Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (992)

Search Parameters:
Keywords = damper

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5719 KiB  
Review
Shape Memory Alloys for Self-Centering Seismic Applications: A Review on Recent Advancements
by Girolamo Costanza, Samuel Mercuri, Ilaria Porroni and Maria Elisa Tata
Machines 2024, 12(9), 628; https://doi.org/10.3390/machines12090628 - 6 Sep 2024
Abstract
Shape memory alloys (SMAs) have emerged as promising materials for self-centering seismic applications due to their unique properties of superelasticity and shape memory effect. This review article examines recent advancements in the use of SMAs for self-centering seismic devices, focusing on their mechanical [...] Read more.
Shape memory alloys (SMAs) have emerged as promising materials for self-centering seismic applications due to their unique properties of superelasticity and shape memory effect. This review article examines recent advancements in the use of SMAs for self-centering seismic devices, focusing on their mechanical properties, damping characteristics and applications in structural engineering. The fundamental principles of SMAs are discussed, including their phase transformations and hysteretic behavior, and their performance under various loading conditions is analyzed. The article also explores different SMA-based damping systems, with a particular emphasis on innovative self-centering friction dampers. Furthermore, the influence of factors such as alloy composition, heat treatment and loading parameters on the seismic performance of SMA devices is investigated. The review concludes by highlighting the potential of SMAs in improving the seismic resilience of structures and identifying future research directions in this field. Full article
(This article belongs to the Section Material Processing Technology)
Show Figures

Figure 1

16 pages, 9810 KiB  
Article
Optimization Study of a Tuned Mass Damper for a Large Monopile Wind Turbine
by Zhimeng Luan, Peilin Dou, Yulin Chen, Huizhong Zhang and Yihang Ku
Energies 2024, 17(17), 4460; https://doi.org/10.3390/en17174460 - 5 Sep 2024
Abstract
Passively tuned mass dampers (TMDs) are known to effectively mitigate the vibration of wind turbines. However, existing literature predominantly examines their application in damping vibrations of the tower or platform, overlooking the potential benefits of installing TMDs on the turbine blades themselves. This [...] Read more.
Passively tuned mass dampers (TMDs) are known to effectively mitigate the vibration of wind turbines. However, existing literature predominantly examines their application in damping vibrations of the tower or platform, overlooking the potential benefits of installing TMDs on the turbine blades themselves. This study investigates the impact of wind and wave loads on TMD damping effectiveness and proposes a comprehensive damping strategy involving TMDs installed in both the nacelle and the blades. The design optimized the mass and stiffness of these TMDs to enhance their performance. Results indicate that, as wind speeds increased from 12 m/s to 24 m/s, the power spectral density at the tower’s natural frequency (0.22 Hz) more than doubled. Notably, TMDs exhibited robust vibration damping capabilities under high wind speeds. Specifically, at wind speeds of 24 m/s, TMDs reduced anterior–posterior and lateral displacement at the tower top by 61.2% and 166.8%, respectively, when two TMDs were combined. Conversely, the study found that TMDs did not significantly improve vibration damping at lower to moderate wind speeds. This research underscores the importance of optimizing TMDs for high wind conditions to ensure wind turbine stability and mitigate potential vibration-related risks effectively under varying environmental loads, including wind and waves. It offers valuable insights for the refined design and deployment of TMDs in wind energy applications. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

23 pages, 7874 KiB  
Review
Advancements in Semi-Active Automotive Suspension Systems with Magnetorheological Dampers: A Review
by Zunming Wang, Chi Liu, Xu Zheng, Liang Zhao and Yi Qiu
Appl. Sci. 2024, 14(17), 7866; https://doi.org/10.3390/app14177866 - 4 Sep 2024
Viewed by 142
Abstract
Magnetorheological (MR) dampers have significantly advanced automotive suspension systems by providing adaptable damping characteristics in response to varying road conditions and driving dynamics. This review offers a comprehensive analysis of the evolution and integration of MR dampers in semi-active suspension systems. Semi-active systems [...] Read more.
Magnetorheological (MR) dampers have significantly advanced automotive suspension systems by providing adaptable damping characteristics in response to varying road conditions and driving dynamics. This review offers a comprehensive analysis of the evolution and integration of MR dampers in semi-active suspension systems. Semi-active systems present an optimal balance by integrating the simplicity inherent in passive systems with the adaptability characteristic of active systems, while mitigating the substantial energy consumption. The fundamental principles of MR technology, the design of MR dampers, and the diverse control strategies employed to optimize suspension performance were examined. The classical, modern, and intelligent control methods, along with the related research, were emphasized. Based on the above-mentioned methods, the benefits of MR semi-active control were highlighted, while the challenges and future research directions in MR damper technology were also addressed. Through a synthesis of recent research findings and practical applications, this paper underscores the advancements in MR-based semi-active suspension systems and their promising prospects in the automotive industry. Full article
Show Figures

Figure 1

23 pages, 5618 KiB  
Article
The Fluid Behavior of a Non-Orifice TLCD under Harmonic Excitation: From Experiments to Analytical Solution
by Sefer Arda Serbes, Tahsin Engin, Muaz Kemerli, Egemen Kayrakoğlu and Ahmet Aydın
Buildings 2024, 14(9), 2782; https://doi.org/10.3390/buildings14092782 - 4 Sep 2024
Viewed by 128
Abstract
Tuned liquid column damper (TLCD) is a well-known liquid damper designed to absorb the vibration of structures used in many applications, such as high-story buildings, wind turbines, and offshore platforms, requiring an accurate mathematical determination of the liquid level to model the TLCD [...] Read more.
Tuned liquid column damper (TLCD) is a well-known liquid damper designed to absorb the vibration of structures used in many applications, such as high-story buildings, wind turbines, and offshore platforms, requiring an accurate mathematical determination of the liquid level to model the TLCD structure system motion. The mathematical model of a TLCD is a nonlinear ordinary differential equation, unlike the structure, due to the term containing a viscous damping coefficient, and cannot be solved analytically. In this study, the fluid behavior of a TLCD without an orifice, directly connected to a shaking table under harmonic excitation, was investigated experimentally and a new linearization coefficient was proposed to be used in the mathematical model. First, the nonlinear mathematical model was transformed to a nondimensional form to better analyze the parameter relations, focusing on the steady-state amplitude of the liquid level during the harmonic excitation. The experimental data were then processed using the fourth-order Runge–Kutta method, and a correlation to calculate the viscous damping coefficient was proposed in the dimensionless form. Accordingly, a novel empirical model was proposed for the dimensionless steady-state amplitude of the liquid level using this correlation. Finally, with the help of the proposed correlation and the empirical model, an original linearization coefficient was introduced which does not need experimental data. The nonlinear mathematical model was linearized by using the developed linearization coefficient and solved analytically using the Laplace transform method. The study presents a generalized method for the analytical determination of the liquid level in a non-orifice TLCD under harmonic excitation, using a correlation and an empirical model proposed for the first time in this study, providing a novel and simple solution to be used in the examination of various TLCD structure systems. Full article
(This article belongs to the Special Issue Structural Vibration Control Research)
Show Figures

Figure 1

22 pages, 4494 KiB  
Article
Analysis of Inherent Frequencies to Mitigate Liquid Sloshing in Overhead Double-Baffle Damper
by Ashraf Ali, Mohamed Ismail, Madhan Kumar, Daniel Breaz and Kadhavoor R. Karthikeyan
Mathematics 2024, 12(17), 2727; https://doi.org/10.3390/math12172727 - 31 Aug 2024
Viewed by 391
Abstract
A disco-rectangular volume-fraction-of-fluid (VOF) model tank of a prismatic size is considered here for investigating the severe effect of overhead baffles made of three different materials, nylon, polyamide, and polylactic acid. In this work, the overdamped, undamped, and nominal damped motion of baffles [...] Read more.
A disco-rectangular volume-fraction-of-fluid (VOF) model tank of a prismatic size is considered here for investigating the severe effect of overhead baffles made of three different materials, nylon, polyamide, and polylactic acid. In this work, the overdamped, undamped, and nominal damped motion of baffles and their effect are studied. In this research, the behaviour of different material baffles based on the sloshing effect and natural frequency of each baffle excited in damped, undamped, and overdamped cases is studied. VOF modelling is carried out in moving Yeoh model mesh with fluid–structure interaction between the water models for various baffle plates. The results of the water volume distribution and baffle displacement operating between a sloshing time of 0 and 1 s are recorded. Also, a strong investigation is carried out for the water volume suspended on overhead baffles by three different material selections. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics with Applications)
Show Figures

Figure 1

12 pages, 2276 KiB  
Article
A Nonlinear Damper with Dynamic Load and an Elastic Slit Membrane: Modeling and Interaction Analysis
by Mostafa Sadeghian, Kestutis Pilkauskas, Paulius Palevicius, Jurate Ragulskiene, Giedrius Janusas, Viktoras Dorosevas and Arvydas Palevicius
Appl. Sci. 2024, 14(17), 7663; https://doi.org/10.3390/app14177663 - 30 Aug 2024
Viewed by 326
Abstract
This article presents research into the feasibility of applying a nonlinear damper of a new conceptual structure. The key component of the damper is a circular membrane with slits that can move in a cylinder filled with viscous fluid. When an external load [...] Read more.
This article presents research into the feasibility of applying a nonlinear damper of a new conceptual structure. The key component of the damper is a circular membrane with slits that can move in a cylinder filled with viscous fluid. When an external load is applied to the damper, the membrane deforms, opening the slits. The flow of viscous fluid through the slits generates a damping force. The phenomenological model of the damper is based on the notion that the slit membrane moves according to the fundamental axisymmetric vibration mode of a circular membrane. The slit membrane blocks the entire radius of the pipe in the state of equilibrium when all slits are closed. As the membrane moves, the opening area of the slits varies depending on its deformation. This gives a nonlinear damping characteristic. The damping constant depends on the input displacement and velocity, which is the reason for the nonlinearity of the damping characteristic. From the phenomenological model, the nonlinear characteristic of the drag force is obtained. The performance of the damper is simulated using a mass–spring–damper system. Two cases of harmonic excitation and impulse excitation are analyzed. The results show that, using the slit membrane damper, the suppression of dynamic loads is more effective compared to a conventional linear damper. Full article
(This article belongs to the Special Issue Recent Advances in Complex Mechanical System)
Show Figures

Figure 1

28 pages, 11410 KiB  
Article
A Study on the Amplification Effect and Optimum Control of the Intermediate Column–Lever Negative Stiffness Viscous Damper
by Qiang Zhou, Wen Pan, Xiang Lan and Zuwei Li
Appl. Sci. 2024, 14(17), 7627; https://doi.org/10.3390/app14177627 - 29 Aug 2024
Viewed by 499
Abstract
Currently, the energy dissipation efficiency of intermediate column dampers is extremely low, and traditional lever amplification damping systems occupy a large space in buildings. Aiming at solving these problems, this paper puts forward a new intermediate column–lever negative stiffness viscous damper (CLNVD), which [...] Read more.
Currently, the energy dissipation efficiency of intermediate column dampers is extremely low, and traditional lever amplification damping systems occupy a large space in buildings. Aiming at solving these problems, this paper puts forward a new intermediate column–lever negative stiffness viscous damper (CLNVD), which has the characteristics of small impact on building space and significant amplification of the damper displacement. The CLNVD consists of the following four parts: the viscous damper, the negative stiffness device, the lever, and the intermediate column. This paper introduces the displacement amplification coefficient (fd) to assess the CLNVD’s displacement amplification effect and introduces the energy dissipation coefficient (fE) to assess the CLNVD’s energy dissipation effect. The expressions for fd and fE are derived according to the geometric magnification coefficient and effective displacement factor. Moreover, the impacts of multiple factors including the CLNVD’s position, the lever’s amplification coefficient, the bending line stiffness of beam, the negative stiffness, the damping coefficient, the damping index, and the inter-story displacement on the CLNVD’s fd and fE are elaborated. The analysis results reveal the following: when the CLNVD is located in the middle of the span, the fd and fE of the CLNVD will be maximized, and fE will increase first and then decrease as the beam’s bending line stiffness increases. Meanwhile, the amplification capability of the CLNVD increases as the lever’s amplification coefficient χ rises. When the negative stiffness does not exist, there exists an optimum lever’s amplification coefficient χ that maximizes fE. When the combination of damping coefficient c and index α satisfies a specific relationship, fE of the CLNVD reaches its largest value. When the negative stiffness and the loss stiffness of VD are within the region proposed in this paper, the CLNVD will achieve a higher fd and avoid providing significant negative stiffness. Subsequently, this paper proposes an optimization design method of the CLNVD. Finally, the amplification effect of CLNVD as well as the effectiveness of its optimization design method are verified through examples. In the case study, the CLNVD offers a larger damping ratio under the circumstance of fortification earthquakes. Under fortification and rare earthquakes, the inter-story displacement of Scheme 1 has been decreased by half roughly. According to the above-mentioned results, the CLNVD provides a brand-new approach for designers in the seismic design of buildings. Furthermore, this paper will provide beneficial reference for the damping design of other amplification devices equipped with negative stiffness dampers. Full article
Show Figures

Figure 1

20 pages, 6889 KiB  
Article
Sliding Mode Control for Semi-Active Suspension System Based on Enhanced African Vultures Optimization Algorithm
by Yuyi Li, Zhe Fang, Kai Zhu and Wangshui Yu
World Electr. Veh. J. 2024, 15(8), 380; https://doi.org/10.3390/wevj15080380 - 21 Aug 2024
Viewed by 440
Abstract
To improve the ride comfort and driving stability of automobiles, an optimal sliding mode control (OSMC) strategy based on the enhanced African vultures optimization algorithm (EAVOA) is proposed. Firstly, the structure and operating principle of a semi-active suspension system (SASS) with a magnetorheological [...] Read more.
To improve the ride comfort and driving stability of automobiles, an optimal sliding mode control (OSMC) strategy based on the enhanced African vultures optimization algorithm (EAVOA) is proposed. Firstly, the structure and operating principle of a semi-active suspension system (SASS) with a magnetorheological damper (MRD) is comprehensively introduced. Secondly, the OSMC is designed based on a quarter-vehicle suspension model with two degrees of freedom (DOF) to meet the Hurwitz stability theory. Simultaneously, the EAVOA is employed to optimize the control coefficients of the sliding mode surface and the control law parameters. Finally, the EAVOA-OSMC control strategy is utilized to construct the simulation model in MATLAB/Simulink (R2018b), providing a comprehensive analysis for passive suspension systems (PSSs) and suspensions with SMC control. The simulation results demonstrate that the EAVOA-OSMC control strategy outperforms SMC controllers, offering a better control performance in real application. Full article
(This article belongs to the Special Issue Design Theory, Method and Control of Intelligent and Safe Vehicles)
Show Figures

Figure 1

25 pages, 28703 KiB  
Article
Seismic Performance of Bridge Expansion Joints with and without Viscous Dampers during the 6 February 2023 Kahramanmaraş Earthquakes
by Alemdar Bayraktar, Yavuzhan Taş, Mehmet Akköse, Emin Hökelekli, Carlos E. Ventura and Tony Y. Yang
Buildings 2024, 14(8), 2538; https://doi.org/10.3390/buildings14082538 - 18 Aug 2024
Viewed by 476
Abstract
Expansion joints render bridge structures highly vulnerable to damage during strong ground motions. Failures of expansion joints triggered by earthquakes not only jeopardize the post-earthquake serviceability of the bridge but also have a significant impact on the bridgeâs overall seismic performance. Despite extensive [...] Read more.
Expansion joints render bridge structures highly vulnerable to damage during strong ground motions. Failures of expansion joints triggered by earthquakes not only jeopardize the post-earthquake serviceability of the bridge but also have a significant impact on the bridgeâs overall seismic performance. Despite extensive investigations and efforts to integrate these measures into design specifications aimed at mitigating the consequences of relative movements between adjacent bridge spans, major earthquakes have still revealed instances of damage related to expansion joints. On 6 February 2023, strong earthquake sequences occurred in KahramanmaraÅ, Turkey, with magnitudes of M7.7 and M7.6. The fault lines and epicenters of these shallow earthquakes were near the city and town centers and caused severe structural damage to buildings and infrastructures. There are approximately 1000 railway and highway bridges in the earthquake-affected region. Although both highway and railway bridges have generally performed well, some bridges experienced structural damage during the KahramanmaraÅ earthquakes. A large number of damage on the bridges is due to pounding and opening relative movements in expansion joints. This paper presents a comprehensive seismic evaluation of expansion joint failure mechanisms on bridges without viscous dampers during the 2023 KahramanmaraÅ earthquake sequences and an in-depth investigation into the seismic performance of bridge expansion joints equipped with viscous dampers and shock transmission unit devices are implemented utilizing the strong ground motion data collected throughout the earthquake sequences. It can be stated that the near-fault induced significant directivity and fling effects, resulting in notable velocity pulses and permanent tectonic deformations, and that these effects contributed to the failures of expansion joints, viscous damper devices, pot bearings, and shear keys. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 4821 KiB  
Article
The Stiffness and Damping Characteristics of a Rubber-Based SMA Composite Shock Absorber with a Hyper-Elastic SMA-Constitutive Model Considering the Loading Rate
by Yizhe Huang, Huizhen Zhang, Qiyuan Fan, Qibai Huang, Lefei Shao, Xin Zhan and Jun Wang
Materials 2024, 17(16), 4076; https://doi.org/10.3390/ma17164076 - 16 Aug 2024
Viewed by 476
Abstract
Shock absorbers are essential in enhancing vehicle ride comfort by mitigating vibrations. However, traditional rubber shock absorbers are constrained by their fixed stiffness and damping properties, limiting their adaptability to varying loads and thus affecting the ride comfort, especially under extreme road conditions. [...] Read more.
Shock absorbers are essential in enhancing vehicle ride comfort by mitigating vibrations. However, traditional rubber shock absorbers are constrained by their fixed stiffness and damping properties, limiting their adaptability to varying loads and thus affecting the ride comfort, especially under extreme road conditions. Shape Memory Alloys (SMAs), known for their intelligent material properties, offer a unique solution by adjusting stiffness and damping in response to temperature changes or strain rates, making them ideal for advanced vibration control applications. This study builds upon the Auricchio constitutive model to propose an enhanced SMA hyper-elastic constitutive model that accounts for different loading rates. This new model elucidates the impact of loading rates on the stiffness and damping characteristics of SMAs. Additionally, we introduce an innovative circular rubber-based SMA composite vibration reduction structure. Through a parameterized model and finite element simulation, we comprehensively analyze the stiffness and damping properties of the composite damper under various loading rates and harmonic excitations. Our findings suggest a novel approach to improving the vehicle ride comfort, offering significant potential for engineering applications and practical value. Full article
Show Figures

Figure 1

15 pages, 7044 KiB  
Article
Fast Detection of the Stick–Slip Phenomenon Associated with Wheel-to-Rail Sliding Using Acceleration Sensors: An Experimental Study
by Gabriel Popa, Mihail Andrei, Emil Tudor, Ionuț Vasile and George Ilie
Technologies 2024, 12(8), 134; https://doi.org/10.3390/technologies12080134 - 13 Aug 2024
Viewed by 735
Abstract
The stick–slip phenomenon, the initial stage when the traction wheel starts sliding on the rail, is a critical operation that needs to be detected quickly to control the traction drive. In this study, we have developed an experimental model that uses acceleration sensors [...] Read more.
The stick–slip phenomenon, the initial stage when the traction wheel starts sliding on the rail, is a critical operation that needs to be detected quickly to control the traction drive. In this study, we have developed an experimental model that uses acceleration sensors mounted on the wheel to evaluate the amplitude of the stick–slip phenomena. These sensors can alert the driver or assist the traction control unit when a stick–slip occurs. We propose a method to reduce the amplitude of the stick–slip phenomenon using special hydraulic dampers and viscous dampers mounted on the tractive axles of the locomotive to prevent slipping during acceleration. This practical solution, validated through numerical simulation, can be readily implemented in railway systems. The paper’s findings can be used to select the necessary sensors and corresponding vibration dampers. By implementing these sliding reducers, a locomotive can significantly improve traction, apply more torque to the wheel, and increase the load of a carrier train, instilling confidence in the efficiency of the proposed solution. Full article
(This article belongs to the Special Issue Advanced Autonomous Systems and Artificial Intelligence Stage)
Show Figures

Figure 1

34 pages, 7755 KiB  
Article
Reinforcement Learning for Semi-Active Vertical Dynamics Control with Real-World Tests
by Johannes Ultsch, Andreas Pfeiffer, Julian Ruggaber, Tobias Kamp, Jonathan Brembeck and Jakub Tobolář
Appl. Sci. 2024, 14(16), 7066; https://doi.org/10.3390/app14167066 - 12 Aug 2024
Viewed by 726
Abstract
In vertical vehicle dynamics control, semi-active dampers are used to enhance ride comfort and road-holding with only minor additional energy expenses. However, a complex control problem arises from the combined effects of (1) the constrained semi-active damper characteristic, (2) the opposing control objectives [...] Read more.
In vertical vehicle dynamics control, semi-active dampers are used to enhance ride comfort and road-holding with only minor additional energy expenses. However, a complex control problem arises from the combined effects of (1) the constrained semi-active damper characteristic, (2) the opposing control objectives of improving ride comfort and road-holding, and (3) the additionally coupled vertical dynamic system. This work presents the application of Reinforcement Learning to the vertical dynamics control problem of a real street vehicle to address these issues. We discuss the entire Reinforcement Learning-based controller design process, which started with deriving a sufficiently accurate training model representing the vehicle behavior. The obtained model was then used to train a Reinforcement Learning agent, which offered improved vehicle ride qualities. After that, we verified the trained agent in a full-vehicle simulation setup before the agent was deployed in the real vehicle. Quantitative and qualitative real-world tests highlight the increased performance of the trained agent in comparison to a benchmark controller. Tests on a real-world four-post test rig showed that the trained RL-based controller was able to outperform an offline-optimized benchmark controller on road-like excitations, improving the comfort criterion by about 2.5% and the road-holding criterion by about 2.0% on average. Full article
(This article belongs to the Special Issue Trends and Prospects in Vehicle System Dynamics)
Show Figures

Figure 1

20 pages, 6981 KiB  
Article
Study of Resonance between Bogie Hunting and Carbody Mode via Field Measurements and Dynamic Simulation
by Sheng Yang, Fansong Li, Pingbo Wu and Jijun Gong
Sensors 2024, 24(16), 5194; https://doi.org/10.3390/s24165194 - 11 Aug 2024
Viewed by 578
Abstract
By addressing the phenomenon of carbody abnormal vibrations in the field, the acceleration of the carbody and bogie was measured using accelerometers, and the diamond mode of the carbody was identified. The equivalent conicity of the wheelset and the acceleration at the frame [...] Read more.
By addressing the phenomenon of carbody abnormal vibrations in the field, the acceleration of the carbody and bogie was measured using accelerometers, and the diamond mode of the carbody was identified. The equivalent conicity of the wheelset and the acceleration at the frame end indicated that the shaking of the carbody was caused by bogie hunting. In the SIMPACK simulation, the acceleration frequency and amplitude at the frame end and midsection of the side beam were calculated. The lateral deformation amplitude of the side beam in the finite element model was extracted, and a modal shape function for the diamond-shaped mode was established. By utilizing the modal vibration equation, the modal generalized forces of the carbody were computed, revealing that, during carbody shaking, the yaw damper force contributed significantly among the forces of the secondary suspension, with the phase difference between the front and rear bogies approaching 180°. This insight offers a novel perspective for subsequent active control strategies. Subsequently, these modal generalized forces were applied as external excitation to a coupled vibration model encompassing both the carbody and transformer. Aiming to reduce the acceleration amplitude at the side beam, the transformer was treated as a dynamic vibration absorber, allowing for the optimization of its lateral suspension parameters. As a result, the lateral and vertical acceleration amplitudes at the side beam were concurrently reduced, with the maximum decrease reaching 58.5%, significantly enhancing the ride comfort. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 2748 KiB  
Article
A New Variable-Stiffness Body Weight Support System Driven by Two Active Closed-Loop Controlled Drives
by Xiao Li, Jizheng Zhong, Songyang An and Yizhe Huang
Actuators 2024, 13(8), 304; https://doi.org/10.3390/act13080304 - 8 Aug 2024
Viewed by 552
Abstract
Body weight support (BWS) systems are crucial in gait rehabilitation for individuals incapacitated due to injuries or medical conditions. Traditional BWS systems typically employ either static mass–rope or dynamic mass–spring–damper configurations, which can result in inadequate support stiffness, thereby leading to compromised gait [...] Read more.
Body weight support (BWS) systems are crucial in gait rehabilitation for individuals incapacitated due to injuries or medical conditions. Traditional BWS systems typically employ either static mass–rope or dynamic mass–spring–damper configurations, which can result in inadequate support stiffness, thereby leading to compromised gait training. Additionally, these systems often lack the flexibility for easy customization of stiffness, which is vital for personalized rehabilitation treatments. A novel BWS system with online variable stiffness is introduced in this study. This system incorporates a drive mechanism governed by admittance control that dynamically adjusts the stiffness by modulating the tension of a rope wrapped around a drum. An automated control algorithm is integrated to manage a smart anti-gravity dynamic suspension system, which ensures consistent and precise weight unloading adjustments throughout rehabilitation sessions. Walking experiments were performed to evaluate the displacement and load variations within the suspension ropes, thereby validating the variable-stiffness capability of the system. The findings suggest that the online variable-stiffness BWS system can reliably alter the stiffness levels and that it exhibits robust performance, significantly enhancing the effectiveness of gait rehabilitation. The newly developed BWS system represents a significant advancement in personalized gait rehabilitation, offering real-time stiffness adjustments and ongoing weight support customization. It ensures dependable control and robust operation, marking a significant step forward in tailored therapeutic interventions for gait rehabilitation. Full article
(This article belongs to the Special Issue Actuators and Robotic Devices for Rehabilitation and Assistance)
Show Figures

Figure 1

33 pages, 3365 KiB  
Article
Proposal of a Design Procedure for Steel Frames with Viscoelastic Dampers
by Melina Bosco, Andrea Floridia and Pier Paolo Rossi
Appl. Sci. 2024, 14(16), 6937; https://doi.org/10.3390/app14166937 - 8 Aug 2024
Viewed by 414
Abstract
The effectiveness of viscoelastic dampers as passive control devices has been demonstrated in the past through both experimental and numerical investigations. Based on the Modal Strain Energy Method, some authors have also proposed design procedures to size the viscoelastic dampers assuming a fist-mode [...] Read more.
The effectiveness of viscoelastic dampers as passive control devices has been demonstrated in the past through both experimental and numerical investigations. Based on the Modal Strain Energy Method, some authors have also proposed design procedures to size the viscoelastic dampers assuming a fist-mode behavior of the structure. However, even if the damped structure is governed by the first mode of vibration, viscoelastic dampers are sensitive to the frequencies of the upper modes and transmit unexpected internal forces to braces. This paper aims to develop a simple design procedure for steel moment-resisting frames equipped with viscoelastic dampers considering the effects of the higher modes of vibrations on the internal forces transmitted from the dampers to the braces. In the perspective of a designer-oriented study, the seismic demand is evaluated through simple analytical tools, such as the lateral force method or the response spectrum analysis. The design procedure is applied to a set of steel moment-resisting frames considering two levels of seismic hazard and two types of soil. Finally, the effectiveness of the proposed procedure is verified through nonlinear dynamic analysis. Based on the results, it is found that the proposed design procedure ensures the control of the story drift below prefixed limits and to predict accurately the internal forces that arise in the braces. Full article
(This article belongs to the Special Issue Performance-Based Seismic Design)
Show Figures

Figure 1

Back to TopTop