Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = coulomb stress change

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 18380 KiB  
Article
Examining Shear Behavior in Sandy Gravel Interfaces: The Role of Relative Density and Material Interactions
by Zhanhai Li, Jinxiao Li, Xiang Mao, Xinyu Xie, Jingze Zhu, Yang Zheng, Yuan Li, Zhifeng Ren, Zhaohui Sun and Jiankun Liu
Buildings 2025, 15(4), 546; https://doi.org/10.3390/buildings15040546 - 11 Feb 2025
Viewed by 388
Abstract
Current research on soil–structure interface properties mainly focuses on sand, clay, and silt, with little attention given to sandy gravel. In order to study the effects of relative density and interface materials on the shear behavior of the sandy gravel–structure interface, a series [...] Read more.
Current research on soil–structure interface properties mainly focuses on sand, clay, and silt, with little attention given to sandy gravel. In order to study the effects of relative density and interface materials on the shear behavior of the sandy gravel–structure interface, a series of large-scale direct shear tests on sandy gravel were carried out, and stress–strain relationships, volume change curves, and shear strengths were investigated. The results show that the angle of internal friction of sandy gravel increases linearly with relative density (R2 is 0.998), from 43.0° to 48.0° when the relative density increases from 0.3 to 0.9. The growth trend of cohesion increases, the shear behavior transitions from strain hardening to strain softening, and the shear strength increases linearly with the increase in relative density. The interfacial shear strengths and interface adhesion of sandy gravel with steel and concrete interfaces increase linearly with relative density, and the shear curves are strain hardening. Furthermore, the interface friction angle of concrete increases linearly with relative density (R2 is 0.985), from 30.2° to 34.2°, while the interface friction angle of the steel interface remains relatively constant around 28.9°. Finally, relative density was introduced into the Mohr–Coulomb shear strength formula, and the relationship equations of relative density and normal pressure with the shear strength and interfacial shear strength of sandy gravel were established. The validation results show that the error margin of the formula is within 4%. This formula can be used to evaluate changes in the mechanical properties of sandy gravel formations and the bearing capacity of pile foundations after they have been disturbed by factors such as construction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 8834 KiB  
Article
Mechanical Properties and Microscopic Fractal Characteristics of Lime-Treated Sandy Soil
by Hu Huang, Ruihang Li, Feihao Chen, Kelei Cao, Lixia Guo and Qingming Qiu
Fractal Fract. 2025, 9(2), 64; https://doi.org/10.3390/fractalfract9020064 - 22 Jan 2025
Viewed by 462
Abstract
In order to reveal the intrinsic mechanism of the mechanical properties of lime-treated sandy soil from a microscopic perspective, triaxial tests were conducted to analyze the macroscopic mechanical characteristics of sandy soil with different lime contents (0%, 5%, 8%, and 12%). The changes [...] Read more.
In order to reveal the intrinsic mechanism of the mechanical properties of lime-treated sandy soil from a microscopic perspective, triaxial tests were conducted to analyze the macroscopic mechanical characteristics of sandy soil with different lime contents (0%, 5%, 8%, and 12%). The changes in the microstructure of the lime-treated sandy soil were studied through scanning electron microscopy, energy-dispersive spectroscopy, and mercury intrusion tests, combined with fractal theory for quantitative characterization. The results indicate that the stress–strain curve of lime-treated sandy soil can be divided into four stages: linear elastic, non-linear, failure, and residual strength. With the increase in lime content, the peak stress and cohesion first increase and then decrease, while the internal friction angle first decreases and then increases, suggesting the presence of an optimal threshold for lime content between 5% and 12%. The failure mode transitions from diagonal shear failure to bulging failure, significantly enhancing stability; both the fitted Mohr–Coulomb and Drucker–Prager failure criteria effectively reflect the failure patterns of the specimens in principal stress space. The results based on the three fractal dimensions demonstrate that lime-treated sandy soil exhibits clear fractal characteristics, with the highest fractal dimension value at a lime content of 8%, corresponding to the highest overall strength. In addition, the fractal dimension shows a binomial relationship with pore characteristic parameters and shear strength parameters; it can effectively characterize the complexity of the microstructure and accurately predict changes in shear strength parameters. Full article
Show Figures

Figure 1

15 pages, 4307 KiB  
Article
Exploring Similarities and Differences in Water Level Response to Earthquakes in Two Neighboring Wells Using Numerical Simulation
by Shuangshuang Lan, Zhengtan Mao, Daian Chen and Hongbiao Gu
Water 2024, 16(23), 3484; https://doi.org/10.3390/w16233484 - 3 Dec 2024
Viewed by 727
Abstract
The seismic effect of well water level is complex and variable, and even if both wells are located in an area with similar tectonic and hydrogeological conditions, they exhibit slightly varying response characteristics to the same earthquake. Wells BB and RC, located about [...] Read more.
The seismic effect of well water level is complex and variable, and even if both wells are located in an area with similar tectonic and hydrogeological conditions, they exhibit slightly varying response characteristics to the same earthquake. Wells BB and RC, located about 100 km apart in the southwest of the Huayingshan fault zone in the Sichuan and Chongqing regions, exhibited obvious similarities and differences in their co-seismically response and sustained recovery characteristics during the Wenchuan Ms8.0 earthquake. Based on the dislocation theory and fluid–solid coupling theory, this study developed the seismic stress–strain model and the response model of pore pressure to seismic stress using Coulomb 3.3 and COMSOL 6.3, respectively. Simulation findings indicate that both BB and RC are located in the expansion zone, where their water levels show a co-seismic step-down. The amplitudes of BB and RC water levels are 83 cm and 81 cm, which are approximately 10 cm smaller than the actual values. The recovery times are 60 d for BB and 3 h for RC, closely resembling the actual values. Furthermore, the numerical results from different scenarios show that the recovery time of pore pressure is reduced by several times when the permeability of the confining layer overlying the observed aquifer increases by one order of magnitude or the thickness decreases, and this change is more sensitive to the permeability. It is clear that the confining condition has an important impact in the response time of sustained changes in well water levels, which may also help to explain the variations in the characteristics of sustained changes in wells BB and RC. Full article
Show Figures

Figure 1

15 pages, 7825 KiB  
Technical Note
D-InSAR-Based Analysis of Slip Distribution and Coulomb Stress Implications from the 2024 Mw 7.01 Wushi Earthquake
by Yurong Ding, Xin Liu, Xiaofeng Dai, Gaoying Yin, Yang Yang and Jinyun Guo
Remote Sens. 2024, 16(22), 4319; https://doi.org/10.3390/rs16224319 - 19 Nov 2024
Viewed by 674
Abstract
On 23 January 2024, an Mw 7.01 earthquake struck the Wushi County, Xinjiang Uygur Autonomous Region, China. The occurrence of this earthquake provides an opportunity to gain a deeper understanding of the rupture behavior and tectonic activity of the fault system in [...] Read more.
On 23 January 2024, an Mw 7.01 earthquake struck the Wushi County, Xinjiang Uygur Autonomous Region, China. The occurrence of this earthquake provides an opportunity to gain a deeper understanding of the rupture behavior and tectonic activity of the fault system in the Tianshan seismic belt. The coseismic deformation field of the Wushi earthquake was derived from Sentinel-1A ascending and descending track data using Differential Interferometric Synthetic Aperture Radar (D-InSAR) technology. The findings reveal a maximum line-of-sight (LOS) displacement of 81.1 cm in the uplift direction and 16 cm in subsidence. Source parameters were determined using an elastic half-space dislocation model. The slip distribution on the fault plane for the Mw 7.01 Wushi earthquake was further refined through a coseismic slip model, and Coulomb stress changes on nearby faults were calculated to evaluate seismic hazards in surrounding areas. Results indicate that the coseismic rupture in the Mw 7.01 Wushi earthquake sequence was mainly characterized by left-lateral strike-slip motion. The peak fault slip was 3.2 m, with a strike of 228.34° and a dip of 61.80°, concentrated primarily at depths between 5 and 25 km. The focal depth is 13 km. This is consistent with findings reported by organizations like the United States Geological Survey (USGS). The fault rupture extended to the surface, consistent with field investigations by the Xinjiang Uygur Autonomous Region Earthquake Bureau. Coulomb stress results suggest that several fault zones, including the Kuokesale, Dashixia, Piqiang North, Karaitike, southeastern sections of the Wensu, northwestern sections of the Tuoergan, and the Maidan-Sayram Fault Zone, are within regions of stress loading. These areas show an increased risk of future seismic activity and warrant close monitoring. Full article
Show Figures

Figure 1

12 pages, 4947 KiB  
Communication
Fault Kinematics of the 2022 Delingha Mw 5.6 and Mw 5.7 Earthquakes Revealed by InSAR Observations
by Xuening Wang, Donglin Wu, Lian Liu, Chenglong Li, Yongliang Bai and Xing Huang
Remote Sens. 2024, 16(22), 4237; https://doi.org/10.3390/rs16224237 - 14 Nov 2024
Viewed by 553
Abstract
Between January and April 2022, three moderate earthquakes (Mw 5.6 on 23 January, Mw 5.7 on 25 March, and Mw 5.1 on 15 April) struck the Hala Lake area of Delingha, Qinghai, China. Their seismogenic faults are poorly mapped, resulting in an unclear [...] Read more.
Between January and April 2022, three moderate earthquakes (Mw 5.6 on 23 January, Mw 5.7 on 25 March, and Mw 5.1 on 15 April) struck the Hala Lake area of Delingha, Qinghai, China. Their seismogenic faults are poorly mapped, resulting in an unclear understanding of their kinematics and regional seismotectonics. In this study, we employed Interferometric Synthetic Aperture Radar (InSAR) observations to reconstruct the coseismic deformation fields of the Mw 5.6 and 5.7 events. We then utilized a Bayesian inversion algorithm to delineate the fault geometries of the two events, and further resolved their coseismic fault slip. Our results reveal that these earthquakes ruptured different fault planes: the fault plane of the Mw 5.6 event dips westward at an angle of 60°, while the Mw 5.7 event ruptured as a nearly vertical fault with a dipping angle of 89°. The finite-fault slip inversions further demonstrate that the coseismic rupture of the Mw 5.6 event was predominantly concentrated between depths of 2 km and 7 km, with a maximum slip of 0.18 m; in contrast, the Mw 5.7 event was mainly concentrated between depths of 2 km and 9 km, with a maximum slip of 0.4 m. We calculated the coseismic Coulomb failure stress change (ΔCFS) induced by these two earthquakes. Integrating the analysis of ΔCFS and the spatial distribution of aftershocks, we argue that the sequence earthquakes were triggered by the proceeding earthquakes. Full article
(This article belongs to the Special Issue Synthetic Aperture Radar Interferometry Symposium 2024)
Show Figures

Figure 1

12 pages, 3406 KiB  
Article
Analysis of Changes in the Stress–Strain State and Permeability of a Terrigenous Reservoir Based on a Numerical Model of the Near-Well Zone with Casing and Perforation Channels
by Sergey Chernyshov, Sergey Popov, Xiaopu Wang, Vadim Derendyaev, Yongfei Yang and Huajie Liu
Appl. Sci. 2024, 14(21), 9993; https://doi.org/10.3390/app14219993 - 1 Nov 2024
Cited by 1 | Viewed by 734
Abstract
A finite element model, which includes reservoir rock, cement stone, casing, and perforation channels, was developed. The purpose of the study is to create a geomechanical model of the zone around the well, which includes support elements and perforation channels. This model will [...] Read more.
A finite element model, which includes reservoir rock, cement stone, casing, and perforation channels, was developed. The purpose of the study is to create a geomechanical model of the zone around the well, which includes support elements and perforation channels. This model will help predict changes in the productivity coefficient of a terrigenous reservoir and determine the most efficient mode of operation of a producing well. In order to exclude the stress concentration within the casing–cement stone and cement stone–rock, the numerical model applies contact elements. As a result, structural elements slip, while the stresses are redistributed accurately. The numerical simulation of a stress state in the near-well zone was carried out by using the developed model with differential pressure drawdown on the terrigenous reservoir, one of the oil fields in the Perm region. It is shown that the safety factor of the casing reaches roughly 3–4 units. The only exceptions are the upper and lower parts of the perforations, where this parameter is close to one unit. The safety factor of cement stone accounts for 2–3 units. However, parts with its lowest value (1.35) are also concentrated near the perforation channels. In order to analyze the change in permeability, the dependence of the safety factor on effective stresses was taken into account. Therefore, it was found that, in the upper and lower parts of perforations, the stresses decreased, while permeability rose by up to 20% of the initial value. An increase in differential pressure drawdown, on the contrary, can lead to a permeability reduction of 25%, especially in the lateral parts of the perforations. Areas of rock destruction under tensile and compressive forces were identified by using the Mohr–Coulomb criterion. It is estimated that with an increase in pressure drawdown, the areas of rock destruction under tensile force disappear, while the areas of rock destruction under compression increase. After further analysis, it was found that, with the maximum pressure drawdown of 12 MPa, the well productivity index can decrease by 15% due to the reservoir rock compaction. Full article
(This article belongs to the Topic Petroleum and Gas Engineering)
Show Figures

Figure 1

18 pages, 13746 KiB  
Article
Co-Seismic and Post-Seismic Slip Properties Associated with the 2024 M 7.5 Noto Peninsula, Japan Earthquake Determined by GNSS Observations
by Yunfei Xiang, Ming Qin, Yuanyuan Chen, Yin Xing and Yankai Bian
Remote Sens. 2024, 16(21), 4057; https://doi.org/10.3390/rs16214057 - 31 Oct 2024
Viewed by 1095
Abstract
Based on GNSS observations, the co-seismic and post-seismic slip of the 2024 Noto Peninsula earthquake and the spatio-temporal pattern of afterslip are investigated in this paper. The co-seismic slip is mainly distributed in the depth range of 2 to 15 km with the [...] Read more.
Based on GNSS observations, the co-seismic and post-seismic slip of the 2024 Noto Peninsula earthquake and the spatio-temporal pattern of afterslip are investigated in this paper. The co-seismic slip is mainly distributed in the depth range of 2 to 15 km with the maximum value of 5.94 m. Compared with the co-seismic rupture pattern, a shallow afterslip can be observed after the earthquake, and the afterslip patch is formed northeast of the epicenter. The maximum value of afterslip during the post-seismic 180 days is 1.13 m, which is situated at the longitude of 137.53°, latitude of 37.75°, and epth of 5.43 km. The spatio-temporal evolution of afterslip indicates that the fault activity has continued throughout the post-seismic 180 days, and the coverage and magnitude of afterslip have gradually increased. As time goes on, the fault activity tends to weaken, as evidenced by a decrease in slip rate. The daily images of afterslip demonstrate that the fault activity is particularly strong in the early time period following the earthquake. The maximum value of afterslip in the first week accounts for about 18% of that in the post-seismic 180 days, and the maximum slip rate reaches 0.043 m/day. In addition, the Coulomb stress analysis indicates that afterslip and most aftershocks appear in the positive Coulomb stress region, suggesting that co-seismic Coulomb stress changes may be the driving mechanism of afterslip and aftershocks. Full article
Show Figures

Figure 1

22 pages, 22428 KiB  
Article
Tectonic Inversion in Sediment-Hosted Copper Deposits: The Luangu Area, West Congo Basin, Republic of the Congo
by Hongyuan Zhang, Shenghong Cheng, Gongwen Wang, William F. Defliese and Zhenjiang Liu
Minerals 2024, 14(11), 1061; https://doi.org/10.3390/min14111061 - 22 Oct 2024
Viewed by 796
Abstract
Complex Neoproterozoic tectonic processes greatly affected the West Congo Basin, resulting in a series of dispersed copper deposits in the Niari Sub-basin, Republic of the Congo. Structural observation and analysis can help in understanding both the transportation pathways for copper accumulation and the [...] Read more.
Complex Neoproterozoic tectonic processes greatly affected the West Congo Basin, resulting in a series of dispersed copper deposits in the Niari Sub-basin, Republic of the Congo. Structural observation and analysis can help in understanding both the transportation pathways for copper accumulation and the detailed tectonic evolution processes. This study examines cases from four copper mine sites in the Luangu region of the Niari Basin, using a set of codes that consider the three regional tectonic regimes (extension, extrusion, and contraction) and three deformation criteria (maximum effective moment criterion, tensile fracture criterion, and the Coulomb criterion). By combining these two aspects, nine new codes are introduced: the extension maximum effective moment criterion (EM), extension tensile fracture criterion (ET), extension Coulomb criterion (EC), strike-slip maximum effective moment criterion (SM), strike-slip tensile fracture criterion (ST), strike-slip Coulomb criterion (SC), compression maximum effective moment criterion (CM), compression tensile fracture criterion (CT), and compression Coulomb criterion (CC). By analyzing and applying these codes to the selected sites, we show that the new codes can present a geometric coordination catering to an exhumation-related inversion process from extension, strike-slipping, to contraction. The existence of SM- and CM-related structures that occurred during regional extrusional and contractional events may indicate a deeper level of exhumation for layers related to copper deposits in the field sites. A new tectonic evolution model is presented, considering the hypothesis of vertical principal stress changes while the two horizontal principal stresses remain relatively constant during copper mineralization affected by the Western Congo Orogen. The application of the nine codes facilitates the determination of interrelations between different tectonic regimes. Full article
Show Figures

Figure 1

21 pages, 37380 KiB  
Article
A 3D Seismotectonic Model and the Spatiotemporal Relationship of Two Historical Large Earthquakes in the Linfen Basin, North China
by Zhaowu Guo, Renqi Lu, Zhujun Han, Guanshen Liu, Feng Shi, Jing Yang and Xiaobing Yan
Appl. Sci. 2024, 14(18), 8412; https://doi.org/10.3390/app14188412 - 19 Sep 2024
Viewed by 1113
Abstract
The Shanxi Graben is a transitional zone between the Ordos Block and North China Plain with complex structures and frequent earthquakes. Six earthquakes with M ≥ 7.0 have been recorded in the area, including the 1303 Hongtong M 8 and 1695 Linfen M [...] Read more.
The Shanxi Graben is a transitional zone between the Ordos Block and North China Plain with complex structures and frequent earthquakes. Six earthquakes with M ≥ 7.0 have been recorded in the area, including the 1303 Hongtong M 8 and 1695 Linfen M 7.8 earthquakes in the Linfen Basin. Research on these two large earthquakes, closely related in time and space, is lacking. Our objective was to use deep seismic reflection profiles and 3D velocity structure data from previous research, along with seismological observation results, to interpret the geological structure near the source of the two earthquakes. A 3D geometric model of the seismogenic fault was constructed, and the relationships among the deep and shallow structures, deep seismogenic environment, and two large earthquakes were explored. Differences in seismogenic environment between the southern and northern Linfen Basin were identified. The distribution of small earthquakes in the southern Linfen Basin was scattered, and the overall distribution was at depths <25 km. The small earthquakes in the northern part of the basin were dense and concentrated at depths of 25–35 km. Low-velocity layers at an approximate depth of 15–20 km in the southern basin led to differences in seismogenesis between the two regions. Based on the area of the 3D geometric model of the Huoshan Fault, the maximum magnitude of an earthquake caused by fault rupture is Mw 7.7, so the magnitude of the 1303 Hongtong earthquake might be overestimated. Numerical simulation results of Coulomb stress showed that the 1303 Hongtong earthquake had a stress-loading effect on the 1695 Linfen earthquake. The change in Coulomb rupture stress was 1.008–2.543 bar, which is higher than the generally considered earthquake trigger threshold (0.1 bar). We created a new 3D source model of large earthquakes in the Linfen Basin, Shanxi Province, providing a reference and typical cases for risk assessment of large earthquakes in different regions of the Shanxi Graben. Full article
(This article belongs to the Special Issue Paleoseismology and Disaster Prevention)
Show Figures

Figure 1

21 pages, 2127 KiB  
Review
Review on Constitutive Model for Simulation of Weak Rock Mass
by Ava Azadi and Moe Momayez
Geotechnics 2024, 4(3), 872-892; https://doi.org/10.3390/geotechnics4030045 - 7 Sep 2024
Cited by 5 | Viewed by 1131
Abstract
Understanding the behavior of weak rock masses is important for predicting the stability of structures under different loading conditions. Traditional models such as the generalized Hoek–Brown and Coulomb weak plane are widely used; however, they often fail to capture the nonlinear and irreversible [...] Read more.
Understanding the behavior of weak rock masses is important for predicting the stability of structures under different loading conditions. Traditional models such as the generalized Hoek–Brown and Coulomb weak plane are widely used; however, they often fail to capture the nonlinear and irreversible behavior of weak rock masses. This study offers a comprehensive overview of a critical analysis of constitutive models’ strengths and limitations for simulating weak rock masses. By comparing traditional and advanced novel approaches such as the strength degradation of rock (SDR) masses and continuous damage mechanics (CDM), this investigation shows that the new advanced methods significantly enhance the quality and accuracy of simulations. Moreover, SDR models address the limitations of classical plasticity models by incorporating nonlinear stress paths and irreversible stress changes, while CDM offers detailed insights into microstructural defect progression. These advancements allow for more accurate and practical predictions of long-term stability in geomechanical engineering tailored to specific requirements of each project. Full article
Show Figures

Figure 1

16 pages, 69780 KiB  
Article
The 2024 Mw 7.1 Wushi Earthquake: A Thrust and Strike-Slip Event Unveiling the Seismic Mechanisms of the South Tian Shan’s Thick-Skin Tectonics
by Jiangtao Qiu, Jianbao Sun and Lingyun Ji
Remote Sens. 2024, 16(16), 2937; https://doi.org/10.3390/rs16162937 - 10 Aug 2024
Cited by 2 | Viewed by 2189
Abstract
The southern margin of the South Tian Shan has drawn attention due to the intense compressional deformation and seismic activity associated with its thrust structures. However, the deformation and seismic activity in the thick-skinned thrust sheets of the root zones are minimal. The [...] Read more.
The southern margin of the South Tian Shan has drawn attention due to the intense compressional deformation and seismic activity associated with its thrust structures. However, the deformation and seismic activity in the thick-skinned thrust sheets of the root zones are minimal. The Mw 7.1 Wushi earthquake on 23 January 2024 serves as a window to reveal these unknown aspects of the seismic mechanisms in this structural setting. Using the Leveraging Interferometric Synthetic Aperture Radar (InSAR) technique, we unlock critical insights into the coseismic deformation fields. The seismogenic fault is an unmapped segment within the Maidan Fault system, exhibiting a strike ranging from 241° to 222°. It is characterized by a shallow dip angle of 62° and a deeper dip angle of 56°. Remarkably, the seismic rupture did not propagate to the Earth’s surface. The majority of slip distribution is concentrated within a range of 4 to 26 km along the strike, indicating that this earthquake was a thrust event on a blind fault within the thick-skinned tectonics of the South Tian Shan. Coulomb stress changes indicate that aftershocks primarily occur in the stress-loading region. Interestingly, some aftershocks are very shallow, causing clear surface deformation. Inversion results show that the fault planes of two aftershocks are located above the main shock fault plane at extremely shallow depths (<6 km). Combining geophysical profile data, we infer that ruptures in the deep-seated thick-skinned structures during the main shock triggered ruptures in the shallow thrust structures. This triggering relationship highlights the potential for combined ruptures of the main shocks and aftershocks in the deep-seated thick-skinned structures beneath the South Tian Shan to result in larger disasters than typical seismic events. Full article
(This article belongs to the Special Issue Monitoring Geohazard from Synthetic Aperture Radar Interferometry)
Show Figures

Figure 1

19 pages, 26264 KiB  
Article
Coseismic Slip and Downdip Afterslip Associated with the 2021 Maduo Earthquake Revealed by Sentinel-1 A/B Data
by Yang He, Zhen Tian, Lina Su, Hongwu Feng, Wenhua Yan and Yongqi Zhang
Appl. Sci. 2024, 14(15), 6771; https://doi.org/10.3390/app14156771 - 2 Aug 2024
Cited by 1 | Viewed by 963
Abstract
On 22 May 2021, an earthquake (98.3° E and 34.59° N) struck Maduo town in Qinghai province, occurring along a relatively obscure secondary fault within the block. We utilized 105 archived Sentinel-1A/B acquisitions to investigate the coseismic deformation and the evolution of postseismic [...] Read more.
On 22 May 2021, an earthquake (98.3° E and 34.59° N) struck Maduo town in Qinghai province, occurring along a relatively obscure secondary fault within the block. We utilized 105 archived Sentinel-1A/B acquisitions to investigate the coseismic deformation and the evolution of postseismic displacements in both the temporal and spatial domains, as well as the associated dynamic mechanisms of the 2021 Maduo earthquake. The interference fringes and coseismic deformation revealed that the primary feature of this event was the rupture along a left-lateral strike-slip fault. The released seismic moment was close to 1.88 × 1020 N·m, which is equivalent to an Mw 7.45 event. Simultaneously, the maximum coseismic slip reached approximately 4 m along the fault plane. The evolution of postseismic displacements in both the temporal and spatial domains over 450 days following the mainshock was further analyzed to explore the underlying physical mechanisms. Generally, the patterns of coseismic slip and afterslip were similar, although the postseismic displacements decayed rapidly over time. The modeled afterslip downdip of the coseismic rupture (at depths of 15–40 km) effectively explains the postseismic deformation, with a released moment estimated at 4.57 × 1019 N·m (corresponding to Mw 7.04). Additionally, we found that regions with high coseismic slip tend to exhibit weak seismicity, and that afterslip and aftershocks are likely driven by each other. Finally, we estimated the Coulomb Failure Stress changes (ΔCFS) triggered by both coseismic rupture and aseismic slip resulting from this event. The co- and postseismic ΔCFS show similar patterns, but the magnitude of the postseismic ΔCFS is much lower (0.01 MPa). We found that ΔCFS notably increased on the Yushu segment of the Garze-Yushu-Xianshuihe Fault (GYXF), as well as the Maqin–Maqu and Tuosuo Lake sections of the East Kunlun Fault (EKF). Therefore, we infer that these fault segments may have a higher potential seismic risk and should be carefully monitored in the future. Full article
(This article belongs to the Special Issue Novel Approaches for Earthquake and Land Subsidence Prediction)
Show Figures

Figure 1

16 pages, 15647 KiB  
Article
Numerical Simulation of the Influence of the Baihetan Reservoir Impoundment on Regional Seismicity
by Zitao Wang, Huai Zhang, Yicun Guo and Qiu Meng
Appl. Sci. 2024, 14(12), 5145; https://doi.org/10.3390/app14125145 - 13 Jun 2024
Viewed by 720
Abstract
The Baihetan Reservoir is built for hydropower in China. The rise of the reservoir water leads to a series of earthquakes in the surrounding area. This study proposes fully coupled equations of pore-viscoelasticity and a parallel partition mesh model to study the short- [...] Read more.
The Baihetan Reservoir is built for hydropower in China. The rise of the reservoir water leads to a series of earthquakes in the surrounding area. This study proposes fully coupled equations of pore-viscoelasticity and a parallel partition mesh model to study the short- and long-term effects of the Baihetan Reservoir and further calculate the changes in stress, pore pressure, and Coulomb failure stress with time on the major faults. Based on the calculation results, impoundment increases regional seismicity, which is consistent with the seismic catalog. The reservoir impoundment causes an increase in pore pressure in the crust, primarily enhancing Coulomb failure stress beneath the reservoir center. This effect extends to approximately 60 km in length and 20 km in width at a depth layer of 5–10 km. Seismicity varies greatly among different faults. Coulomb failure stress increases on the northern part of the Xiaojiang Fault and Zhaotong-Ludian Fault, and decreases on the southern part of the Xiaojiang Fault and Zemuhe Fault. The Coulomb failure stress is highly correlated with the number of earthquakes along the Xiaojiang Fault. The influence of the reservoir on the local seismicity is mainly limited to several months, and it has a slight effect later on. The focal depth of the induced earthquakes increases while the magnitude decreases. The earthquakes caused by the impoundment all have a small magnitude, and the Ms4.3 Qiaojia earthquake on 30 March 2022, was more likely a natural event. Full article
(This article belongs to the Special Issue Parallel Computing and Grid Computing: Technologies and Applications)
Show Figures

Figure 1

16 pages, 7844 KiB  
Article
InSAR- and PCA-Based Inversion Reveals the Surface Deformation and Earthquake Sequence in the Weiyuan-Rongxian Shale Gas Field
by Hongyu Huo, Wenbin Xu, Lei Xie, Kun Jiang and Yan Jiang
Remote Sens. 2024, 16(11), 1929; https://doi.org/10.3390/rs16111929 - 27 May 2024
Viewed by 999
Abstract
In recent years, the rapid expansion and development of the shale gas industry in the Sichuan Basin has coincided with a series of unexpected moderate-sized earthquakes. Given that the Sichuan Basin is situated within a stable interior block, the focal mechanism of the [...] Read more.
In recent years, the rapid expansion and development of the shale gas industry in the Sichuan Basin has coincided with a series of unexpected moderate-sized earthquakes. Given that the Sichuan Basin is situated within a stable interior block, the focal mechanism of the 2019 earthquake sequence (ML4.7, ML5.4, and ML5.2) in the Weiyuan-Rongxian area remains a subject of debate. In this study, we propose a joint InSAR- and PCA- based inversion method utilizing the distributed Mogi model to investigate the spatial-temporal characteristics of a gas reservoir and evaluate the induced Coulomb stress change. The surface deformation derived from Sentinel-1 data between 2015 and 2021 was consistent with the spatial distribution of production wells, and it correlated with the temporal changes in reservoir volume associated with the shale gas operating process. The Coulomb stress loading on the regional faults suggests that human activities associated with shale gas operation likely triggered the three moderate earthquakes. Furthermore, our results indicate Coulomb stress loadings of 10 kPa, 15 kPa, 5 kPa, 3 kPa, and 87 kPa on the Dongxingchang fault, Gaoqiao fault, Dayaokou fault, Niujingao fault, and Lijiachang fold, respectively. Consequently, fluid injection and extraction during shale gas development could be contributing to the elevated seismic activity in the Weiyuan-Rongxian area. Full article
Show Figures

Figure 1

18 pages, 7019 KiB  
Article
The Stress State before the MS 6.8 Luding Earthquake on 5 September 2022 in Sichuan, China: A Retrospective View Based on the b-Value
by Liyuan Peng, Feng Long, Min Zhao, Xiyang Ran, Di Wang, Rui Wang, Weiwei Wu and Chang He
Appl. Sci. 2024, 14(11), 4345; https://doi.org/10.3390/app14114345 - 21 May 2024
Viewed by 899
Abstract
On 5 September 2022 (BJT), Luding, located in southwestern Sichuan Province, China, experienced an MS 6.8 earthquake. This earthquake occurred within the historical rupture zone of the 1786 MS 7.75 event, part of the southern section of the Xianshui He Fault [...] Read more.
On 5 September 2022 (BJT), Luding, located in southwestern Sichuan Province, China, experienced an MS 6.8 earthquake. This earthquake occurred within the historical rupture zone of the 1786 MS 7.75 event, part of the southern section of the Xianshui He Fault belt. Given the average 155-year recurrence interval for strong earthquakes in this area, the 236 years since the last event made this earthquake somewhat expected. However, prior to this event, we did not detect any anomalies indicating low surface b-values, which are often indicative of a high-stress state in the source area before strong earthquakes, as highlighted by numerous studies. Our research focused on the northern section of the eastern boundary of the Sichuan–Yunnan sub-block, encompassing the Xianshui He, Anning He, Zemu He, and Daliang Shan fault belts. We meticulously located earthquakes of ML ≥ 1.5 from 2009 to May 2022. The catalog was divided into two periods: 2009–2014 and 2015–May 2022. Using an AIC-constraint method, we analyzed the changes in b-values (Δb) in the latter period compared to the former. Our findings revealed a significant abnormal Δb zone (Δb < −0.3), with a radius of approximately 50 km, when ΔAIC ≥ 2 was selected. Intriguingly, the epicenter of the recent Luding MS 6.8 earthquake fell within this abnormal zone. Furthermore, we calculated the b-value cross-section for the southern section of the Xianshui He fault belt using a directory of precisely located small earthquakes. This revealed that the location, scale, and shape of the abnormally low-b-value area corresponded with the large displacement co-seismic area of the main earthquake, affirming the b-value’s effectiveness in identifying asperities. The b-value’s temporal evolution prior to the mainshock exhibited a nearly decade-long continuous decrease, signifying a long-term stress-loading process akin to that observed before many strong earthquakes. The b-value anomalies observed from different profiles before the Luding earthquake underline the necessity of a comprehensive, multi-dimensional analysis of such anomalies. Finally, our analysis indicates that nine earthquakes with MS ≥ 6.5, including the Luding MS 6.8 event, have contributed to increased Coulomb Failure Stress change (ΔCFS) in the Daofu (DF)–Kangding (KD) section of the Xianshui He fault belt and the northern section of the Anning He fault belt south of Shimian (SM), with amplitudes surpassing the 0.01 MPa threshold. This suggests the potential for strong earthquakes in these zones. Full article
Show Figures

Figure 1

Back to TopTop