Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,849)

Search Parameters:
Keywords = diode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1613 KiB  
Article
The Photoionization Processes of Deep Trap Levels in n-GaN Films Grown by MOVPE Technique on Ammono-GaN Substrates
by Piotr Kruszewski, Konrad Sakowski, Krzysztof Gościński and Paweł Prystawko
Appl. Sci. 2024, 14(19), 8785; https://doi.org/10.3390/app14198785 (registering DOI) - 29 Sep 2024
Abstract
In this paper, we present various theoretical models that accurately approximate the spectral density of the optical capture cross-section (σe0) obtained through the analysis of photo-capacitance transients using the deep-level optical spectroscopy (DLOS) technique applied to semi-transparent Ni/Au Schottky [...] Read more.
In this paper, we present various theoretical models that accurately approximate the spectral density of the optical capture cross-section (σe0) obtained through the analysis of photo-capacitance transients using the deep-level optical spectroscopy (DLOS) technique applied to semi-transparent Ni/Au Schottky barrier diodes (SBDs) fabricated on n-GaN films. The theoretical models examined in this study involved a variety of approaches, from the Lucovsky model that assumes no lattice relaxation to more sophisticated models such as the Chantre–Bois and the Pässler models, which consider the electron–phonon coupling phenomenon. By applying theoretical models to the experimentally determined data, we were able to estimate the photoionization (E0), trap level position (ET), and Franck–Condon (dFC) energy, respectively. In addition, the results of our analysis confirm that the photoionization processes of deep traps in n-GaN grown by the metal–organic vapor-phase epitaxy technique (MOVPE) are strongly coupled to the lattice. Moreover, it was shown that the Pässler model is preferred for the accurate determination of the individual trap parameters of defects present in n-GaN films grown on an Ammono-GaN substrate. Finally, a new trap level, Ec-1.99 eV with dFC = 0.15, that has not been previously reported in n-GaN films grown by MOVPE was found. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

23 pages, 1877 KiB  
Article
Energy Efficiency and Sustainability in Food Retail Buildings: Introducing a Novel Assessment Framework
by Simone Forastiere, Cristina Piselli, Andrea Silei, Fabio Sciurpi, Anna Laura Pisello, Franco Cotana and Carla Balocco
Energies 2024, 17(19), 4882; https://doi.org/10.3390/en17194882 (registering DOI) - 28 Sep 2024
Abstract
One of the primary global objectives is to decrease building energy consumption to promote energy efficiency and environmental sustainability. The large-scale food retail trade sector accounts for over 15% of total primary energy consumption in Europe, posing a significant challenge to the transition [...] Read more.
One of the primary global objectives is to decrease building energy consumption to promote energy efficiency and environmental sustainability. The large-scale food retail trade sector accounts for over 15% of total primary energy consumption in Europe, posing a significant challenge to the transition towards green energy. This study proposes a simple method for energy efficiency, environmental sustainability, and cost-saving assessment and improvement in large-scale food retail trade buildings. It aims to analyze the energy and environmental performance of building–plant systems, establishing an interactive network to assess intervention potential for the energy transition. The investigation focuses on the proper selection and analysis of the benefits of retrofit solution implementation, emphasizing potential energy savings in current and future climate change scenarios. Dynamic simulation with the Building Energy Model (BEM) was used to evaluate the impacts of building–plant system retrofit solutions, such as high thermal insulation, photovoltaic (PV) panels, Light Emitting Diode (LED) installation, waste heat recovery, and improvement in refrigeration units. The results show a reduction in annual energy consumption for the PV panel installation by up to 29% and lighting systems with high-quality LED to 60%. Additionally, CO2 emissions can be decreased by up to 41% by combining these two strategies. Full article
(This article belongs to the Special Issue Sustainable Building Energy and Environment 2024)
Show Figures

Figure 1

25 pages, 7437 KiB  
Article
Electrothermal Modeling of Photovoltaic Modules for the Detection of Hot-Spots Caused by Soiling
by Peter Winkel, Jakob Smretschnig, Stefan Wilbert, Marc Röger, Florian Sutter, Niklas Blum, José Antonio Carballo, Aránzazu Fernandez, Maria del Carmen Alonso-García, Jesus Polo and Robert Pitz-Paal
Energies 2024, 17(19), 4878; https://doi.org/10.3390/en17194878 (registering DOI) - 28 Sep 2024
Abstract
Solar energy plays a major role in the transition to renewable energy. To ensure that large-scale photovoltaic (PV) power plants operate at their full potential, their monitoring is essential. It is common practice to utilize drones equipped with infrared thermography (IRT) cameras to [...] Read more.
Solar energy plays a major role in the transition to renewable energy. To ensure that large-scale photovoltaic (PV) power plants operate at their full potential, their monitoring is essential. It is common practice to utilize drones equipped with infrared thermography (IRT) cameras to detect defects in modules, as the latter can lead to deviating thermal behavior. However, IRT images can also show temperature hot-spots caused by inhomogeneous soiling on the module’s surface. Hence, the method does not differentiate between defective and soiled modules, which may cause false identification and economic and resource loss when replacing soiled but intact modules. To avoid this, we propose to detect spatially inhomogeneous soiling losses and model temperature variations explained by soiling. The spatially resolved soiling information can be obtained, for example, using aerial images captured with ordinary RGB cameras during drone flights. This paper presents an electrothermal model that translates the spatially resolved soiling losses of PV modules into temperature maps. By comparing such temperature maps with IRT images, it can be determined whether the module is soiled or defective. The proposed solution consists of an electrical model and a thermal model which influence each other. The electrical model of Bishop is used which is based on the single-diode model and replicates the power output or consumption of each cell, whereas the thermal model calculates the individual cell temperatures. Both models consider the given soiling and weather conditions. The developed model is capable of calculating the module temperature for a variety of different weather conditions. Furthermore, the model is capable of predicting which soiling pattern can cause critical hot-spots. Full article
(This article belongs to the Special Issue Advances in Photovoltaic Solar Energy II)
Show Figures

Figure 1

18 pages, 6298 KiB  
Article
Multi-Color Phosphor-Converted Wide Spectrum LED Light Source for Simultaneous Illumination and Visible Light Communication
by Aayushi Soni, Linthish Pulikkool, Ravibabu Mulaveesala, Satish Kumar Dubey and Dalip Singh Mehta
Photonics 2024, 11(10), 914; https://doi.org/10.3390/photonics11100914 - 27 Sep 2024
Abstract
Simultaneous illumination and communication using solid-state lighting devices like white light-emitting diode (LED) light sources is gaining popularity. The white light LED comprises a single-colored yellow phosphor excited by the blue LED chip. Therefore, color-quality determining parameters like color-rendering index (CRI), correlated color [...] Read more.
Simultaneous illumination and communication using solid-state lighting devices like white light-emitting diode (LED) light sources is gaining popularity. The white light LED comprises a single-colored yellow phosphor excited by the blue LED chip. Therefore, color-quality determining parameters like color-rendering index (CRI), correlated color temperature (CCT), and CIE 1931 chromaticity coordinates of generic white LED sources are poor. This article presents the development of multi-color phosphors excited by a blue LED to improve light quality and bandwidth. A multi-layer stacking of phosphor layers excited by a blue LED led to the quenching of photoluminescence (PL) and showed limited bandwidth. To solve this problem, a lens-free, electrically powered, broadband white light source is designed by mounting multi-color phosphor LEDs in a co-planar ring-topology. The CRI, CCT, and CIE 1931 chromaticity coordinates of the designed lamp (DL) were found to be 90, 5114 K, and (0.33, 0.33), respectively, which is a good quality lamp for indoor lighting. CRI of DL was found to be 16% better than that of white LED (WL). Assessment of visible light communications (VLC) feasibility using the DL includes time interval error (TIE) of data pattern or jitter analysis, eye diagram, signal-to-noise ratio (SNR), fast Fourier transform (FFT), and power spectral density (PSD). DL transmits binary data stream faster than WL due to a reduction in rise time and total jitter by 31% and 39%, respectively. The autocorrelation function displayed a narrow temporal pulse for DL. The DL is beneficial for providing high-quality illumination indoors while minimizing PL quenching. Additionally, it is suitable for indoor VLC applications. Full article
(This article belongs to the Special Issue Recent Advances and Future Perspectives in LED Technology)
Show Figures

Figure 1

10 pages, 1440 KiB  
Article
Photothermal Effect of 970 nm Diode Laser Irradiation on Enterococcus faecalis Biofilms in Single-Rooted Teeth Ex Vivo
by Soraya Tanner, Anna Thibault, Julian Grégoire Leprince and Serge Bouillaguet
Dent. J. 2024, 12(10), 308; https://doi.org/10.3390/dj12100308 - 27 Sep 2024
Abstract
Objective: The aim of this study was to evaluate the photothermal effect of a 970 nm diode laser on Enterococcus faecalis biofilms. Methods: 72 extracted human single-rooted teeth were prepared, sterilized, and inoculated with Enterococcus faecalis to establish a two-week-old biofilm. [...] Read more.
Objective: The aim of this study was to evaluate the photothermal effect of a 970 nm diode laser on Enterococcus faecalis biofilms. Methods: 72 extracted human single-rooted teeth were prepared, sterilized, and inoculated with Enterococcus faecalis to establish a two-week-old biofilm. The specimens were divided into six groups (n = 12): Group 1 (G1)—negative control (PBS—no laser), Group 2 (G2)—positive control (1% NaOCl rinse—no laser), Group 3 (G3)—a 970 nm laser in 1.5 W pulse mode, Group 4 (G4)—a 970 nm laser in 2 W pulse mode, Group 5 (G5)—a 970 nm laser in 1.5 W continuous mode, Group 6 (G6)—a 970 nm laser in 2 W continuous mode. Bacterial viability was evaluated using the LIVE/DEAD BacLight kit and analyzed by flow cytometry (FCM). Temperature changes on the root surface during irradiation were analyzed using a K-type thermocouple. Data were statistically analyzed using one-way ANOVA and Tukey’s multiple comparison test (α = 0.05). Results: Bacterial viability was significantly reduced after laser irradiation in continuous mode using 1.5 W (21% of live bacteria) and 2 W (14% of live bacteria). When the pulsed mode was applied, the reduction in bacterial viability was less, with a mean survival of 53% (1.5 PF, whereas 29% of bacteria survived after 2 W irradiation). Conclusions: The 970 nm diode laser at 2 W continuous mode effectively reduced the viability of E. faecalis biofilms in root canals without causing unacceptable temperature rises at the root surface. Full article
(This article belongs to the Special Issue Endodontics and Restorative Sciences: 2nd Edition)
Show Figures

Figure 1

11 pages, 1848 KiB  
Communication
Broadband Optical Frequency Comb Generation Utilizing a Gain-Switched Weak-Resonant-Cavity Fabry–Perot Laser Diode under Multi-Wavelength Optical Injection
by Yuhong Tao, Qiupin Wang, Pu Ou, Guangqiong Xia and Zhengmao Wu
Photonics 2024, 11(10), 912; https://doi.org/10.3390/photonics11100912 - 27 Sep 2024
Abstract
We propose and experimentally demonstrate an approach for generating a wideband optical frequency comb (OFC) featuring multiple comb lines and wavelength tunability based on a gain-switched weak-resonant-cavity Fabry–Perot laser diode (WRC-FPLD) under multi-wavelength optical injection. The longitudinal mode interval of the utilized WRC-FPLD [...] Read more.
We propose and experimentally demonstrate an approach for generating a wideband optical frequency comb (OFC) featuring multiple comb lines and wavelength tunability based on a gain-switched weak-resonant-cavity Fabry–Perot laser diode (WRC-FPLD) under multi-wavelength optical injection. The longitudinal mode interval of the utilized WRC-FPLD is about 0.28 nm (35.0 GHz), and its relaxation oscillation frequency is about 2.0 GHz at 1.15 times the threshold current. Under current modulation with a power of 20.00 dBm and a frequency of 2.0 GHz, the WRC-FPLD is driven into the gain-switched state. By further introducing multi-wavelength injection light (MWIL) containing four power equalization comb lines with an interval of 0.56 nm, a wideband OFC featuring multiple comb lines and wavelength tenability can be obtained. The experimental results demonstrate that by gradually increasing the injection’s optical power, the number of produced OFC lines initially increases and then decreases. By meticulously adjusting the wavelengths of the MWIL and carefully selecting the matched injection power, the broadband OFC can be tuned across an extensive spectral range. Under optimized operation parameters, an OFC with 147 lines, and a bandwidth of approximately 292 GHz within a 10 dB amplitude, variation is achieved. In this case, the measured single-sideband phase noise at the fundamental frequency is about −115 dBc/Hz @ 10 kHz, indicating that the comb lines possess good stability and strong coherence. Full article
Show Figures

Figure 1

21 pages, 3979 KiB  
Article
Modeling, Design, and Application of Analog Pre-Distortion for the Linearity and Efficiency Enhancement of a K-Band Power Amplifier
by Tommaso Cappello, Sarmad Ozan, Andy Tucker, Peter Krier, Tudor Williams and Kevin Morris
Electronics 2024, 13(19), 3818; https://doi.org/10.3390/electronics13193818 - 27 Sep 2024
Abstract
This paper presents the theory, design, and application of a dual-branch series-diode analog pre-distortion (APD) linearizer to improve the linearity and efficiency of a K-band high-power amplifier (HPA). A first-of-its-kind, frequency-dependent large-signal APD model is presented. This model is used to evaluate different [...] Read more.
This paper presents the theory, design, and application of a dual-branch series-diode analog pre-distortion (APD) linearizer to improve the linearity and efficiency of a K-band high-power amplifier (HPA). A first-of-its-kind, frequency-dependent large-signal APD model is presented. This model is used to evaluate different phase relationships between the linear and nonlinear branches, suggesting independent gain and phase expansion characteristics with this topology. This model is used to assess the impact of diode resistance, capacitance, and ideality factors on the APD characteristics. This feature is showcased with two similar GaAs diodes to find the best fit for the considered HPA. The selected diode is characterized and modeled between 1 and 26.5 GHz. A comprehensive APD design and simulation workflow is reported. Before fabrication, the simulated APD is evaluated with the measured HPA to verify linearity improvements. The APD prototype achieves a large-signal bandwidth of 6 GHz with 3 dB gain expansion and 8° phase rotation. This linearizer is demonstrated with a 17–21 GHz GaN HPA with 41 dBm output power and 35% efficiency. Using a wideband 750 MHz signal, this APD improves the noise–power ratio (NPR) by 6.5–8.2 dB over the whole HPA bandwidth. Next, the HPA output power is swept to compare APD vs. power backoff for the same NPR. APD improves the HPA output power by 1–2 W and efficiency by approximately 5–9% at 19 GHz. This efficiency improvement decreases by only 1–2% when including the APD post-amplifier consumption, thus suggesting overall efficiency and output power improvements with APD at K-band frequencies. Full article
Show Figures

Figure 1

8 pages, 2626 KiB  
Article
Improvement of the Stability of Quantum-Dot Light Emitting Diodes Using Inorganic HfOx Hole Transport Layer
by Jung Min Yun, Min Ho Park, Yu Bin Kim, Min Jung Choi, Seunghwan Kim, Yeonjin Yi, Soohyung Park and Seong Jun Kang
Materials 2024, 17(19), 4739; https://doi.org/10.3390/ma17194739 - 27 Sep 2024
Abstract
One of the major challenges in QLED research is improving the stability of the devices. In this study, we fabricated all inorganic quantum-dot light emitting diodes (QLEDs) using hafnium oxide (HfOx) as the hole transport layer (HTL), a material commonly used [...] Read more.
One of the major challenges in QLED research is improving the stability of the devices. In this study, we fabricated all inorganic quantum-dot light emitting diodes (QLEDs) using hafnium oxide (HfOx) as the hole transport layer (HTL), a material commonly used for insulator. Oxygen vacancies in HfOx create defect states below the Fermi level, providing a pathway for hole injection. The concentration of these oxygen vacancies can be controlled by the annealing temperature. We optimized the all-inorganic QLEDs with HfOx as the HTL by changing the annealing temperature. The optimized QLEDs with HfOx as the HTL showed a maximum luminance and current efficiency of 66,258 cd/m2 and 9.7 cd/A, respectively. The fabricated all-inorganic QLEDs exhibited remarkable stability, particularly when compared to devices using organic materials for the HTL. Under extended storage in ambient conditions, the all-inorganic device demonstrated a significantly enhanced operating lifetime (T50) of 5.5 h, which is 11 times longer than that of QLEDs using an organic HTL. These results indicate that the all-inorganic QLEDs structure, with ITO/MoO3/HfOx/QDs/ZnMgO/Al, exhibits superior stability compared to organic-inorganic hybrid QLEDs. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Graphical abstract

13 pages, 3724 KiB  
Article
Compact Laser-Induced Fluorescence Detector with Adjustable Laser Focal Spot for Multiple Purposes
by Zihe Xu, Xi Chen and Fangwu Liu
Sensors 2024, 24(19), 6224; https://doi.org/10.3390/s24196224 - 26 Sep 2024
Abstract
In many research fields, the demand for miniaturized laser-induced fluorescence (LIF) detection systems has been increasing. This work has developed a compact LIF detector, employing a laser diode as the excitation source and a photodiode as the photodetector with an adjustable laser focal [...] Read more.
In many research fields, the demand for miniaturized laser-induced fluorescence (LIF) detection systems has been increasing. This work has developed a compact LIF detector, employing a laser diode as the excitation source and a photodiode as the photodetector with an adjustable laser focal spot, to meet the diverse requirements of various observation targets, such as capillaries, PCR tubes, and microfluidic chips. It features the functionalities of background fluorescence correction, the adaptive adjustment of the dynamic range, and constant power control for the laser. The influence of the excitation power on the detection limit was studied through experiments, and the configuration results for LED/LD as light sources and 487/450 nm wavelengths were compared and optimized. A fully integrated, compact, modular epifluorescence LIF detector was subsequently constructed, measuring 40 × 22 × 38 mm3 in total size, with a cost of USD 320, and achieving a detection limit of 0.4 nM for fluorescein sodium. Finally, the detector was integrated into a nucleic acid detection system with a microfluidic chip on the Chinese Space Station (CSS) and was also tested with PCR tubes and capillaries, proving its broad practicality and adaptability to various analytical systems. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

88 pages, 22287 KiB  
Review
A Comprehensive Review of Group-III Nitride Light-Emitting Diodes: From Millimeter to Micro-Nanometer Scales
by Xinye Fan, Jiawang Shi, Yiren Chen, Guoqing Miao, Hong Jiang and Hang Song
Micromachines 2024, 15(10), 1188; https://doi.org/10.3390/mi15101188 - 25 Sep 2024
Abstract
This review describes the development history of group-III nitride light-emitting diodes (LEDs) for over 30 years, which has achieved brilliant achievements and changed people′s lifestyles. The development process of group-III nitride LEDs is the sum of challenges and solutions constantly encountered with shrinking [...] Read more.
This review describes the development history of group-III nitride light-emitting diodes (LEDs) for over 30 years, which has achieved brilliant achievements and changed people′s lifestyles. The development process of group-III nitride LEDs is the sum of challenges and solutions constantly encountered with shrinking size. Therefore, this paper uses these challenges and solutions as clues for review. It begins with reviewing the development of group-III nitride materials and substrates. On this basis, some key technological breakthroughs in the development of group-III nitride LEDs are reviewed, mainly including substrate pretreatment and p-type doping in material growth, the proposal of new device structures such as nano-LED and quantum dot (QD) LED, and the improvement in luminous efficiency, from the initial challenge of high-efficiency blue luminescence to current challenge of high-efficiency ultraviolet (UV) and red luminescence. Then, the development of micro-LEDs based on group-III nitride LEDs is reviewed in detail. As a new type of display device, micro-LED has drawn a great deal of attention and has become a research hotspot in the current international display area. Finally, based on micro-LEDs, the development trend of nano-LEDs is proposed, which is greener and energy-saving and is expected to become a new star in the future display field. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

16 pages, 6665 KiB  
Review
Doped, Two-Dimensional, Semiconducting Transition Metal Dichalcogenides in Low-Concentration Regime
by Mallesh Baithi and Dinh Loc Duong
Crystals 2024, 14(10), 832; https://doi.org/10.3390/cryst14100832 - 25 Sep 2024
Abstract
Doping semiconductors is crucial for controlling their carrier concentration and enabling their application in devices such as diodes and transistors. Furthermore, incorporating magnetic dopants can induce magnetic properties in semiconductors, paving the way for spintronic devices without an external magnetic field. This review [...] Read more.
Doping semiconductors is crucial for controlling their carrier concentration and enabling their application in devices such as diodes and transistors. Furthermore, incorporating magnetic dopants can induce magnetic properties in semiconductors, paving the way for spintronic devices without an external magnetic field. This review highlights recent advances in growing doped, two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors through various methods, like chemical vapor deposition, molecular beam epitaxy, chemical vapor transport, and flux methods. It also discusses approaches for achieving n- and p-type doping in 2D TMDC semiconductors. Notably, recent progress in doping 2D TMDC semiconductors to induce ferromagnetism and the development of quantum emitters is covered. Experimental techniques for achieving uniform doping in chemical vapor deposition and chemical vapor transport methods are discussed, along with the challenges, opportunities, and potential solutions for growing uniformly doped 2D TMDC semiconductors. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

12 pages, 1540 KiB  
Article
Efficacy of Photobiomodulation in the Management of Pain and Inflammation after Dental Implants: A Randomized Clinical Trial
by Yolanda Collado-Murcia, Francisco Parra-Perez and Pia López-Jornet
J. Clin. Med. 2024, 13(19), 5709; https://doi.org/10.3390/jcm13195709 - 25 Sep 2024
Abstract
Background: Photobiomodulation (PBM) is a non-invasive procedure used to manage pain and inflammation. The aim of this study is to quantitatively measure pain and inflammation and to compare the proposed PBM treatment with a simulated treatment (PBM-SHAM) in patients with dental implants. [...] Read more.
Background: Photobiomodulation (PBM) is a non-invasive procedure used to manage pain and inflammation. The aim of this study is to quantitatively measure pain and inflammation and to compare the proposed PBM treatment with a simulated treatment (PBM-SHAM) in patients with dental implants. Materials and Methods: A total of 62 patients were included and randomized into two groups. Group 1 (PBM) consisted of 31 patients subjected to the insertion of dental implants and a single intraoral PBM session with an EPIC X Biolase (0.5 W and 15 J/cm²) diode laser. Group II (PBM-SHAM) included 31 patients subjected to dental implants and a simulated PBM. Each patient was given a document with visual analog scales (VASs) to record pain and inflammation during the 7 days post-surgery. The patients were assessed at the end of the week to remove the sutures, to collect the VASs, and to re-evaluate the surveys. Results: Through the use of mixed effects models, it was found that the length of time after the surgery and the number of implants placed during the intervention were important variables that had an influence on pain and inflammation. Conclusions: PBM is a non-invasive and safe treatment. Postoperative pain and inflammation associated with implant surgery decreased in a similar manner over time, independently of the application of PBM. Therefore, more randomized studies are needed with a standardized methodology to adequately assess the efficacy of this therapy. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

13 pages, 2716 KiB  
Article
Solvent-Controlled Strategy for Color-Tunable Fluorescence Carbon Dots and Their Application in Light-Emitting Diodes
by Yuhua Zhang and Hong Zhao
Molecules 2024, 29(19), 4552; https://doi.org/10.3390/molecules29194552 - 25 Sep 2024
Abstract
Carbon dots (CDs) offer tremendous advantages in the fields such as bioimaging, sensing, biomedicine, catalysis, information encryption, and optoelectronics. However, the inherent challenge is synthesizing CDs with a full-spectrum emission, as most CDs typically produce only blue or green emissions, which severely hinder [...] Read more.
Carbon dots (CDs) offer tremendous advantages in the fields such as bioimaging, sensing, biomedicine, catalysis, information encryption, and optoelectronics. However, the inherent challenge is synthesizing CDs with a full-spectrum emission, as most CDs typically produce only blue or green emissions, which severely hinder further investigation into their fluorescence mechanism and restrict their broader applications in light-emitting diodes (LEDs). In this work, we reported a solvent-controlled strategy for the preparation of multicolor CDs with blue, yellow, and red emissions, using o-phenylenediamine (oPD) and ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6) as precursors. The detailed characterizations proved that a solvent with a lower boiling point and lower solubility of precursors resulted in a higher degree of dehydration and carbonization process, thereby increasing carbon cores with sp2-conjugated domains and nitrogen doping and further reducing the bandgap energies, causing a significant redshift emission from blue to red. The underlying fluorescence mechanism of the prepared multicolor CDs was contributed to the surface state. Eventually, blue-, yellow-, and red-emitting CDs based on poly(vinyl alcohol) (PVA) films and colorful LEDs devices were fabricated by dispersing the as-synthesized CDs into a PVA solution. The proposed solvent-controlled strategy for multicolor CDs preparation will be helpful for fully utilizing the advantages of CDs and expanding their applications. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

11 pages, 23095 KiB  
Article
Silicon Surface Nanostructuration with Symmetric Cathode Configurations for Photonic Devices
by Rehab Ramadan, Mahmoud Hamdy Elshorbagy and Raúl J. Martín-Palma
Appl. Sci. 2024, 14(19), 8635; https://doi.org/10.3390/app14198635 - 25 Sep 2024
Abstract
The physical properties of porous silicon (PSi) can be adjusted to provide a better performance in optoelectronic devices. A controlled method commonly used to fabricate PSi is the anodization process, which employs platinum as a conventional cathode. Herein, we investigate the effect of [...] Read more.
The physical properties of porous silicon (PSi) can be adjusted to provide a better performance in optoelectronic devices. A controlled method commonly used to fabricate PSi is the anodization process, which employs platinum as a conventional cathode. Herein, we investigate the effect of replacing the Pt cathode with symmetric heavily doped silicon on the resulting surface structure on silicon substrates. The symmetric configuration is established when both anode and cathode are from the same material. Three different samples were anodized using both configurations and under different fabrication conditions. The results demonstrate the possibility to produce porous silicon structure using the heavily doped Si as alternative to the expensive Pt counter electrode. Furthermore the modified configuration offers the possibility of manufacturing large areas of nanostructured PSi without limitation of the counter electrode area and the applied current density. The formed porous structures using Si cathode have better uniformity, larger pore size, and lower number of interlinked and shallow holes than traditional methods. The porous structures fabricated with this configuration show broadband reduction in spectral reflectivity and changes in the schottky diode dark characteristics when compared with PSi fabricated with Pt conventional electrode. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

12 pages, 2479 KiB  
Article
Study on the Influence of Host–Guest Structure and Polymer Introduction on the Afterglow Properties of Doped Crystals
by Wenhui Feng, Zongyong Lou, Xiaoqiang Zhao, Mingming Zhao, Yaqin Xu and Yide Gao
Molecules 2024, 29(19), 4537; https://doi.org/10.3390/molecules29194537 - 24 Sep 2024
Abstract
Due to their low cost, good biocompatibility, and ease of structural modification, organic long-persistent luminescence (LPL) materials have garnered significant attention in organic light-emitting diodes, biological imaging, information encryption, and chemical sensing. Efficient charge separation and carrier migration by the host–guest structure or [...] Read more.
Due to their low cost, good biocompatibility, and ease of structural modification, organic long-persistent luminescence (LPL) materials have garnered significant attention in organic light-emitting diodes, biological imaging, information encryption, and chemical sensing. Efficient charge separation and carrier migration by the host–guest structure or using polymers and crystal to build rigid environments are effective ways of preparing high-performance materials with long-lasting afterglow. In this study, four types of crystalline materials (MODPA: DDF-O, MODPA: DDF-CHO, MODPA: DDF-Br, and MODPA: DDF-TRC) were prepared by a convenient host–guest doping method at room temperature under ambient conditions, i.e., in the presence of oxygen. The first three types exhibited long-lived charge-separated (CS) states and achieved visible LPL emissions with durations over 7, 4, and 2 s, respectively. More surprisingly, for the DDF-O material prepared with PMMA as the polymer substrate, the afterglow time of DDF-O: PMMA was longer than 10 s. The persistent room-temperature phosphorescence effect caused by different CS state generation efficiencies and rigid environment were the main reason for the difference in LPL duration. The fourth crystalline material was without charge separation and exhibited no LPL because it was not a D-A system. The research results indicate that the CS state generation efficiency and a rigid environment are the key factors affecting the LPL properties. This work provides new understandings in designing organic LPL materials. Full article
Show Figures

Figure 1

Back to TopTop