Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (223)

Search Parameters:
Keywords = district cooling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3656 KiB  
Article
A Dynamic Analysis of Biomethane Reforming for a Solid Oxide Fuel Cell Operating in a Power-to-Heat System Integrated into a Renewable Energy Community
by Francesco Calise, Francesco Liberato Cappiello, Luca Cimmino and Maria Vicidomini
Energies 2024, 17(13), 3160; https://doi.org/10.3390/en17133160 - 27 Jun 2024
Viewed by 301
Abstract
This paper aims to develop a dynamic simulation model for the reduction of energy consumption through the use of organic waste from a residential district, supplied by a hybrid renewable energy plant. The proposed layout is based on a novel paradigm of a [...] Read more.
This paper aims to develop a dynamic simulation model for the reduction of energy consumption through the use of organic waste from a residential district, supplied by a hybrid renewable energy plant. The proposed layout is based on a novel paradigm of a renewable energy community focused on the biocircular economy and a sustainable approach. The novelty with respect to the majority of papers developed in the literature on renewable energy communities lies in the use of both solar photovoltaic production and the organic fraction of municipal solid waste collected by the community. Energy production by biomass conversion and by photovoltaic fields shared among the buildings is used to satisfy in a sustainable manner the community loads for heating, cooling, and power. The district heating network is based on water loop heat pumps and air-to-air heat pumps and it includes the power-to-heat energy storage strategy. The biogas produced by the anaerobic digestion process is cleaned in order to supply a solid oxide fuel cell for the production of additional power, mainly during the hours of poor or null solar energy production. Then, the layout integrates several innovative topics, such as the power-to-heat strategy, the biocircular economy, the low-temperature district heating, the use of a solid oxide fuel cell, and a renewable energy community. The dynamic model of the proposed hybrid renewable layout is developed in the TRNSYS environment, but some innovative energy components, such as anaerobic digestion, the biogas upgrading unit, and the solid oxide fuel cell, are dynamically modeled in MATLAB and then integrated into the whole plant model. The proposed plant has been confirmed to be extremely profitable and able to obtain important energy savings, considering the achieved payback period of 4.48 years and the primary energy saving of 23%. This layout resulted in an interesting solution for pushing the development of smart and sustainable cities. Full article
Show Figures

Figure 1

36 pages, 8750 KiB  
Article
Multi-Objective Optimization of an Energy Community Powered by a Distributed Polygeneration System
by Ronelly José De Souza, Mauro Reini, Luis M. Serra, Miguel A. Lozano, Emanuele Nadalon and Melchiorre Casisi
Energies 2024, 17(13), 3085; https://doi.org/10.3390/en17133085 - 22 Jun 2024
Viewed by 425
Abstract
This paper presents a multi-objective optimization model for the integration of polygeneration systems into energy communities (ECs), by analyzing a case study. The concept of ECs is increasingly seen as beneficial for reducing global energy consumption and greenhouse gas emissions. Polygeneration systems have [...] Read more.
This paper presents a multi-objective optimization model for the integration of polygeneration systems into energy communities (ECs), by analyzing a case study. The concept of ECs is increasingly seen as beneficial for reducing global energy consumption and greenhouse gas emissions. Polygeneration systems have the potential to play a crucial role in this context, since they are known for producing multiple energy services from a single energy resource, besides the possibility of being fed also by renewable energy sources. However, optimizing the configuration and operation of these systems within ECs presents complex challenges due to the variety of technologies involved, their interactions, and the dynamic behavior of buildings. Therefore, the aim of this work is developing a mathematical model using a mixed integer linear programming (MILP) algorithm to optimally design and operate polygeneration systems integrated into ECs. The model is applied to a case study of an EC comprising nine buildings in a small city in the northeast of Italy. The work rests on the single- and multi-objective optimization of the polygeneration systems taking into account the sharing of electricity among the buildings (both self-produced and/or the purchased from the grid), as well as the sharing of heating and cooling between the buildings through a district heating and cooling network (DHCN). The main results from the EC case study show the possibility of reducing the total annual CO2 emissions by around 24.3% (about 1.72 kt CO2/year) while increasing the total annual costs by 1.9% (about 0.09 M€/year) or reducing the total annual costs by 31.9% (about 1.47 M€/year) while increasing the total annual CO2 emissions by 2.2% (about 0.16 kt CO2/year). The work developed within this research can be adapted to different case studies, such as in the residential–commercial buildings and industrial sectors. Therefore, the model resulting from this work constitutes an effective tool to optimally design and operate polygeneration systems integrated into ECs. Full article
Show Figures

Graphical abstract

23 pages, 4188 KiB  
Article
Cost-Effective Control of Hybrid Ground Source Heat Pump (GSHP) System Coupled with District Heating
by Tianchen Xue, Juha Jokisalo and Risto Kosonen
Buildings 2024, 14(6), 1724; https://doi.org/10.3390/buildings14061724 - 8 Jun 2024
Viewed by 400
Abstract
Hybrid ground source heat pump systems (GSHP) offer energy flexibility in operation. For hybrid GSHP systems coupled with district heating, limited studies investigated control strategies for reducing system energy costs from the perspective of building owners. This study proposed a cost-effective control strategy [...] Read more.
Hybrid ground source heat pump systems (GSHP) offer energy flexibility in operation. For hybrid GSHP systems coupled with district heating, limited studies investigated control strategies for reducing system energy costs from the perspective of building owners. This study proposed a cost-effective control strategy for a hybrid GSHP system integrated with district heating, investigating how power limits of district heating/GSHP, COP value for control (COPctrl), and control time horizon impact the system annual energy cost, CO2 emissions, and long-term borehole heat exchanger system performance. The simulations were performed using the dynamic building simulation tool IDA ICE 4.8. The results indicate that to realize both the energy cost savings and the long-term operation safety, it is essential to limit the heating power of district heating/GSHP and select an appropriate COPctrl. The control time horizon insignificantly affected the annual energy cost and long-term borehole heat exchanger system performance. The recommended COPctrl was 3.6, which is near the GSHP seasonal performance factor. Eventually, the cost-effective control reduced the system’s annual energy cost by 2.2% compared to the GSHP-prioritized control. However, the proposed control increased the CO2 emissions of the hybrid GSHP system due to the higher CO2 emissions from district heating. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 5288 KiB  
Article
A New Method for the Techno-Economic Analysis and the Identification of Expansion Strategies of Neutral-Temperature District Heating and Cooling Systems
by Selva Calixto, Marco Cozzini, Roberto Fedrizzi and Giampaolo Manzolini
Energies 2024, 17(9), 2159; https://doi.org/10.3390/en17092159 - 30 Apr 2024
Viewed by 790
Abstract
Neutral-temperature district heating and cooling (NT-DHC) is a recent concept in the district heating sector. The current literature does not directly address the ability to create comprehensive master plans for NT-DHC systems and reliably model their performance. This research presents a new approach [...] Read more.
Neutral-temperature district heating and cooling (NT-DHC) is a recent concept in the district heating sector. The current literature does not directly address the ability to create comprehensive master plans for NT-DHC systems and reliably model their performance. This research presents a new approach for the evaluation and planning of NT-DHC systems. The methodology involves the use of a knapsack optimization algorithm to perform a comprehensive analysis of the conditions that make the NT-DHC solution competitive against individual heating and cooling technologies. The algorithm determines the optimal combination of potential extensions that maximizes overall economic value. The results of a case study, which was conducted in Italy, show that NT-DHC is more suitable in dense urban areas, while air-to-water heat pumps are better suited for low heat density zones. This methodology aims to reduce the risks associated with energy demand and provide more certainty about which areas a network can expand into to be competitive. It is targeted at energy planners, utilities experts, energy engineers, and district heating experts who require assistance and guidance in the planning and early stages of designing a NT-DHC system. This method might enable pre-feasibility studies and preliminary design to determine the opportunities and limitations of a system of this kind from an economic and technological perspective. Full article
(This article belongs to the Topic District Heating and Cooling Systems)
Show Figures

Figure 1

21 pages, 15299 KiB  
Article
Vulnerability Assessment of a Highly Populated Megacity to Ambient Thermal Stress
by Aman Gupta, Bhaskar De, Anoop Kumar Shukla and Gloria Pignatta
Sustainability 2024, 16(8), 3395; https://doi.org/10.3390/su16083395 - 18 Apr 2024
Cited by 1 | Viewed by 1141
Abstract
The urban ambient environment is directly responsible for the health conditions of millions of people. Comfortable living space is a significant aspect that urban policymakers need to address for sustainable planning. There is still a notable lack of studies that link the spatial [...] Read more.
The urban ambient environment is directly responsible for the health conditions of millions of people. Comfortable living space is a significant aspect that urban policymakers need to address for sustainable planning. There is still a notable lack of studies that link the spatial profile of urban climate with city-specific built-up settings while assessing the vulnerability of the city population. Geospatial approaches can be beneficial in evaluating patterns of thermal discomfort and strategizing its mitigation. This study attempts to provide a thorough remote sensing framework to analyze the summer magnitude of thermal discomfort for a city in a tropical hot and humid climate. Spatial profiles of dry bulb temperature, wet bulb temperature and relative humidity were prepared for this purpose. A simultaneous assessment of various discomfort indices indicated the presence of moderate to strong heat stress to a vast extent within the study area. The central business district (CBD) of the city indicated a ‘danger’ level of heat disorder for outdoor exposure cases. Nearly 0.69 million people were vulnerable to a moderate threat from humid heat stress, and around 0.21 million citizens faced strong heat stress. Combing city morphology in the study showed that mid-rise buildings had the maximum contribution in terms of thermal discomfort. City areas with built-up cover of more than 68%, along with building height between 5.8 m and 9.3 m, created the worst outdoor discomfort situations. Better land management prospects were also investigated through a multicriteria approach using morphological settlement zones, wind direction, pavement watering, building regulations and future landscaping plans. East–west-aligned road segments of a total 38.44 km length were delineated for water spray cooling and greener pavements. This study is likely to provide solutions for enhancing ambient urban health. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

22 pages, 5628 KiB  
Article
A Practicable Guideline for Predicting the Thermal Conductivity of Unconsolidated Soils
by David Bertermann, Mario Rammler, Mark Wernsdorfer and Hannes Hagenauer
Soil Syst. 2024, 8(2), 47; https://doi.org/10.3390/soilsystems8020047 - 18 Apr 2024
Cited by 1 | Viewed by 1028
Abstract
For large infrastructure projects, such as high-voltage underground cables or for evaluating the very shallow geothermal potential (vSGP) of small-scale horizontal geothermal systems, large-scale geothermal collector systems (LSCs), and fifth generation low temperature district heating and cooling networks (5GDHC), the thermal conductivity (λ) [...] Read more.
For large infrastructure projects, such as high-voltage underground cables or for evaluating the very shallow geothermal potential (vSGP) of small-scale horizontal geothermal systems, large-scale geothermal collector systems (LSCs), and fifth generation low temperature district heating and cooling networks (5GDHC), the thermal conductivity (λ) of the subsurface is a decisive soil parameter in terms of dimensioning and design. In the planning phase, when direct measurements of the thermal conductivity are not yet available or possible, λ must therefore often be estimated. Various empirical literature models can be used for this purpose, based on the knowledge of bulk density, moisture content, and grain size distribution. In this study, selected models were validated using 59 series of thermal conductivity measurements performed on soil samples taken from different sites in Germany. By considering different soil texture and moisture categories, a practicable guideline in the form of a decision tree, employed by empirical models to calculate the thermal conductivity of unconsolidated soils, was developed. The Hu et al. (2001) model showed the smallest deviations from the measured values for clayey and silty soils, with an RMSE value of 0.20 W/(m∙K). The Markert et al. (2017) model was determined to be the best-fitting model for sandy soils, with an RMSE value of 0.29 W/(m∙K). Full article
Show Figures

Figure 1

19 pages, 6179 KiB  
Article
Validating ‘GIS-UBEM’—A Residential Open Data-Driven Urban Building Energy Model
by Javier García-López, Juan José Sendra and Samuel Domínguez-Amarillo
Sustainability 2024, 16(6), 2599; https://doi.org/10.3390/su16062599 - 21 Mar 2024
Cited by 1 | Viewed by 1683
Abstract
The study of energy consumption in buildings, particularly residential ones, brings with it significant socio-economic and environmental implications, as it accounts for approximately 40% of CO2 emissions, 18% in the case of residential buildings, in Europe. On a number of levels, energy [...] Read more.
The study of energy consumption in buildings, particularly residential ones, brings with it significant socio-economic and environmental implications, as it accounts for approximately 40% of CO2 emissions, 18% in the case of residential buildings, in Europe. On a number of levels, energy consumption serves as a key parameter in urban sustainability indicators and energy plans. Access to data on energy consumption is crucial for energy planning, management, knowledge generation, and awareness. Urban Building Energy Models (UBEMs), which are emerging tools for simulating energy consumption at neighborhood scale, allow for more efficient intervention and energy rehabilitation planning. However, UBEM validation requires reliable reference data, which are often challenging to obtain at urban scale due to privacy concerns and data accessibility issues. Recent advances, such as automation and open data utilization, are proving promising in addressing these challenges. This study aims to provide a standardized UBEM validation process by presenting a case study that was carried out utilizing open data to develop bottom-up engineering models of residential energy demand at urban scale, with a resolution level of individual buildings, and a subsequent adjustment and validation using reference tools. This study confirms that the validated GIS-UBEM model heating and cooling demands and consumption fall within the confidence bands of ±15% and ±12.5%, i.e., the confidence bands required for the approval of official alternative simulation methods for energy certification. This paves the way for its application in urban-scale studies and practices with a well-established margin of confidence, covering a wide range of building typologies, construction models, and climates comparable to those considered in the validation process. The primary application of this model is to determine the starting point and subsequent evaluation of improvement scenarios at a district scale, examining issues such as massive energy rehabilitation interventions, energy planning, demand analysis, vulnerability studies, etc. Full article
Show Figures

Figure 1

34 pages, 7169 KiB  
Article
Investigation of a Hybridized Cascade Trigeneration Cycle Combined with a District Heating and Air Conditioning System Using Vapour Absorption Refrigeration Cooling: Energy and Exergy Assessments
by Larry Orobome Agberegha, Peter Alenoghena Aigba, Solomon Chuka Nwigbo, Francis Onoroh, Olusegun David Samuel, Tanko Bako, Oguzhan Der, Ali Ercetin and Ramazan Sener
Energies 2024, 17(6), 1295; https://doi.org/10.3390/en17061295 - 7 Mar 2024
Viewed by 958
Abstract
The insufficiency of energy supply and availability remains a significant global energy challenge. This work proposes a novel approach to addressing global energy challenges by testing the supercritical property and conversion of low-temperature thermal heat into useful energy. It introduces a combined-cascade steam-to-steam [...] Read more.
The insufficiency of energy supply and availability remains a significant global energy challenge. This work proposes a novel approach to addressing global energy challenges by testing the supercritical property and conversion of low-temperature thermal heat into useful energy. It introduces a combined-cascade steam-to-steam trigeneration cycle integrated with vapour absorption refrigeration (VAR) and district heating systems. Energetic and exergetic techniques were applied to assess irreversibility and exergetic destruction. At a gas turbine power of 26.1 MW, energy and exergy efficiencies of 76.68% and 37.71% were achieved, respectively, while producing 17.98 MW of electricity from the steam-to-steam driven cascaded topping and bottoming plants. The cascaded plant attained an energetic efficiency of 38.45% and an exergy efficiency of 56.19%. The overall cycle efficiencies were 85.05% (energy) and 77.99% (exergy). More than 50% of the plant’s lost energy came from the combustion chamber of the gas turbine. The trigeneration system incorporated a binary NH3–H2O VAR system, emphasizing its significance in low-temperature energy systems. The VAR system achieved a cycle exergetic efficiency of 92.25% at a cooling capacity of 2.07 MW, utilizing recovered waste heat at 88 °C for district hot water. The recovered heat minimizes overall exergy destruction, enhancing thermal plant performance. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

23 pages, 5990 KiB  
Article
Empowering Energy Communities through Geothermal Systems
by Vittoria Battaglia, Francesca Ceglia, Davide Maria Laudiero, Alessandro Maione, Elisa Marrasso and Laura Vanoli
Energies 2024, 17(5), 1248; https://doi.org/10.3390/en17051248 - 6 Mar 2024
Cited by 2 | Viewed by 1066
Abstract
The Renewable Energy Directive II introduces renewable energy communities, enhancing energy sharing. However, many existing initiatives, focussing only on electricity, overlook the substantial energy demand in building sector comprising residential and commercial spaces. Energy communities in this sector can leverage district heating and [...] Read more.
The Renewable Energy Directive II introduces renewable energy communities, enhancing energy sharing. However, many existing initiatives, focussing only on electricity, overlook the substantial energy demand in building sector comprising residential and commercial spaces. Energy communities in this sector can leverage district heating and cooling technology for thermal energy sharing, contributing to carbon neutrality by enhancing efficiency and reducing primary energy usage. Advanced strategies such as integrating renewables into heating and cooling grids, sector coupling, and utilising waste heat are key in moving away from fossil fuels. The Campania Region (Italy), abundant in geothermal energy potential, chose a district in which to implement the GeoGRID system. This innovative setup combines a four-pipe district heating and cooling network with an Organic Rankine Cycle plant, tapping into geothermal energy from the Solfatara area. The geothermal fluid’s heat feeds the ORC evaporator and then powers the thermal network, allowing direct heating and domestic hot water supply during winter. A thorough techno-economic analysis assessed the energy potential extractable from the geothermal fluid. Crucial aspects of this study are the evaluation of the energy and environmental efficiency of the system within the renewable energy community framework. Additionally, the paper introduces a methodology applicable for assessing geothermal energy communities on a global scale. Full article
(This article belongs to the Special Issue Advanced Energy Generation Systems for Sustainable Development)
Show Figures

Figure 1

17 pages, 13256 KiB  
Article
High-Rise Residential District Morphology Optimization for Enhancing the Green Space Cooling Effect
by Feng Shi, Yuan Chen, Wenru Yue and Yupeng Wang
Buildings 2024, 14(1), 183; https://doi.org/10.3390/buildings14010183 - 11 Jan 2024
Viewed by 753
Abstract
Large-scale urban green spaces exert a cooling effect in cities and have great potential for optimizing the urban climate. In this study, taking the typical green space Xingfulindai in Xi’an as an example, we carried out field measurements and ENVI-met simulations of the [...] Read more.
Large-scale urban green spaces exert a cooling effect in cities and have great potential for optimizing the urban climate. In this study, taking the typical green space Xingfulindai in Xi’an as an example, we carried out field measurements and ENVI-met simulations of the area and the surrounding high-rise residential areas to analyze the cooling effect. The results show that the cooling effect is the strongest at night in summer seasons, spreading up to 250 m, and the cooling intensity along the downwind direction can be up to 2 °C. On this basis, a total of 16 ideal models of seven groups of high-rise residential blocks were established to analyze the effect of three morphological indices, namely, building orientation, podium ratio, and otherness with respect to the cooling effect of the green space, and a block morphology design strategy for high-rise residential areas was proposed to enhance the cooling effect of the green space. This study provides climate-adaptive optimization strategies for the construction and renewal of residential blocks. Full article
(This article belongs to the Special Issue Urban Climate, Comfort and Building Energy Performance)
Show Figures

Figure 1

21 pages, 6831 KiB  
Article
Modeling the Effect of Green Roofs for Building Energy Savings and Air Pollution Reduction in Shanghai
by Yuanfan Zheng and Liang Chen
Sustainability 2024, 16(1), 286; https://doi.org/10.3390/su16010286 - 28 Dec 2023
Cited by 2 | Viewed by 1162
Abstract
Building energy consumption is an essential source of greenhouse gas (GHG) and air pollution. Green roofs can directly absorb ambient CO2 and remove air pollutants through their vegetation layers, but a limited number of studies have examined their effects on GHG and [...] Read more.
Building energy consumption is an essential source of greenhouse gas (GHG) and air pollution. Green roofs can directly absorb ambient CO2 and remove air pollutants through their vegetation layers, but a limited number of studies have examined their effects on GHG and air pollutant reduction associated with building energy savings, especially in the context of climate change. This research examined the performance of green roofs on CO2 and air pollutant reduction, including SO2, PM2.5, and NOx, through building energy demand savings in Shanghai, China. Climate change mitigation effects were assessed based on the energy consumption of five types of buildings before and after the installation of green roofs under 2020 and 2050 climate conditions, respectively. EnergyPlus software 9.5.0 was applied to simulate hourly energy consumption for different building prototypes with and without green roofs. Green roofs on all building types exhibited positive energy savings on annual, monthly, and diurnal scales, and they can save more energy for most of the building types under the projected 2050 climate condition. Moreover, most of the building energy saved by green roofs came from the Heating, Ventilation, and Cooling (HVAC) systems. In addition, this study discovered that the energy-saving benefits of green roofs vary based on the type of building they were installed on. Green roofs were found to have the largest energy saving on the shopping mall, especially on extremely hot summer days. Finally, a Geographic Information System (GIS)-based approach was developed with the ability to quantify the amount of GHG and air pollutant reduction associated with building energy savings for existing buildings in the Huangpu District of Shanghai. This approach was also utilized to present the spatial distribution of buildings with different levels of suitability to install green roofs by considering their location attributes and air pollutant reduction potential together, which is the major innovation of this research. The purpose of this study is to provide valuable guidance to policy makers regarding the performance of green roofs in building energy-saving and air quality improvement in the urban environment when facing the challenge of climate change, which is essential for urban sustainability. Full article
(This article belongs to the Special Issue Aerosols and Air Pollution)
Show Figures

Figure 1

20 pages, 5189 KiB  
Article
Reuse of Oil Wells in Geothermal District Heating Networks: A Sustainable Opportunity for Cities of the Future
by Claudio Alimonti, Fabio Vitali and Davide Scrocca
Energies 2024, 17(1), 169; https://doi.org/10.3390/en17010169 - 28 Dec 2023
Cited by 2 | Viewed by 754
Abstract
Climate change and the energy crisis forced industrialized countries to contain CO2 emissions and use indigenous renewable energy sources. Geothermal energy undoubtedly has great potential, particularly thermal energy, given that 48% of the final energy consumption in the EU20 countries in 2021 [...] Read more.
Climate change and the energy crisis forced industrialized countries to contain CO2 emissions and use indigenous renewable energy sources. Geothermal energy undoubtedly has great potential, particularly thermal energy, given that 48% of the final energy consumption in the EU20 countries in 2021 was related to heating and cooling systems. The present study verifies and compares the feasibility of realizing district heating systems in two different contexts: (i) depleted hydrocarbon fields with the repurposing of existing hydrocarbon wells into geothermal wells and (ii) areas with documented geothermal resources. The two selected case studies are located, respectively, near Romentino (Northern Italy, province of Novara) and Tuscania (Central Italy, province of Viterbo). Following an assessment of the geothermal resources in the two selected case studies, specific methodological tools have been developed to evaluate the energy demand in the municipalities and determine the projects’ economics. Both case studies show positive economic indices assuming heat tariffs aligned with the values recorded in the 2020–2021 period. However, our results show how reusing hydrocarbon wells in geothermal wells constitutes an excellent opportunity to access geothermal resources, significantly reducing the necessary investment and the mining risk and strongly improving the economics of the projects. Full article
(This article belongs to the Section G1: Smart Cities and Urban Management)
Show Figures

Figure 1

27 pages, 18399 KiB  
Article
Dynamic Impact of Urban Built Environment on Land Surface Temperature Considering Spatio-Temporal Heterogeneity: A Perspective of Local Climate Zone
by Kaixu Zhao, Mingyue Qi, Xi Yan, Linyu Li and Xiaojun Huang
Land 2023, 12(12), 2148; https://doi.org/10.3390/land12122148 - 10 Dec 2023
Viewed by 1434
Abstract
Thermal environment deterioration has seriously threatened urban habitat quality and urban sustainable development. The evolution of the urban built environment (UBE) is an important cause for urban thermal environment variation. However, the dynamic effect of the UBE on the land surface temperature (LST) [...] Read more.
Thermal environment deterioration has seriously threatened urban habitat quality and urban sustainable development. The evolution of the urban built environment (UBE) is an important cause for urban thermal environment variation. However, the dynamic effect of the UBE on the land surface temperature (LST) is rarely studied by combining the local climate zone (LCZ) theory and spatio-temporal heterogeneity. Based on a case study of Beilin District in Xi’an, China, this paper identified LCZ types of Beilin District in 2010, 2015, and 2020 using the GIS method. It also analyzed the spatial–temporal characteristics of the LST in summer based on the remote sensing retrieval method and explored the effects of the built environment on the LST by Geodetector and geographically weighted regression (GWR). The results showed the following: (1) The area share of dense building zones in Beilin District was greater than that of open building zones and natural surface zones, while the share of mid- and high-rise dense building zones continued to increase and the share of low-rise dense building zones continued to decrease during the study period. (2) The LST of different LCZ types in Beilin District was obviously different, and the LST of dense building zones was generally higher than that of open building zones and natural surface zones. Meanwhile, the LST of mid- and low-rise dense building zones increased gradually, and the LST of high-rise open building zones decreased gradually, but the overall warming area was obviously more than the cooling area. (3) The effects of the UBE factors on the LST varied greatly, with their interaction having an enhancement effect. The direct and interactive influence of the two-dimensional (2D) UBE indicators on the LST were greater than those of the three-dimensional (3D) indicators, but there was a gradual decrease in the force of the 2D indicators and a simultaneous diminution, enhancement, and invariance of the force of the 3D indicators. (4) Vegetation cover (VC) and floor area ratio (FAR) acted negatively, and the building height (BH) was changing from a positive to a negative role, with the average action intensity of VC changing from −0.27 to −0.15, FAR from −0.20 to −0.16, and BH from 0.05 to −0.04. The impervious surface area (ISA), building area (BA), and space congestion (SC) acted positively, with the average action intensity of the ISA changing from 0.12 to 0.20, BA from 0.12 to 0.19, and SC was stable at 0.04. The framework enables a deeper portrayal of LST changes in different LCZs, reflecting the direct and interactive effects of different UBE indicators on LST, as well as local variations in the impact effects and provides a basis for urban managers or planners to improve urban heat resilience. Full article
(This article belongs to the Special Issue Urban Form and the Urban Heat Island Effect)
Show Figures

Figure 1

13 pages, 3199 KiB  
Article
Feasibility Analysis on Compression-Assisted Adsorption Chiller Using Chlorides for Underground Cold Transportation
by Meng Yu, Suke Jin, Wenyun Zhang, Guangyue Xia, Baoqin Liu and Long Jiang
Energies 2023, 16(24), 7963; https://doi.org/10.3390/en16247963 - 8 Dec 2023
Cited by 1 | Viewed by 938
Abstract
Thermal-driven refrigeration technologies, e.g., absorption- or adsorption-type, are gathering momentum since they can utilize low-grade heat from industrial, solar or geothermal energy. However, heat sources and end users are usually mismatched, which could lead to potential heat pollution and increased carbon emissions. Long-distance [...] Read more.
Thermal-driven refrigeration technologies, e.g., absorption- or adsorption-type, are gathering momentum since they can utilize low-grade heat from industrial, solar or geothermal energy. However, heat sources and end users are usually mismatched, which could lead to potential heat pollution and increased carbon emissions. Long-distance thermal energy transportation is good for district heating and cooling, which is of great significance if it can achieve a high energy-transportation density and low heat loss. In this paper, a compression-assisted chemisorption chiller driven by a low-temperature heat source for cold transportation is initially proposed, which aims to transport liquid ammonia with chemical potential and generate a cooling effect for end users. A feasibility analysis of the compression-assisted chemisorption chiller is preliminarily performed for 2 km cold transportation. The results show that the highest theoretical coefficient of performance and the energy efficiency of the compression-assisted adsorption chiller using a sodium bromide–ammonia working pair can reach 0.46 and 0.25, respectively, when the evaporation temperature is 20 °C. Among the three selected low-temperature salts, ammonium chloride–ammonia shows the best performance, which is up to about 40% higher than those of sodium bromide–ammonia and barium chloride–ammonia. It is demonstrated that compared with common absorption chillers, a compression-assisted adsorption system has a reasonable working efficiency to transport cold energy when the low- or ultralow-temperature heat source, e.g., lower than 60 °C, is required to be utilized. Full article
Show Figures

Figure 1

20 pages, 332 KiB  
Review
Review of Hot Topics in the Sustainable Development of Energy, Water, and Environment Systems Conference in 2022
by Wenxiao Chu, Maria Vicidomini, Francesco Calise, Neven Duić, Poul Alberg Østergaard, Qiuwang Wang and Maria da Graça Carvalho
Energies 2023, 16(23), 7897; https://doi.org/10.3390/en16237897 - 4 Dec 2023
Cited by 2 | Viewed by 2022
Abstract
The current applications in the energy sector are based largely on fossil fuels which release greenhouse gas emissions to the atmosphere. To face the issue of global warming, the energy sector has to transfer to and develop sustainable energy solutions that do not [...] Read more.
The current applications in the energy sector are based largely on fossil fuels which release greenhouse gas emissions to the atmosphere. To face the issue of global warming, the energy sector has to transfer to and develop sustainable energy solutions that do not release carbon emissions. This is one of the primary motivators for the SDEWES conference as well as for this review, and previous ones, examining the most recent works based on sustainable and green energy production in such fields. The 17th Conference on the Sustainable Development of Energy, Water, and Environment Systems (SDEWES) was held on 6–10 November 2022 in Paphos, Cyprus. The SDEWES conference aims at solving complex and ongoing concerns that approach a long-term perspective and supporting innovative solutions and continuous monitoring and evaluation. This review paper aims at collecting the main presented papers focused on the following hot topics: low-carbon technologies based on renewable and clean-energy systems, including mainly biomass, solar, and wind energy applications; energy storage systems; hydrogen-based systems; energy-saving strategies in buildings; and the adoption of smart management strategies using renewable energy systems. These topics are investigated in order to propose solutions to address the issues of climate change, water scarcity, and energy saving. From the analyzed works, we note that some key issues for sustainable development remain to be further addressed: such as novel and advanced energy storage systems, green hydrogen production, novel low-temperature district heating and cooling networks, novel solar technologies for the simultaneous production of power and high temperature heat, solar desalination for hydrogen production systems, and agrivoltaic systems for the production of power and food. Full article
Back to TopTop