Based with Improved Unet++ Network for Landslide Monitoring and Region Extraction in Remote Sensing Images
by Junxin Wang, Qintong Zhang, Hao Xie, Yingying Chen and Rui Sun
Remote Sens. 2024, 16(16), 2990; https://doi.org/10.3390/rs16162990 - 15 Aug 2024
Viewed by 486
Abstract
Landslide disasters pose significant threats to human life and property; therefore, accurate and effective detection and area extraction methods are crucial in environmental monitoring and disaster management. In our study, we address the critical tasks of landslide detection and area extraction in remote [...] Read more.
Landslide disasters pose significant threats to human life and property; therefore, accurate and effective detection and area extraction methods are crucial in environmental monitoring and disaster management. In our study, we address the critical tasks of landslide detection and area extraction in remote sensing images using advanced deep learning techniques. For landslide detection, we propose an enhanced dual-channel model that leverages EfficientNetB7 for feature extraction and incorporates spatial attention mechanisms (SAMs) to enhance important features. Additionally, we utilize a deep separable convolutional neural network with a Transformers module for feature extraction from digital elevation data (DEM). The extracted features are then fused using a variational autoencoder (VAE) to mine potential features and produce final classification results. Experimental results demonstrate impressive accuracy rates of 98.92% on the Bijie City landslide dataset and 94.70% on the Landslide4Sense dataset. For landslide area extraction, we enhance the traditional Unet++ architecture by incorporating Dilated Convolution to expand the receptive field and enable multi-scale feature extraction. We further integrate the Transformer and Convolutional Block Attention Module to enhance feature focus and introduce multi-task learning, including segmentation and edge detection tasks, to efficiently extract and refine landslide areas. Additionally, conditional random fields (CRFs) are applied for post-processing to refine segmentation boundaries. Comparative analysis demonstrates the superior performance of our proposed model over traditional segmentation models such as Unet, Fully Convolutional Network (FCN), and Segnet, as evidenced by improved metrics: IoU of 0.8631, Dice coefficient of 0.9265, overall accuracy (OA) of 91.53%, and Cohen’s kappa coefficient of 0.9185 on the Bijie City landslide dataset; and IoU of 0.8217, Dice coefficient of 0.9021, overall accuracy (OA) of 96.68%, and Cohen’s kappa coefficient of 0.8835 on the Landslide4Sense dataset. These findings highlight the effectiveness and robustness of our proposed methodologies in addressing critical challenges in landslide detection and area extraction tasks, with significant implications for enhancing disaster management and risk assessment efforts in remote sensing applications. Full article
Show Figures

Figure 1

22 pages, 18817 KiB  
Article
Innovative Noise Extraction and Denoising in Low-Dose CT Using a Supervised Deep Learning Framework
by Wei Zhang, Abderrahmane Salmi, Chifu Yang and Feng Jiang
Electronics 2024, 13(16), 3184; https://doi.org/10.3390/electronics13163184 - 12 Aug 2024
Viewed by 590
Abstract
Low-dose computed tomography (LDCT) imaging is a critical tool in medical diagnostics due to its reduced radiation exposure. However, this reduction often results in increased noise levels, compromising image quality and diagnostic accuracy. Despite advancements in denoising techniques, a robust method that effectively [...] Read more.
Low-dose computed tomography (LDCT) imaging is a critical tool in medical diagnostics due to its reduced radiation exposure. However, this reduction often results in increased noise levels, compromising image quality and diagnostic accuracy. Despite advancements in denoising techniques, a robust method that effectively balances noise reduction and detail preservation remains a significant need. Current denoising algorithms frequently fail to maintain the necessary balance between suppressing noise and preserving crucial diagnostic details. Addressing this gap, our study focuses on developing a deep learning-based denoising algorithm that enhances LDCT image quality without losing essential diagnostic information. Here we present a novel supervised learning-based LDCT denoising algorithm that employs innovative noise extraction and denoising techniques. Our method significantly enhances LDCT image quality by incorporating multiple attention mechanisms within a U-Net-like architecture. Our approach includes a noise extraction network designed to capture diverse noise patterns precisely. This network is integrated into a comprehensive denoising system consisting of a generator network, a discriminator network, and a feature extraction AutoEncoder network. The generator network removes noise and produces high-quality CT images, while the discriminator network differentiates real images from denoised ones, improving the realism of the outputs. The AutoEncoder network ensures the preservation of image details and diagnostic integrity. Our method improves the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) by 7.777 and 0.128 compared to LDCT, by 0.483 and 0.064 compared to residual encoder–decoder convolutional neural network (RED-CNN), by 4.101 and 0.017 compared to Wasserstein generative adversarial network–visual geometry group (WGAN-VGG), and by 3.895 and 0.011 compared to Wasserstein generative adversarial network–autoencoder (WGAN-AE). This demonstrates that our method has a significant advantage in enhancing the signal-to-noise ratio of images. Extensive experiments on multiple standard datasets demonstrate our method’s superior performance in noise suppression and image quality enhancement compared to existing techniques. Our findings significantly impact medical imaging, particularly improving LDCT scan diagnostic accuracy. The enhanced image clarity and detail preservation offered by our method open new avenues for clinical applications and research. This improvement in LDCT image quality promises substantial contributions to clinical diagnostics, disease detection, and treatment planning, ensuring high-quality diagnostic outcomes while minimizing patient radiation exposure. Full article
(This article belongs to the Special Issue Advanced Internet of Things Solutions and Technologies)
Show Figures

Figure 1

18 pages, 3650 KiB  
Article
Ensuring Topological Data-Structure Preservation under Autoencoder Compression Due to Latent Space Regularization in Gauss–Legendre Nodes
by Chethan Krishnamurthy Ramanaik, Anna Willmann, Juan-Esteban Suarez Cardona, Pia Hanfeld, Nico Hoffmann and Michael Hecht
Axioms 2024, 13(8), 535; https://doi.org/10.3390/axioms13080535 - 7 Aug 2024
Viewed by 622
Abstract
We formulate a data-independent latent space regularization constraint for general unsupervised autoencoders. The regularization relies on sampling the autoencoder Jacobian at Legendre nodes, which are the centers of the Gauss–Legendre quadrature. Revisiting this classic allows us to prove that regularized autoencoders ensure a [...] Read more.
We formulate a data-independent latent space regularization constraint for general unsupervised autoencoders. The regularization relies on sampling the autoencoder Jacobian at Legendre nodes, which are the centers of the Gauss–Legendre quadrature. Revisiting this classic allows us to prove that regularized autoencoders ensure a one-to-one re-embedding of the initial data manifold into its latent representation. Demonstrations show that previously proposed regularization strategies, such as contractive autoencoding, cause topological defects even in simple examples, as do convolutional-based (variational) autoencoders. In contrast, topological preservation is ensured by standard multilayer perceptron neural networks when regularized using our approach. This observation extends from the classic FashionMNIST dataset to (low-resolution) MRI brain scans, suggesting that reliable low-dimensional representations of complex high-dimensional datasets can be achieved using this regularization technique. Full article
(This article belongs to the Special Issue Differential Geometry and Its Application, 2nd edition)
Show Figures

Figure 1

24 pages, 22521 KiB  
Article
GCN-Based LSTM Autoencoder with Self-Attention for Bearing Fault Diagnosis
by Daehee Lee, Hyunseung Choo and Jongpil Jeong
Sensors 2024, 24(15), 4855; https://doi.org/10.3390/s24154855 - 26 Jul 2024
Viewed by 496
Abstract
The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturing processes. Bearings provide accurate and smooth movements [...] Read more.
The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturing processes. Bearings provide accurate and smooth movements and play essential roles in mechanical equipment with shafts. Given their importance, bearing failure diagnosis has been extensively studied. However, the imbalance in failure data and the complexity of time series data make diagnosis challenging. Conventional AI models (convolutional neural networks (CNNs), long short-term memory (LSTM), support vector machine (SVM), and extreme gradient boosting (XGBoost)) face limitations in diagnosing such failures. To address this problem, this paper proposes a bearing failure diagnosis model using a graph convolution network (GCN)-based LSTM autoencoder with self-attention. The model was trained on data extracted from the Case Western Reserve University (CWRU) dataset and a fault simulator testbed. The proposed model achieved 97.3% accuracy on the CWRU dataset and 99.9% accuracy on the fault simulator dataset. Full article
(This article belongs to the Special Issue Fault Diagnosis and Vibration Signal Processing in Rotor Systems)
Show Figures

Figure 1

Back to TopTop