Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = dark channel subnet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2815 KiB  
Article
A Cloud Detection Method Using Convolutional Neural Network Based on Gabor Transform and Attention Mechanism with Dark Channel Subnet for Remote Sensing Image
by Jing Zhang, Qin Zhou, Jun Wu, Yuchen Wang, Hui Wang, Yunsong Li, Yuzhou Chai and Yang Liu
Remote Sens. 2020, 12(19), 3261; https://doi.org/10.3390/rs12193261 - 7 Oct 2020
Cited by 21 | Viewed by 4119
Abstract
Cloud detection, as a crucial step, has always been a hot topic in the field of optical remote sensing image processing. In this paper, we propose a deep learning cloud detection Network that is based on the Gabor transform and Attention modules with [...] Read more.
Cloud detection, as a crucial step, has always been a hot topic in the field of optical remote sensing image processing. In this paper, we propose a deep learning cloud detection Network that is based on the Gabor transform and Attention modules with Dark channel subnet (NGAD). This network is based on the encoder-decoder framework. The information on texture is an important feature that is often used in traditional cloud detection methods. The NGAD enhances the attention of the network towards important texture features in the remote sensing images through the proposed Gabor feature extraction module. The channel attention module that is based on the larger scale features and spatial attention module that is based on the dark channel subnet have been introduced in NGAD. The channel attention module highlights the important information in a feature map from the channel dimensions, weakens the useless information, and helps the network to filter this information. A dark channel subnet with spatial attention module has been designed in order to further reduce the influence of the redundant information in the extracted features. By introducing a “dark channel”, the information in the feature map is reconstructed from the spatial dimension. The NGAD is validated while using the Gaofen-1 WFV imagery in four spectral bands. The experimental results show that the overall accuracy of NGAD reaches 97.42% and the false alarm rate reaches 2.22%. The efficiency of cloud detection using NGAD exceeds the state-of-art image segmentation network model and remote sensing image cloud detection model. Full article
Show Figures

Graphical abstract

Back to TopTop