Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,541)

Search Parameters:
Keywords = correction speed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2094 KiB  
Article
Monitoring the Vertical Variations in Chlorophyll-a Concentration in Lake Chaohu Using the Geostationary Ocean Color Imager
by Hanhan Li, Xiaoqi Wei, Zehui Huang, Haoze Liu, Ronghua Ma, Menghua Wang, Minqi Hu, Lide Jiang and Kun Xue
Remote Sens. 2024, 16(14), 2611; https://doi.org/10.3390/rs16142611 - 17 Jul 2024
Viewed by 196
Abstract
Due to the external environment and the buoyancy of cyanobacteria, the inhomogeneous vertical distribution of phytoplankton in eutrophic lakes affects remote sensing reflectance (Rrs) and the inversion of surface chlorophyll-a concentration (Chla). In this study, vertical profiles [...] Read more.
Due to the external environment and the buoyancy of cyanobacteria, the inhomogeneous vertical distribution of phytoplankton in eutrophic lakes affects remote sensing reflectance (Rrs) and the inversion of surface chlorophyll-a concentration (Chla). In this study, vertical profiles of Chla(z) (where z is the water depth) and field Rrs (Rrs_F) were collected and utilized to retrieve the vertical profiles of Chla in Lake Chaohu in China. Chla(z) was categorized into vertically uniform (Type 1: N = 166) and vertically non-uniform (Type 2: N = 58) types. Based on the validation of the atmospheric correction performance of the Geostationary Ocean Color Imager (GOCI), a Chla(z) inversion model was developed for Lake Chaohu from 2011 to 2020 using GOCI Rrs data (Rrs_G). (1) Five functions of non-uniform Chla(z) were compared, and the best result was found for Chla(z) = a·exp(b·z) + c (R2 = 0.98, RMSE = 38.15 μg/L). (2) A decision tree of Chla(z) was established with the alternative floating algae index (AFAIRrs), the fluorescence line height (FLH), and wind speed (WIN), where the overall accuracy was 89% and the kappa coefficient was 0.79. The Chla(z) inversion model for Type 1 was established using the empirical relationship between Chla (z = surface) and AFAIRrs (R2 = 0.58, RMSE = 10.17 μg/L). For Type 2, multivariate regression models were established to estimate the structural parameters of Chla(z) combined with Rrs_G and environmental parameters (R2 = 0.75, RMSE = 72.80 μg/L). (3) There are obvious spatial variations in Chla(z), especially from the water surface to a depth of 0.1 m; the largest diurnal variations were observed at 12:16 and 13:16 local time. The Chla(z) inversion method can determine Chla in different layers of each pixel, which is important for the scientific assessment of phytoplankton biomass and lake carbon and can provide vertical information for the short-term prediction of algal blooms (and the generation of corresponding warnings) in lake management. Full article
18 pages, 9010 KiB  
Article
Real-Time Precision in 3D Concrete Printing: Controlling Layer Morphology via Machine Vision and Learning Algorithms
by João M. Silva, Gabriel Wagner, Rafael Silva, António Morais, João Ribeiro, Sacha Mould, Bruno Figueiredo, João M. Nóbrega and Paulo J. S. Cruz
Inventions 2024, 9(4), 80; https://doi.org/10.3390/inventions9040080 - 16 Jul 2024
Viewed by 362
Abstract
3D concrete printing (3DCP) requires precise adjustments to parameters to ensure accurate and high-quality prints. However, despite technological advancements, manual intervention still plays a prominent role in this process, leading to errors and inconsistencies in the final printed part. To address this issue, [...] Read more.
3D concrete printing (3DCP) requires precise adjustments to parameters to ensure accurate and high-quality prints. However, despite technological advancements, manual intervention still plays a prominent role in this process, leading to errors and inconsistencies in the final printed part. To address this issue, machine learning vision models have been developed and utilized to analyze captured images and videos of the printing process, detecting defects and deviations. The data collected enable automatic adjustments to print settings, improving quality without the need for human intervention. This work first examines various techniques for real-time and offline corrections. It then introduces a specialized computer vision setup designed for real-time control in robotic 3DCP. Our main focus is on a specific aspect of machine learning (ML) within this system, called speed control, which regulates layer width by adjusting the robot motion speed or material flow rate. The proposed framework consists of three main elements: (1) a data acquisition and processing pipeline for extracting printing parameters and constructing a synthetic training dataset, (2) a real-time ML model for parameter optimization, and (3) a depth camera installed on a customized 3D-printed rotary mechanism for close-range monitoring of the printed layer. Full article
(This article belongs to the Special Issue Innovations in 3D Printing 3.0)
Show Figures

Figure 1

16 pages, 10165 KiB  
Article
Experimental Investigation of Film Thickness in Wastewater Airlift Pumps by an Image Processing Method
by Min Jiang, Zhineng Wang and Bingzheng Chen
Water 2024, 16(14), 2010; https://doi.org/10.3390/w16142010 - 15 Jul 2024
Viewed by 346
Abstract
The airlift pump is a key part of wastewater treatment and is employed as an innovative and feasible collection tool. However, as one of the key factors in the lifting capability of airlift pumps, film thickness in the gas–liquid two-phase flow operating in [...] Read more.
The airlift pump is a key part of wastewater treatment and is employed as an innovative and feasible collection tool. However, as one of the key factors in the lifting capability of airlift pumps, film thickness in the gas–liquid two-phase flow operating in pumps is still an unknown topic because it is difficult to measure. This paper proposes a visualization method for measuring film thickness and investigates the film thickness when operating under gas flow with a high rate in airlift pumps using experiments. Firstly, a simulation experiment platform was built, and the images of the film structure were acquired by a high-speed camera. Then, image-processing technology and an image distortion correction were proposed to extract the gas–liquid interface for studying the thickness of the film. The experimental results demonstrated that a large film thickness ranging from 0.15 D to 0.24 D was found in airlift pumps and that its film thickness kept a constant value, even under a high gas superficial velocity, maintaining a large output liquid flow from airlift pumps. As wastewater was carried by wastewater treatment, a larger film thickness of the annular film will benefit the high lifting rate of wastewater. The works in this paper offer valuable insights for the higher performance of working airlift pumps and wastewater treatment efficiency. Full article
(This article belongs to the Special Issue Wastewater Treatment Technologies: Theory, Methods and Applications)
Show Figures

Figure 1

30 pages, 2160 KiB  
Article
Isospin QCD as a Laboratory for Dense QCD
by Toru Kojo, Daiki Suenaga and Ryuji Chiba
Universe 2024, 10(7), 293; https://doi.org/10.3390/universe10070293 - 12 Jul 2024
Viewed by 238
Abstract
QCD with the isospin chemical potential μI is a useful laboratory to delineate the microphysics in dense QCD. To study the quark–hadron continuity, we use a quark–meson model that interpolates hadronic and quark matter physics at microscopic level. The equation of state [...] Read more.
QCD with the isospin chemical potential μI is a useful laboratory to delineate the microphysics in dense QCD. To study the quark–hadron continuity, we use a quark–meson model that interpolates hadronic and quark matter physics at microscopic level. The equation of state is dominated by mesons at low density but taken over by quarks at high density. We extend our previous studies with two flavors to the three-flavor case to study the impact of the strangeness, which may be brought by kaons (K+,K0)=(us¯,sd¯) and the UA(1) anomaly. In the normal phase, the excitation energies of kaons are reduced by μI in the same way as hyperons in nuclear matter at the finite baryon chemical potential. Once pions condense, kaon excitation energies increase as μI does. Moreover, strange quarks become more massive through the UA(1) coupling to the condensed pions. Hence, at zero and low temperature, the strange hadrons and quarks are highly suppressed. The previous findings in two-flavor models, sound speed peak, negative trace anomaly, gaps insensitive to μI, persist in our three-flavor model and remain consistent with the lattice results to μI 1 GeV. We discuss the non-perturbative power corrections and quark saturation effects as important ingredients to understand the crossover equations of state measured on the lattice. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Show Figures

Figure 1

20 pages, 6865 KiB  
Article
A Deep Reinforcement Learning-Based Intelligent Maneuvering Strategy for the High-Speed UAV Pursuit-Evasion Game
by Tian Yan, Can Liu, Mengjing Gao, Zijian Jiang and Tong Li
Drones 2024, 8(7), 309; https://doi.org/10.3390/drones8070309 - 9 Jul 2024
Viewed by 359
Abstract
Given the rapid advancements in kinetic pursuit technology, this paper introduces an innovative maneuvering strategy, denoted as LSRC-TD3, which integrates line-of-sight (LOS) angle rate correction with deep reinforcement learning (DRL) for high-speed unmanned aerial vehicle (UAV) pursuit–evasion (PE) game scenarios, with the aim [...] Read more.
Given the rapid advancements in kinetic pursuit technology, this paper introduces an innovative maneuvering strategy, denoted as LSRC-TD3, which integrates line-of-sight (LOS) angle rate correction with deep reinforcement learning (DRL) for high-speed unmanned aerial vehicle (UAV) pursuit–evasion (PE) game scenarios, with the aim of effectively evading high-speed and high-dynamic pursuers. In the challenging situations of the game, where both speed and maximum available overload are at a disadvantage, the playing field of UAVs is severely compressed, and the difficulty of evasion is significantly increased, placing higher demands on the strategy and timing of maneuvering to change orbit. While considering evasion, trajectory constraint, and energy consumption, we formulated the reward function by combining “terminal” and “process” rewards, as well as “strong” and “weak” incentive guidance to reduce pre-exploration difficulty and accelerate convergence of the game network. Additionally, this paper presents a correction factor for LOS angle rate into the double-delay deterministic gradient strategy (TD3), thereby enhancing the sensitivity of high-speed UAVs to changes in LOS rate, as well as the accuracy of evasion timing, which improves the effectiveness and adaptive capability of the intelligent maneuvering strategy. The Monte Carlo simulation results demonstrate that the proposed method achieves a high level of evasion performance—integrating energy optimization with the requisite miss distance for high-speed UAVs—and accomplishes efficient evasion under highly challenging PE game scenarios. Full article
Show Figures

Figure 1

19 pages, 11934 KiB  
Article
The Characteristics of Long-Wave Irregularities in High-Speed Railway Vertical Curves and Method for Mitigation
by Laiwei Jiang, Yangtenglong Li, Yuyuan Zhao and Minyi Cen
Sensors 2024, 24(13), 4403; https://doi.org/10.3390/s24134403 - 7 Jul 2024
Viewed by 386
Abstract
Track geometry measurements (TGMs) are a critical methodology for assessing the quality of track regularities and, thus, are essential for ensuring the safety and comfort of high-speed railway (HSR) operations. TGMs also serve as foundational datasets for engineering departments to devise daily maintenance [...] Read more.
Track geometry measurements (TGMs) are a critical methodology for assessing the quality of track regularities and, thus, are essential for ensuring the safety and comfort of high-speed railway (HSR) operations. TGMs also serve as foundational datasets for engineering departments to devise daily maintenance and repair strategies. During routine maintenance, S-shaped long-wave irregularities (SLIs) were found to be present in the vertical direction from track geometry cars (TGCs) at the beginning and end of a vertical curve (VC). In this paper, we conduct a comprehensive analysis and comparison of the characteristics of these SLIs and design a long-wave filter for simulating inertial measurement systems (IMSs). This simulation experiment conclusively demonstrates that SLIs are not attributed to track geometric deformation from the design reference. Instead, imperfections in the longitudinal profile’s design are what cause abrupt changes in the vehicle’s acceleration, resulting in the measurement output of SLIs. Expanding upon this foundation, an additional investigation concerning the quantitative relationship between SLIs and longitudinal profiles is pursued. Finally, a method that involves the addition of a third-degree parabolic transition curve (TDPTC) or a full-wave sinusoidal transition curve (FSTC) is proposed for a smooth transition between the slope and the circular curve, designed to eliminate the abrupt changes in vertical acceleration and to mitigate SLIs. The correctness and effectiveness of this method are validated through filtering simulation experiments. These experiments indicate that the proposed method not only eliminates abrupt changes in vertical acceleration, but also significantly mitigates SLIs. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

30 pages, 4245 KiB  
Article
Evolving High-Performance Computing Data Centers with Kubernetes, Performance Analysis, and Dynamic Workload Placement Based on Machine Learning Scheduling
by Vedran Dakić, Mario Kovač and Jurica Slovinac
Electronics 2024, 13(13), 2651; https://doi.org/10.3390/electronics13132651 - 5 Jul 2024
Viewed by 4212
Abstract
In the past twenty years, the IT industry has moved away from using physical servers for workload management to workloads consolidated via virtualization and, in the next iteration, further consolidated into containers. Later, container workloads based on Docker and Podman were orchestrated via [...] Read more.
In the past twenty years, the IT industry has moved away from using physical servers for workload management to workloads consolidated via virtualization and, in the next iteration, further consolidated into containers. Later, container workloads based on Docker and Podman were orchestrated via Kubernetes or OpenShift. On the other hand, high-performance computing (HPC) environments have been lagging in this process, as much work is still needed to figure out how to apply containerization platforms for HPC. Containers have many advantages, as they tend to have less overhead while providing flexibility, modularity, and maintenance benefits. This makes them well-suited for tasks requiring a lot of computing power that are latency- or bandwidth-sensitive. But they are complex to manage, and many daily operations are based on command-line procedures that take years to master. This paper proposes a different architecture based on seamless hardware integration and a user-friendly UI (User Interface). It also offers dynamic workload placement based on real-time performance analysis and prediction and Machine Learning-based scheduling. This solves a prevalent issue in Kubernetes: the suboptimal placement of workloads without needing individual workload schedulers, as they are challenging to write and require much time to debug and test properly. It also enables us to focus on one of the key HPC issues—energy efficiency. Furthermore, the application we developed that implements this architecture helps with the Kubernetes installation process, which is fully automated, no matter which hardware platform we use—x86, ARM, and soon, RISC-V. The results we achieved using this architecture and application are very promising in two areas—the speed of workload scheduling and workload placement on a correct node. This also enables us to focus on one of the key HPC issues—energy efficiency. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

24 pages, 18733 KiB  
Article
Comprehensive Comparison of Different Rotor Structures of Low-Speed Permanent Magnet Motor
by Guanghui Du, Hui Li, Ruojin Jiang, Wanning Li and Shengli Hou
Energies 2024, 17(13), 3300; https://doi.org/10.3390/en17133300 - 5 Jul 2024
Viewed by 320
Abstract
At present, most of the existing research on low-speed permanent magnet motors (LSPMMs) focuses on the surface-mounted type. There are few other rotor structures, and there is no comprehensive comparison of several widely used rotor structures. A comprehensive comparison of three different rotor [...] Read more.
At present, most of the existing research on low-speed permanent magnet motors (LSPMMs) focuses on the surface-mounted type. There are few other rotor structures, and there is no comprehensive comparison of several widely used rotor structures. A comprehensive comparison of three different rotor structures for low-speed mining motors is carried out, including electromagnetic and loss characteristics, permanent magnet consumption, temperature distribution, etc. Firstly, three rotor structures of a 500 kW, 60 rpm low-speed motor are introduced, and the initial design parameters are determined. Secondly, the influence of each rotor design parameter on the electromagnetic characteristics is analyzed. Next, the electromagnetic optimization of the three rotor structures is carried out, and the motor performance of the three rotor structure optimization schemes is compared, including electromagnetic performance, permanent magnet consumption, motor temperature distribution, etc. Finally, in order to verify the correctness of the theoretical analysis, a prototype is made and tested based on the above analysis. The results show that for the electromagnetic characteristics, when the motors with three different rotor structures meet the performance requirements, the no-load line back-EMF of the inset surface-mounted motor is the lowest, but the back-EMF harmonic content of the inset surface-mounted motor is the highest. The copper loss of the spoke-type motor is the smallest, the efficiency is the highest, and the power factor is the lowest. In addition, the surface-mounted motor has the least consumption of permanent magnets and is more economical. Regarding the temperature distribution, when the same heat dissipation system is used, the temperature of the spoke-type motor with minimum copper loss is the lowest. Full article
Show Figures

Figure 1

75 pages, 63359 KiB  
Review
Abrasive Waterjet Machining
by Mohamed Hashish
Materials 2024, 17(13), 3273; https://doi.org/10.3390/ma17133273 - 2 Jul 2024
Viewed by 770
Abstract
The abrasive waterjet machining process was introduced in the 1980s as a new cutting tool; the process has the ability to cut almost any material. Currently, the AWJ process is used in many world-class factories, producing parts for use in daily life. A [...] Read more.
The abrasive waterjet machining process was introduced in the 1980s as a new cutting tool; the process has the ability to cut almost any material. Currently, the AWJ process is used in many world-class factories, producing parts for use in daily life. A description of this process and its influencing parameters are first presented in this paper, along with process models for the AWJ tool itself and also for the jet–material interaction. The AWJ material removal process occurs through the high-velocity impact of abrasive particles, whose tips micromachine the material at the microscopic scale, with no thermal or mechanical adverse effects. The macro-characteristics of the cut surface, such as its taper, trailback, and waviness, are discussed, along with methods of improving the geometrical accuracy of the cut parts using these attributes. For example, dynamic angular compensation is used to correct for the taper and undercut in shape cutting. The surface finish is controlled by the cutting speed, hydraulic, and abrasive parameters using software and process models built into the controllers of CNC machines. In addition to shape cutting, edge trimming is presented, with a focus on the carbon fiber composites used in aircraft and automotive structures, where special AWJ tools and manipulators are used. Examples of the precision cutting of microelectronic and solar cell parts are discussed to describe the special techniques that are used, such as machine vision and vacuum-assist, which have been found to be essential to the integrity and accuracy of cut parts. The use of the AWJ machining process was extended to other applications, such as drilling, boring, milling, turning, and surface modification, which are presented in this paper as actual industrial applications. To demonstrate the versatility of the AWJ machining process, the data in this paper were selected to cover a wide range of materials, such as metal, glass, composites, and ceramics, and also a wide range of thicknesses, from 1 mm to 600 mm. The trends of Industry 4.0 and 5.0, AI, and IoT are also presented. Full article
Show Figures

Figure 1

23 pages, 21876 KiB  
Article
An Improved Ordinary State-Based Peridynamic Model for Granular Fractures in Cubic Crystals and the Effects of Crystal Orientations on Crack Propagation
by Yajing Gong, Yong Peng, Kui Wang, Song Yao and Shuguang Gong
Materials 2024, 17(13), 3196; https://doi.org/10.3390/ma17133196 - 30 Jun 2024
Viewed by 451
Abstract
Material anisotropy caused by crystal orientation is an essential factor affecting the mechanical and fracture properties of crystal materials. This paper proposes an improved ordinary state-based peridynamic (OSB-PD) model to study the effect of arbitrary crystal orientation on the granular fracture in cubic [...] Read more.
Material anisotropy caused by crystal orientation is an essential factor affecting the mechanical and fracture properties of crystal materials. This paper proposes an improved ordinary state-based peridynamic (OSB-PD) model to study the effect of arbitrary crystal orientation on the granular fracture in cubic crystals. Based on the periodicity of the equivalent elastic modulus of a cubic crystal, a periodic function regarding the crystal orientation is introduced into peridynamic material parameters, and a complete derivation process and expressions of correction factors are given. In addition, the derived parameters do not require additional coordinate transformation, simplifying the simulation process. Through convergence analysis, a regulating strategy to obtain the converged and accurate results of crack propagation paths is proposed. The effects of crystal orientations on crack initiation and propagation paths of single-crystal materials with different notch shapes (square, equilateral triangle, semi-circle) and sizes were studied. The results show that variations in crystal orientation can change the bifurcation, the number, and the propagation path direction of cracks. Under biaxial tensile loading, single crystals with semi-circular notches have the slowest crack initiation time and average propagation speed in most cases and are more resistant to fracture. Finally, the effects of grain anisotropy on dynamic fractures in polycrystalline materials under different grain boundary coefficients were studied. The decrease in grain anisotropy degree can reduce the microcracks in intergranular fracture and the crack propagation speed in transgranular fracture, respectively. Full article
Show Figures

Figure 1

21 pages, 8836 KiB  
Article
A Clustering Approach for Atmospheric Phase Error Correction in Ground-Based SAR Using Spatial Autocorrelation
by Yaolong Qi, Jiaxin Hui, Ting Hou, Pingping Huang, Weixian Tan and Wei Xu
Sensors 2024, 24(13), 4240; https://doi.org/10.3390/s24134240 - 29 Jun 2024
Viewed by 357
Abstract
When using ground-based synthetic aperture radar (GB-SAR) for monitoring open-pit mines, dynamic atmospheric conditions can interfere with the propagation speed of electromagnetic waves, resulting in atmospheric phase errors. These errors are particularly complex in rapidly changing weather conditions or steep terrain, significantly impacting [...] Read more.
When using ground-based synthetic aperture radar (GB-SAR) for monitoring open-pit mines, dynamic atmospheric conditions can interfere with the propagation speed of electromagnetic waves, resulting in atmospheric phase errors. These errors are particularly complex in rapidly changing weather conditions or steep terrain, significantly impacting monitoring accuracy. In such scenarios, traditional regression model-based atmospheric phase correction (APC) methods often become unsuitable. To address this issue, this paper proposes a clustering method based on the spatial autocorrelation function. First, the interferogram is uniformly divided into multiple blocks, and the phase consistency of each block is evaluated using the spatial autocorrelation function. Then, a region growing algorithm is employed to classify each block according to its phase pattern, followed by merging adjacent blocks based on statistical data. To verify the feasibility of the proposed method, both the traditional regression model-based method and the proposed method were applied to deformation monitoring of an open-pit mine in Northwest China. The experimental results show that for complex atmospheric phase scenarios, the proposed method significantly outperformed traditional methods, demonstrating its superiority. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

10 pages, 1117 KiB  
Communication
Efficient Direct Detection of Twin Single-Sideband Quadrature-Phase Shift Keying Using a Single Detector with Hierarchical Blind-Phase Search
by Hongbo Zhang, Jiao Liu, Guo-Wei Lu, Min Zhang, Feng Wan, Ju Cai, Weiwei Ling and Liming Hu
Photonics 2024, 11(7), 624; https://doi.org/10.3390/photonics11070624 - 29 Jun 2024
Viewed by 330
Abstract
We propose a novel reception scheme for twin single-sideband (twin-SSB) signals using just a single photodetector (PD), significantly reducing the system complexity and cost. To detect a twin-SSB with power-unbalanced quadrature-phase shift keying (QPSK) sidebands upon detection via a single PD at the [...] Read more.
We propose a novel reception scheme for twin single-sideband (twin-SSB) signals using just a single photodetector (PD), significantly reducing the system complexity and cost. To detect a twin-SSB with power-unbalanced quadrature-phase shift keying (QPSK) sidebands upon detection via a single PD at the receiver side, two QPSKs carried in two sidebands are coherently superposed and detected in a 16-ary quadrature amplitude modulation (16-QAM) format. This technique notably diminishes the linearity and effective number of bits required for the transmitter components in high-speed optical transmission systems. Moreover, a hierarchical blind-phase search (HBPS) algorithm is proposed to compensate for the imperfect phase rotation of QPSK signals during transmission. To demonstrate the effectiveness of our proposed method, we successfully conducted simulations of 112 Gb/s 16-QAM signal transmission over a 10 km standard single-mode fiber (SSMF), achieving bit error ratios (BERs) of 7.84×104, well below the 7% hard-decision forward error correction (HD-FEC) threshold of 3.8×103. In addition, the synthetic transmission scheme proposed in this paper is compared with the traditional 16-QAM signal transmission scheme, and the results show that the proposed scheme does not introduce a performance cost with the same received optical power (ROP) and transmission distance. Full article
(This article belongs to the Special Issue Photonics for Emerging Applications in Communication and Sensing II)
Show Figures

Figure 1

14 pages, 4650 KiB  
Communication
Fast Noise Level Estimation via the Similarity within and between Patches
by Jiaxin Wu, Meng Jia, Shiqian Wu and Shoulie Xie
Electronics 2024, 13(13), 2556; https://doi.org/10.3390/electronics13132556 - 28 Jun 2024
Viewed by 432
Abstract
Patch level-based noise level estimation (NLE) is often inaccurate and inefficient because of the harsh criteria required to select a small number of homogeneous patches. In this paper, a fast image NLE method based on a global search for similar pixels is proposed [...] Read more.
Patch level-based noise level estimation (NLE) is often inaccurate and inefficient because of the harsh criteria required to select a small number of homogeneous patches. In this paper, a fast image NLE method based on a global search for similar pixels is proposed to solve the above problem. Specifically, the mean square distance (MSD) is first expressed in the form of the standard deviation (std) and mean value of image patches. Afterward, the two values, std and mean, are calculated and stored in advance. Then, a 2D statistical histogram and summed area table are adopted to speed up the search for similar patches. Further, the most similar pixels are selected from similar patches to obtain an initial estimation. Finally, we correct the deviation of the initial estimation by re-injecting noise for secondary estimation. Experimental results show that the proposed method outperforms the state-of-the-art techniques in fast NLE and guided denoising. Full article
Show Figures

Figure 1

20 pages, 23334 KiB  
Article
Lime and Gypsum Rates Effects in New Soybean Areas in the Cerrado of Matopiba, Brazil
by Doze Batista de Oliveira, Julian Junio de Jesus Lacerda, Adenilson Pereira Cavalcante, Karmem Guimarães Bezerra, Allana Pereira Moura da Silva, Ana Caroline Guimarães Miranda, Tiago Pieta Rambo, Rafael Maschio, Hosana Aguiar Freitas de Andrade, Paula Muniz Costa, Carlos Antonio Ferreira de Sousa, José Oscar Lustosa de Oliveira Júnior, Edvaldo Sagrilo and Henrique Antunes de Souza
Agriculture 2024, 14(7), 1034; https://doi.org/10.3390/agriculture14071034 - 28 Jun 2024
Viewed by 378
Abstract
High rates of limestone have been increasingly utilized in newly converted areas for grain production in agricultural frontier regions to expedite the short-term correction of soil fertility, leading to compensatory yields. However, there is a lack of information about different doses of lime [...] Read more.
High rates of limestone have been increasingly utilized in newly converted areas for grain production in agricultural frontier regions to expedite the short-term correction of soil fertility, leading to compensatory yields. However, there is a lack of information about different doses of lime and gypsum for soils in the Cerrado of Matopiba, especially in the state of Piauí, Brazil. The aim of this study was to evaluate the effects of doses of lime and gypsum in newly converted areas for soybean production in the Cerrado of Southwest Piauí. The study was carried out in the 2019/2020 and 2020/2021 crop years, on yellow Oxisol soil, in a randomized block design and treatments following a 5 × 4 factorial: five lime rates (0, 5, 10, 15, and 20 t ha−1) and four gypsum rates (0, 1, 2 and 4 t ha−1), with four replicates. The standard lime and gypsum rates were 5 t ha−1 and 1 t ha−1, respectively. Soil fertility attributes (0.0–0.2, 0.2–0.4, and 0.4–0.6 m), nutritional status of plants, and soybean yield were measured. The increases in grain yield using a lime rate of 10 t ha−1 were 18% and 12% in the 2019/2020 and 2020/2021 crop years, respectively. High lime rates provide a reduction in the concentrations of P, K, and cationic micronutrients in soil, thereby reducing leaf contents of macro- and micronutrients in soybean plants. Concentrations of Ca, Mg, and S in subsurface layers were raised to proper levels, similar to those recommended for topsoil (0.0–0.2 m). The use of gypsum and lime in newly converted areas for soybean cultivation provides quick improvement in soil chemical conditions and reduction in acidity components. The application of 10 t ha−1 of lime improved the soil chemical environment in the Matopiba region the short time available for chemical reactions to occur, allowing soybean cultivation in newly converted areas of Cerrado into agriculture. Full article
Show Figures

Figure 1

24 pages, 10433 KiB  
Article
Glass Defect Detection with Improved Data Augmentation under Total Reflection Lighting
by Pengfei Ding and Liangen Yang
Appl. Sci. 2024, 14(13), 5658; https://doi.org/10.3390/app14135658 - 28 Jun 2024
Viewed by 339
Abstract
To address the technical challenge of identifying tiny defects, especially dust and point defects, on mobile phone flat glass, an automatic optical inspection system is established. The system investigates algorithms including imaging principles, target detection models, data augmentation, foreground segmentation, and image fusion. [...] Read more.
To address the technical challenge of identifying tiny defects, especially dust and point defects, on mobile phone flat glass, an automatic optical inspection system is established. The system investigates algorithms including imaging principles, target detection models, data augmentation, foreground segmentation, and image fusion. The system builds an automatic optical inspection platform to collect glass defect samples. It illuminates the glass samples with a combined total reflection–grazing light source, collects the defect sample data, segments the background and defects of the collected data, generates the defect mask, and extracts the complete defects of the cell phone flat glass. The system then seamlessly integrates the extracted defects with a flawless background using Poisson editing and outputs the location information of the defects and the label output to automatically generate the dataset. The deep learning network YOLOv5 works as the core algorithm framework, into which the Constructive Block Attention Module and the small target detection layer are specifically added to enhance the capability of the model to detect small defects. According to the experimental results, the combined lighting effectively improves the precision of detecting dust and bright spots. Additionally, with the adoption of novel data augmentation techniques, the enhanced YOLOv5 model is capable of effectively addressing the challenges posed by inefficient sample data and non-uniform distribution, thus mitigating network generalization issues. Furthermore, this data augmentation approach facilitates the rapid adaptation of the same detection tasks to diverse environmental scenarios, enabling the expedited and efficient deployment of the model across various industrial settings. The mean average precision (MAP) of the optimal model in the validation set reached 98.36%, 2.62% higher than that of the original YOLOv5. In addition, its false acceptance rate (FAR) is 1.27%, its false rejection rate (FRR) was 2.47%, its detection speed was 64 fps, and its correct detection rate in the validation set was 98.75%, which meets the current industrial detection requirements by and large. In this way, this paper achieved the automated inspection of mobile phone flat glass with high robustness, high precision, and a low false acceptance rate and false rejection rate, significantly reducing material losses in the factories and the likelihood of error occurrence in follow-on products. This method can be applied to the multi-scale and multi-type detection of glass defects. Full article
Show Figures

Figure 1

Back to TopTop