Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = detection of trace HCHO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 13148 KiB  
Article
Fiducial Reference Measurement for Greenhouse Gases (FRM4GHG)
by Mahesh Kumar Sha, Martine De Mazière, Justus Notholt, Thomas Blumenstock, Pieter Bogaert, Pepijn Cardoen, Huilin Chen, Filip Desmet, Omaira García, David W. T. Griffith, Frank Hase, Pauli Heikkinen, Benedikt Herkommer, Christian Hermans, Nicholas Jones, Rigel Kivi, Nicolas Kumps, Bavo Langerock, Neil A. Macleod, Jamal Makkor, Winfried Markert, Christof Petri, Qiansi Tu, Corinne Vigouroux, Damien Weidmann and Minqiang Zhouadd Show full author list remove Hide full author list
Remote Sens. 2024, 16(18), 3525; https://doi.org/10.3390/rs16183525 - 23 Sep 2024
Viewed by 379
Abstract
The Total Carbon Column Observing Network (TCCON) and the Infrared Working Group of the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) are two ground-based networks that provide the retrieved concentrations of up to 30 atmospheric trace gases, using solar absorption spectrometry. [...] Read more.
The Total Carbon Column Observing Network (TCCON) and the Infrared Working Group of the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) are two ground-based networks that provide the retrieved concentrations of up to 30 atmospheric trace gases, using solar absorption spectrometry. Both networks provide reference measurements for the validation of satellites and models. TCCON concentrates on long-lived greenhouse gases (GHGs) for carbon cycle studies and validation. The number of sites is limited, and the geographical coverage is uneven, covering mainly Europe and the USA. A better distribution of stations is desired to improve the representativeness of the data for various atmospheric conditions and surface conditions and to cover a large latitudinal distribution. The two successive Fiducial Reference Measurements for Greenhouse Gases European Space Agency projects (FRM4GHG and FRM4GHG2) aim at the assessment of several low-cost portable instruments for precise measurements of GHGs to complement the existing ground-based sites. Several types of low spectral resolution Fourier transform infrared (FTIR) spectrometers manufactured by Bruker, namely an EM27/SUN, a Vertex70, a fiber-coupled IRCube, and a Laser Heterodyne spectro-Radiometer (LHR) developed by UK Rutherford Appleton Laboratory are the participating instruments to achieve the Fiducial Reference Measurements (FRMs) status. Intensive side-by-side measurements were performed using all four instruments next to the Bruker IFS 125HR high spectral resolution FTIR, performing measurements in the NIR (TCCON configuration) and MIR (NDACC configuration) spectral range. The remote sensing measurements were complemented by AirCore launches, which provided in situ vertical profiles of target gases traceable to the World Meteorological Organization (WMO) reference scale. The results of the intercomparisons are shown and discussed. Except for the EM27/SUN, all other instruments, including the reference TCCON spectrometer, needed modifications during the campaign period. The EM27/SUN and the Vertex70 provided stable and precise measurements of the target gases during the campaign with quantified small biases. As part of the FRM4GHG project, one EM27/SUN is now used as a travel standard for the verification of column-integrated GHG measurements. The extension of the Vertex70 to the MIR provides the opportunity to retrieve additional concentrations of N2O, CH4, HCHO, and OCS. These MIR data products are comparable to the retrieval results from the high-resolution IFS 125HR spectrometer as operated by the NDACC. Our studies show the potential for such types of spectrometers to be used as a travel standard for the MIR species. An enclosure system with a compact solar tracker and meteorological station has been developed to house the low spectral resolution portable FTIR systems for performing solar absorption measurements. This helps the spectrometers to be mobile and enables autonomous operation, which will help to complement the TCCON and NDACC networks by extending the observational capabilities at new sites for the observation of GHGs and additional air quality gases. The development of the retrieval software allows comparable processing of the Vertex70 type of spectra as the EM27/SUN ones, therefore bringing them under the umbrella of the COllaborative Carbon Column Observing Network (COCCON). A self-assessment following the CEOS-FRM Maturity Matrix shows that the COCCON is able to provide GHG data products of FRM quality and can be used for either short-term campaigns or long-term measurements to complement the high-resolution FTIR networks. Full article
Show Figures

Figure 1

19 pages, 5880 KiB  
Article
A Mid-Infrared Quantum Cascade Laser Ultra-Sensitive Trace Formaldehyde Detection System Based on Improved Dual-Incidence Multipass Gas Cell
by Tao Wu, Renzhi Hu, Pinhua Xie, Lijie Zhang, Changjin Hu, Xiaoyan Liu, Jiawei Wang, Liujun Zhong, Jinzhao Tong and Wenqing Liu
Sensors 2023, 23(12), 5643; https://doi.org/10.3390/s23125643 - 16 Jun 2023
Cited by 1 | Viewed by 1620
Abstract
Formaldehyde (HCHO) is a tracer of volatile organic compounds (VOCs), and its concentration has gradually decreased with the reduction in VOC emissions in recent years, which puts forward higher requirements for the detection of trace HCHO. Therefore, a quantum cascade laser (QCL) with [...] Read more.
Formaldehyde (HCHO) is a tracer of volatile organic compounds (VOCs), and its concentration has gradually decreased with the reduction in VOC emissions in recent years, which puts forward higher requirements for the detection of trace HCHO. Therefore, a quantum cascade laser (QCL) with a central excitation wavelength of 5.68 μm was applied to detect the trace HCHO under an effective absorption optical pathlength of 67 m. An improved, dual-incidence multi-pass cell, with a simple structure and easy adjustment, was designed to further improve the absorption optical pathlength of the gas. The instrument detection sensitivity of 28 pptv (1σ) was achieved within a 40 s response time. The experimental results show that the developed HCHO detection system is almost unaffected by the cross interference of common atmospheric gases and the change of ambient humidity. Additionally, the instrument was successfully deployed in a field campaign, and it delivered results that correlated well with those of a commercial instrument based on continuous wave cavity ring-down spectroscopy (R2 = 0.967), which indicates that the instrument has a good ability to monitor ambient trace HCHO in unattended continuous operation for long periods of time. Full article
(This article belongs to the Special Issue Important Achievements in Optical Measurements in China 2022–2023)
Show Figures

Figure 1

11 pages, 2750 KiB  
Article
IoT Electrochemical Sensor with Integrated Ni(OH)2–Ni Nanowires for Detecting Formaldehyde in Tap Water
by Špela Trafela, Abhilash Krishnamurthy, Kristina Žagar Soderžnik, Urška Kavčič, Igor Karlovits, Beno Klopčič, Sašo Šturm and Kristina Žužek
Sensors 2023, 23(10), 4676; https://doi.org/10.3390/s23104676 - 11 May 2023
Cited by 2 | Viewed by 1849
Abstract
Simple, low-cost methods for sensing volatile organic compounds that leave no trace and do not have a detrimental effect on the environment are able to protect communities from the impacts of contaminants in water supplies. This paper reports the development of a portable, [...] Read more.
Simple, low-cost methods for sensing volatile organic compounds that leave no trace and do not have a detrimental effect on the environment are able to protect communities from the impacts of contaminants in water supplies. This paper reports the development of a portable, autonomous, Internet of Things (IoT) electrochemical sensor for detecting formaldehyde in tap water. The sensor is assembled from electronics, i.e., a custom-designed sensor platform and developed HCHO detection system based on Ni(OH)2–Ni nanowires (NWs) and synthetic-paper-based, screen-printed electrodes (pSPEs). The sensor platform, consisting of the IoT technology, a Wi-Fi communication system, and a miniaturized potentiostat can be easily connected to the Ni(OH)2–Ni NWs and pSPEs via a three-terminal electrode. The custom-made sensor, which has a detection capability of 0.8 µM/24 ppb, was tested for an amperometric determination of the HCHO in deionized (DI) and tap-water-based alkaline electrolytes. This promising concept of an electrochemical IoT sensor that is easy to operate, rapid, and affordable (it is considerably cheaper than any lab-grade potentiostat) could lead to the straightforward detection of HCHO in tap water. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

8 pages, 3435 KiB  
Communication
QCM-Based HCl Gas Sensors Using Spin-Coated Aminated Polystyrene Colloids
by Young-Jae Jin and Jinyoung Park
Polymers 2020, 12(7), 1591; https://doi.org/10.3390/polym12071591 - 17 Jul 2020
Cited by 7 | Viewed by 3857
Abstract
Hydrogen chloride (HCl) gas is highly toxic to the human body. Therefore, HCl gas detection sensors should be installed at workplaces where trace HCl gas is continuously generated. Even though various polymer-based HCl-gas-sensing films have been developed, simpler and novel sensing platforms should [...] Read more.
Hydrogen chloride (HCl) gas is highly toxic to the human body. Therefore, HCl gas detection sensors should be installed at workplaces where trace HCl gas is continuously generated. Even though various polymer-based HCl-gas-sensing films have been developed, simpler and novel sensing platforms should be developed to ensure the cost effectiveness and reusability of the sensing platforms. Therefore, we present a simple strategy to fabricate reusable HCl-gas-sensing platforms using aminated polystyrene (a-PS) colloids and investigate their sensitivity, reusability, and selectivity using a quartz crystal microbalance (QCM). The reusable a-PS(1.0) colloidal sensor with a high degree of amination (DA) exhibited the highest binding capacity (102 μg/mg) based on the frequency change (Δf) during the HCl gas adsorption process. Further, its sensitivity and limit of detection (LOD) were 3.88 Hz/ppm and 5.002 ppm, respectively, at a low HCl gas concentration (<10 ppm). In addition, the sensitivity coefficient (k*) of the a-PS(1.0) colloid sensor with respect to HCHO was higher than that in the case of HF because of the lower binding affinity of the former with the a-PS(1.0) colloids. Based on these results, highly sensitive and reproducible a-PS colloids could be reused as an HCl-gas-sensing platform and used as an HCl sorbent in a gas column filter. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

Back to TopTop