Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = drug desensitization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1416 KiB  
Review
Sodium-Selective Channelrhodopsins
by Ariel Coli, Shiqiang Gao and Lars Kaestner
Cells 2024, 13(22), 1852; https://doi.org/10.3390/cells13221852 - 8 Nov 2024
Viewed by 322
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels originally discovered in algae and are commonly used in neuroscience for controlling the electrical activity of neurons with high precision. Initially-discovered ChRs were non-selective cation channels, allowing the flow of multiple ions, such as Na+, [...] Read more.
Channelrhodopsins (ChRs) are light-gated ion channels originally discovered in algae and are commonly used in neuroscience for controlling the electrical activity of neurons with high precision. Initially-discovered ChRs were non-selective cation channels, allowing the flow of multiple ions, such as Na+, K+, H+, and Ca2+, leading to membrane depolarization and triggering action potentials in neurons. As the field of optogenetics has evolved, ChRs with more specific ion selectivity were discovered or engineered, offering more precise optogenetic manipulation. This review highlights the natural occurrence and engineered variants of sodium-selective channelrhodopsins (NaChRs), emphasizing their importance in optogenetic applications. These tools offer enhanced specificity in Na+ ion conduction, reducing unwanted effects from other ions, and generating strong depolarizing currents. Some of the NaChRs showed nearly no desensitization upon light illumination. These characteristics make them particularly useful for experiments requiring robust depolarization or direct Na+ ion manipulation. The review further discusses the molecular structure of these channels, recent advances in their development, and potential applications, including a proposed drug delivery system using NaChR-expressing red blood cells that could be triggered to release therapeutic agents upon light activation. This review concludes with a forward-looking perspective on expanding the use of NaChRs in both basic research and clinical settings. Full article
(This article belongs to the Section Cellular Biophysics)
Show Figures

Figure 1

27 pages, 6553 KiB  
Article
Aripiprazole, but Not Olanzapine, Alters the Response to Oxidative Stress in Fao Cells by Reducing the Activation of Mitogen-Activated Protein Kinases (MAPKs) and Promoting Cell Survival
by Barbara Kramar, Tinkara Pirc Marolt, Ayse Mine Yilmaz Goler, Dušan Šuput, Irina Milisav and María Monsalve
Int. J. Mol. Sci. 2024, 25(20), 11119; https://doi.org/10.3390/ijms252011119 - 16 Oct 2024
Viewed by 701
Abstract
Prolonged use of atypical antipsychotics (AAPs) is commonly associated with increased cardiovascular disease risk. While weight gain and related health issues are generally considered the primary contributors to this risk, direct interference with mitochondrial bioenergetics, particularly in the liver where these drugs are [...] Read more.
Prolonged use of atypical antipsychotics (AAPs) is commonly associated with increased cardiovascular disease risk. While weight gain and related health issues are generally considered the primary contributors to this risk, direct interference with mitochondrial bioenergetics, particularly in the liver where these drugs are metabolized, is emerging as an additional contributing factor. Here, we compared the effects of two AAPs with disparate metabolic profiles on the response of Fao hepatoma cells to oxidative stress: olanzapine (OLA), which is obesogenic, and aripiprazole (ARI), which is not. Results showed that cells treated with ARI exhibited resistance to H2O2-induced oxidative stress, while OLA treatment had the opposite effect. Despite enhanced survival, ARI-treated cells exhibited higher apoptotic rates than OLA-treated cells when exposed to H2O2. Gene expression analysis of pro- and anti-apoptotic factors revealed that ARI-treated cells had a generally blunted response to H2O2, contrasting with a heightened response in OLA-treated cells. This was further supported by the reduced activation of MAPKs and STAT3 in ARI-treated cells in response to H2O2, whereas OLA pre-treatment enhanced their activation. The loss of stress response in ARI-treated cells was consistent with the observed increase in the mitochondrial production of O2•-, a known desensitizing factor. The physiological relevance of O2•- in ARI-treated cells was demonstrated by the increase in mitophagy flux, likely related to mitochondrial damage. Notably, OLA treatment protected proteasome activity in Fao cells exposed to H2O2, possibly due to the better preservation of stress signaling and mitochondrial function. In conclusion, this study highlights the underlying changes in cell physiology and mitochondrial function by AAPs. ARI de-sensitizes Fao cells to stress signaling, while OLA has the opposite effect. These findings contribute to our understanding of the metabolic risks associated with prolonged AAP use and may inform future therapeutic strategies. Full article
(This article belongs to the Special Issue Molecular Pharmacology of Human Metabolism Diseases)
Show Figures

Graphical abstract

17 pages, 490 KiB  
Article
EMDR–Teens–cPTSD: Efficacy of Eye Movement Desensitization and Reprocessing in Adolescents with Complex PTSD Secondary to Childhood Abuse: A Case Series
by Julie Rolling, Morgane Fath, Thomas Zanfonato, Amaury Durpoix, Amaury C. Mengin and Carmen M. Schröder
Healthcare 2024, 12(19), 1993; https://doi.org/10.3390/healthcare12191993 - 6 Oct 2024
Viewed by 929
Abstract
Background: Mental healthcare for children and adolescents with a history of childhood abuse constitutes a major public health issue. Indeed, abuse exposes children to severe and complex post-traumatic stress disorder (cPTSD) but also to neurodevelopmental and psychological repercussions impacting the developmental trajectory. [...] Read more.
Background: Mental healthcare for children and adolescents with a history of childhood abuse constitutes a major public health issue. Indeed, abuse exposes children to severe and complex post-traumatic stress disorder (cPTSD) but also to neurodevelopmental and psychological repercussions impacting the developmental trajectory. Trauma-focused care is essential to avoid the chronicization of symptoms and disorders. Objective: The aim of this prospective case series study was to investigate the efficacy of eye movement desensitization and reprocessing (EMDR) on complex post-traumatic symptoms and associated psychiatric disorders in adolescents with a history of abuse. Method: Twenty-two adolescents, aged 12 to 17, who had been abused during childhood were included. All adolescents met ICD-11 criteria for complex PTSD. Subjective measures of PTSD and associated psychiatric disorders were taken before (T0) and after 3 months of EMDR therapy (T1). Results: The average PTSD symptom score on the CPTS-RI significantly decreased from 40.2 to 34.4 after EMDR, indicating improvement in post-traumatic symptoms. A significant decrease in the average depression score (CDI from 18.2 at T0 to 10.6 at T1), anxiety score (R–CMAS from 21.3 at T0 to 13.3 at T1), emotional regulation score (ALS from 29 at T0 to 10.8 at T1), insomnia score (ISI from 18.5 at T0 to T1 of 9.2 at T1), and harmful use of alcohol and drugs score (ADOSPA from 2.3 at T0 to 0.3 at T1) was observed after EMDR therapy, as well as an increase in quality of life (CBCL 4–16 score from 57.9 at T0 to 77.4 at T1). Conclusions: The results of this study are encouraging and suggest that EMDR may be effective in the symptom management reducing post-traumatic symptoms and certain comorbid disorders frequently seen in adolescents who have experienced childhood abuse. Further research is needed on adolescent populations suffering from cPTSD (e.g., randomized controlled trials with control groups and other therapies or evaluating the action of the different phases of the study). Full article
(This article belongs to the Special Issue Innovative Treatments for Post-traumatic Stress Disorder (PTSD))
Show Figures

Figure 1

16 pages, 1907 KiB  
Article
Preclinical Pharmacology of the Low-Impact Ampakine CX717
by Daniel P. Radin, Sheng Zhong, Rok Cerne, Jodi L. Smith, Jeffrey M. Witkin and Arnold Lippa
Future Pharmacol. 2024, 4(3), 494-509; https://doi.org/10.3390/futurepharmacol4030028 - 16 Aug 2024
Viewed by 863
Abstract
Ampakines are a class of orally available positive allosteric modulators of the AMPA-glutamate receptor (AMPAR) and have therapeutic implications for neurological/neuropsychiatric disorders in which AMPAR signaling is compromised. Low-impact ampakines are a distinct subclass of drugs that only modestly offset receptor desensitization and [...] Read more.
Ampakines are a class of orally available positive allosteric modulators of the AMPA-glutamate receptor (AMPAR) and have therapeutic implications for neurological/neuropsychiatric disorders in which AMPAR signaling is compromised. Low-impact ampakines are a distinct subclass of drugs that only modestly offset receptor desensitization and do not alter agonist binding affinity and thus lack the neurotoxicity and epileptogenic effects associated with other AMPAR modulators. In these studies, we describe the pre-clinical pharmacology of ampakine 1-(benzofurazan-5-ylcarbonyl)morpholine (CX717). CX717 modestly offsets desensitization in hippocampal patches and augments synaptic transmission in vivo. CX717 also enhances long-term potentiation in rats, which is crucial for learning and memory. CX717 enhances performance in the eight-arm radial maze and abrogates amphetamine-induced locomotor activity while being devoid of cataleptic activity in rats. CX717 also ameliorates alfentanil-induced respiratory depression in rats and is not toxic to cultured rat neurons. CX717 is active at doses of 0.3–10 mg/kg and lacked serious adverse events in safety studies in mice up to 2000 mg/kg. CX717 was also previously shown to be safe in humans and effective in reversing opiate-induced respiratory depression and hyperactivity and inattentiveness in adults with ADHD. These findings support the continued clinical investigation of CX717 in the treatment of ADHD, dementia, and opiate-induced respiratory depression. Full article
Show Figures

Figure 1

11 pages, 5149 KiB  
Article
The Role of IRF9 Upregulation in Modulating Sensitivity to Olaparib and Platinum-Based Chemotherapies in Breast Cancer
by SeokGyeong Choi, Han-Gyu Bae, Dong-Gyu Jo and Woo-Young Kim
Genes 2024, 15(7), 959; https://doi.org/10.3390/genes15070959 - 22 Jul 2024
Viewed by 1229
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors are targeted therapies that accumulate DNA damage by interfering with DNA repair mechanisms and are approved for treating several cancers with BRCA1/2 mutations. In this study, we utilized CRISPR-dCas9 interference screening to identify genes regulating sensitivity to PARP inhibitors [...] Read more.
Poly(ADP-ribose) polymerase (PARP) inhibitors are targeted therapies that accumulate DNA damage by interfering with DNA repair mechanisms and are approved for treating several cancers with BRCA1/2 mutations. In this study, we utilized CRISPR-dCas9 interference screening to identify genes regulating sensitivity to PARP inhibitors in breast cancer cell lines. Our findings indicated that the interferon (IFN) signaling gene IRF9 was critically involved in modulating sensitivity to these inhibitors. We revealed that the loss of IRF9 leads to increased resistance to the PARP inhibitor in MDA-MB-468 cells, and a similar desensitization was observed in another breast cancer cell line, MDA-MB-231. Further analysis indicated that while the basal expression of IRF9 did not correlate with the response to the PARP inhibitor olaparib, its transcriptional induction was significantly associated with increased sensitivity to the DNA-damaging agent cisplatin in the NCI-60 cell line panel. This finding suggests a mechanistic link between IRF9 induction and cellular responses to DNA damage. Additionally, data from the METABRIC patient tissue study revealed a complex network of IFN-responsive gene expressions postchemotherapy, with seven upregulated genes, including IRF9, and three downregulated genes. These findings underscore the intricate role of IFN signaling in the cellular response to chemotherapy. Collectively, our CRISPR screening data and subsequent bioinformatic analyses suggest that IRF9 is a novel biomarker for sensitivity to DNA-damaging agents, such as olaparib and platinum-based chemotherapeutic agents. Our findings for IRF9 not only enhance our understanding of the genetic basis of drug sensitivity, but also elucidate the role of IRF9 as a critical effector within IFN signaling pathways, potentially influencing the association between the host immune system and chemotherapeutic efficacy. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2047 KiB  
Article
Assessing the Effects of Thiazole-Carboxamide Derivatives on the Biophysical Properties of AMPA Receptor Complexes as a Potential Neuroprotective Agent
by Mohammad Qneibi, Mohammed Hawash, Sosana Bdir, Mohammad Bdair and Samia Ammar Aldwaik
Molecules 2024, 29(13), 3232; https://doi.org/10.3390/molecules29133232 - 8 Jul 2024
Viewed by 1150
Abstract
An optimal balance between excitatory and inhibitory transmission in the central nervous system provides essential neurotransmission for good functioning of the neurons. In the neurology field, a disturbed balance can lead to neurological diseases like epilepsy, Alzheimer’s, and Autism. One of the critical [...] Read more.
An optimal balance between excitatory and inhibitory transmission in the central nervous system provides essential neurotransmission for good functioning of the neurons. In the neurology field, a disturbed balance can lead to neurological diseases like epilepsy, Alzheimer’s, and Autism. One of the critical agents mediating excitatory neurotransmission is α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors, which are concerned with synaptic plasticity, memory, and learning. An imbalance in neurotransmission finally results in excitotoxicity and neurological pathologies that should be corrected through specific compounds. Hence, the current study will prove to be an evaluation of new thiazole-carboxamide derivatives concerning AMPAR-modulating activity and extended medicinal potential. In the current project, five previously synthesized thiazole-carboxamide derivatives, i.e., TC-1 to TC-5, were used to interact with the AMPARs expressed in HEK293T cells, which overexpress different subunits of the AMPAR. Patch-clamp analysis was carried out while the effect of the drugs on AMPAR-mediated currents was followed with a particular emphasis on the kinetics of inhibition, desensitization, and deactivation. All tested TC compounds, at all subunits, showed potent inhibition of AMPAR-mediated currents, with TC-2 being the most powerful for all subunits. These compounds shifted the receptor kinetics efficiently, mainly enhancing the deactivation rates, and hence acted as a surrogate for their neuroprotective potentials. Additionally, recently published structure–activity relationship studies identified particular substituent groups as necessary for improving the pharmacologic profiles of these compounds. In this regard, thiazole-carboxamide derivatives, particularly those classified as TC-2, have become essential negative allosteric modulators of AMPAR function and potential therapeutics in neurological disturbances underlain by the dysregulation of excitatory neurotransmission. Given their therapeutic effectiveness and safety profiles, these in vivo studies need to be further validated, although computational modeling can be further developed for drug design and selectivity. This will open possibilities for new drug-like AMPAR negative allosteric modulators with applications at the clinical level toward neurology. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Graphical abstract

22 pages, 5741 KiB  
Article
Structural Features Influencing the Bioactive Conformation of Angiotensin II and Angiotensin A: Relationship between Receptor Desensitization, Addiction, and the Blood–Brain Barrier
by Graham J. Moore, Harry Ridway, Laura Kate Gadanec, Vasso Apostolopoulos, Anthony Zulli, Jordan Swiderski, Konstantinos Kelaidonis, Veroniki P. Vidali, Minos-Timotheos Matsoukas, Christos T. Chasapis and John M. Matsoukas
Int. J. Mol. Sci. 2024, 25(11), 5779; https://doi.org/10.3390/ijms25115779 - 26 May 2024
Viewed by 1393
Abstract
The N-terminal portion of the octapeptide angiotensin II (DRVYIHPF; AngII), a vasopressor peptide that favorably binds to, and activates, AngII type 1 receptor (AT1R), has an important role in maintaining bioactive conformation. It involves all three charged groups, namely (i) the [...] Read more.
The N-terminal portion of the octapeptide angiotensin II (DRVYIHPF; AngII), a vasopressor peptide that favorably binds to, and activates, AngII type 1 receptor (AT1R), has an important role in maintaining bioactive conformation. It involves all three charged groups, namely (i) the N-terminal amino group cation, (ii) the Asp sidechain anion and (iii) the Arg guanidino cation. Neutralization of any one of these three charged groups results in a substantial reduction (<5%) in bioactivity, implicating a specialized function for this cluster. In contrast, angiotensin A (ARVYIHPF; AngA) has reduced bioactivity at AT1R; however, replacement of Asp in AngII with sarcosine (N-methyl-glycine) not only restores bioactivity but increases the activity of agonist, antagonist, and inverse agonist analogues. A bend produced at the N-terminus by the introduction of the secondary amino acid sarcosine is thought to realign the functional groups that chaperone the C-terminal portion of AngII, allowing transfer of the negative charge originating at the C-terminus to be transferred to the Tyr hydroxyl-forming tyrosinate anion, which is required to activate the receptor and desensitizes the receptor (tachyphylaxis). Peptide (sarilesin) and nonpeptide (sartans) moieties, which are long-acting inverse agonists, appear to desensitize the receptor by a mechanism analogous to tachyphylaxis. Sartans/bisartans were found to bind to alpha adrenergic receptors resulting in structure-dependent desensitization or resensitization. These considerations have provided information on the mechanisms of receptor desensitization/tolerance and insights into possible avenues for treating addiction. In this regard sartans, which appear to cross the blood–brain barrier more readily than bisartans, are the preferred drug candidates. Full article
Show Figures

Figure 1

21 pages, 4514 KiB  
Article
Promising Effects of Casearins in Tumor-Bearing Mice and Antinociceptive Action against Oncologic Pain: Molecular Docking and In Vivo Findings
by Jurandy do Nascimento Silva, José Ivo Araújo Beserra Filho, Boris Timah Acha, Fernanda Regina de Castro Almeida, Emanuelle Karine Frota Batista, Valdenizia Rodrigues Silva, Larissa Mendes Bomfim, Milena Botelho Pereira Soares, Daniel Pereira Bezerra, André Gonzaga dos Santos, Francisco das Chagas Pereira de Andrade, Anderson Nogueira Mendes, Daniel Dias Rufino Arcanjo and Paulo Michel Pinheiro Ferreira
Pharmaceuticals 2024, 17(5), 633; https://doi.org/10.3390/ph17050633 - 14 May 2024
Cited by 1 | Viewed by 1401
Abstract
Safer analgesic drugs remain a hard challenge because of cardiovascular and/or gastrointestinal toxicity, mainly. So, this study evaluated in vivo the antiproliferative actions of a fraction with casearins (FC) from Casearia sylvestris leaves against human colorectal carcinomas and antihyperalgesic effects on inflammatory- or [...] Read more.
Safer analgesic drugs remain a hard challenge because of cardiovascular and/or gastrointestinal toxicity, mainly. So, this study evaluated in vivo the antiproliferative actions of a fraction with casearins (FC) from Casearia sylvestris leaves against human colorectal carcinomas and antihyperalgesic effects on inflammatory- or opiate-based pain relief and oncologic pain in Sarcoma 180 (S180)-bearing mice. Moreover, docking investigations evaluated the binding among Casearin X and NMDA(N-methyl-D-aspartate)-type glutamate receptors. HCT-116 colorectal carcinoma-xenografted mice were treated with FC for 15 days. Antinociceptive assays included chemically induced algesia and investigated mechanisms by pharmacological blockade. Intraplantar region S180-bearing animals received a single dose of FC and were examined for mechanical allodynia and behavior alterations. AutoDock Vina determined molecular interactions among Cas X and NMDA receptor subunits. FC reduced tumor growth at i.p. (5 and 10 mg/kg) and oral (25 mg/kg/day) doses (31.12–39.27%). FC reduced abdominal pain, as confirmed by formalin and glutamate protocols, whose antinociception activity was blocked by naloxone and L-NAME (neurogenic phase) and naloxone, atropine, and flumazenil (inflammatory phase). Meanwhile, glibenclamide potentiated the FC analgesic effects. FC increased the paw withdrawal threshold without producing changes in exploratory parameters or motor coordination. Cas X generated a more stable complex with active sites of the NMDA receptor GluN2B subunits. FC is a promising antitumor agent against colorectal carcinomas, has peripheral analgesic effects by desensitizing secondary afferent neurons, and inhibits glutamate release from presynaptic neurons and/or their action on cognate receptors. These findings emphasize the use of clerodane diterpenes against cancer-related pain conditions. Full article
Show Figures

Figure 1

16 pages, 1849 KiB  
Review
Substance Addiction Rehabilitation Drugs
by Shu Yuan, Si-Cong Jiang, Zhong-Wei Zhang, Zi-Lin Li and Jing Hu
Pharmaceuticals 2024, 17(5), 615; https://doi.org/10.3390/ph17050615 - 10 May 2024
Cited by 1 | Viewed by 1657
Abstract
The relapse rate of substance abusers is high, and addiction rehabilitation adjunct drugs need to be developed urgently. There have been numerous reports on blocking the formation of substance addiction, but studies on drugs that can alleviate withdrawal symptoms are very limited. Both [...] Read more.
The relapse rate of substance abusers is high, and addiction rehabilitation adjunct drugs need to be developed urgently. There have been numerous reports on blocking the formation of substance addiction, but studies on drugs that can alleviate withdrawal symptoms are very limited. Both the dopamine transporter (DAT) hypothesis and D3 dopamine receptor (D3R) hypothesis are proposed. DAT activators reduce the extracellular dopamine level, and D3R antagonists reduce the neuron’s sensitivity to dopamine, both of which may exacerbate the withdrawal symptoms subsequently. The D3R partial agonist SK608 has biased signaling properties via the G-protein-dependent pathway but did not induce D3R desensitization and, thus, may be a promising drug for the withdrawal symptoms. Drugs for serotoninergic neurons or GABAergic neurons and anti-inflammatory drugs may have auxiliary effects to addiction treatments. Drugs that promote structural synaptic plasticity are also discussed. Full article
(This article belongs to the Special Issue Advances in Neuropharmacology of Drug Abuse)
Show Figures

Figure 1

12 pages, 1197 KiB  
Article
Biologics Reduce Symptoms of Alcohol Intolerance Better than Aspirin Desensitization in Patients with N-ERD and Nasal Polyps
by Ulrike Foerster-Ruhrmann, Miroslav Jurkov, Agnieszka J. Szczepek, Karl-Christian Bergmann, Joachim W. Fluhr and Heidi Olze
Biomedicines 2024, 12(5), 1025; https://doi.org/10.3390/biomedicines12051025 - 7 May 2024
Viewed by 1317
Abstract
Background: Non-steroidal anti-inflammatory drugs (NSAIDs) exacerbated respiratory disease (N-ERD) is associated with chronic rhinosinusitis with nasal polyps (CRSwNP), asthma, and NSAID hypersensitivity. An overproduction of leukotrienes characterizes the pathomechanism of the disease. N-ERD patients often report breathing difficulties after consuming alcohol. These symptoms [...] Read more.
Background: Non-steroidal anti-inflammatory drugs (NSAIDs) exacerbated respiratory disease (N-ERD) is associated with chronic rhinosinusitis with nasal polyps (CRSwNP), asthma, and NSAID hypersensitivity. An overproduction of leukotrienes characterizes the pathomechanism of the disease. N-ERD patients often report breathing difficulties after consuming alcohol. These symptoms have been observed in patients receiving either aspirin therapy after desensitization (ATAD), therapy with the biologics dupilumab (anti-IL-4Ra antibody) and omalizumab (anti-IgE antibody), or intranasal corticosteroid treatment (INCS). Methods: This retrospective, real-world study assessed the severity of alcohol-related and non-alcohol-related respiratory symptoms in CRSwNP/N-ERD patients 3–6 months after ATAD, biologic (dupilumab or omalizumab), or INCS therapy. A total of 171 patients (98 women and 73 men) were enrolled in the study. All groups received standard INCS therapy. Sixty-three patients were treated with ATAD; 48 received biologics (dupilumab n = 31; omalizumab n = 17); and 60 received INCS only and served as a control group. Alcohol-dependent symptoms and typical CRS symptoms (alcohol-independent) were quantified using visual analog scales (VAS). Results: ATAD and biological therapy significantly reduced VAS scores for alcohol dependence and CRS symptoms. In the control group receiving INCS, only non-alcohol dependent CRS symptoms improved significantly (p < 0.05). The most significant differences in pre/post scores were observed in patients receiving dupilumab, with the most significant improvement in alcohol-dependent and CRS symptoms (dupilumab > omalizumab > ATAD). Conclusions: This real-world study shows that alcohol-related respiratory symptoms are a relevant parameter in CRSwNP/N-ERD patients. Patients benefit more from biologic therapy than from ATAD in terms of their alcohol-related symptoms and other CRS symptoms. Future studies should include placebo-controlled oral alcohol challenge. Full article
(This article belongs to the Special Issue Recent Advances in Chronic Rhinosinusitis and Asthma)
Show Figures

Figure 1

19 pages, 1130 KiB  
Review
Metabolic Crossroads: Unveiling the Complex Interactions between Obstructive Sleep Apnoea and Metabolic Syndrome
by Aisling Heffernan, Darko Duplancic, Marko Kumric, Tina Ticinovic Kurir and Josko Bozic
Int. J. Mol. Sci. 2024, 25(6), 3243; https://doi.org/10.3390/ijms25063243 - 13 Mar 2024
Viewed by 1945
Abstract
Obstructive sleep apnoea (OSA) and components of metabolic syndrome (MetS) are inextricably connected. Considering the increasing burden of MetS and OSA, in the present review, we aimed to collate and summarise the potential pathophysiological mechanisms linking these pathologies. In short, obesity appears to [...] Read more.
Obstructive sleep apnoea (OSA) and components of metabolic syndrome (MetS) are inextricably connected. Considering the increasing burden of MetS and OSA, in the present review, we aimed to collate and summarise the potential pathophysiological mechanisms linking these pathologies. In short, obesity appears to promote OSA development via multiple pathways, some of which are not directly related to mass but rather to metabolic complications of obesity. Simultaneously, OSA promotes weight gain through central mechanisms. On the other hand, diabetes mellitus contributes to OSA pathophysiology mainly through effects on peripheral nerves and carotid body desensitization, while intermittent hypoxia and sleep fragmentation are the principal culprits in OSA-mediated diabetes. Apart from a bidirectional pathophysiological relationship, obesity and diabetes mellitus together additively increase cardiovascular risk in OSA patients. Additionally, the emergence of new drugs targeting obesity and unequivocal results of the available studies underscore the need for further exploration of the mechanisms linking MetS and OSA, all with the aim of improving outcomes in these patients. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

8 pages, 211 KiB  
Case Report
Successful Desensitization to Sorafenib and Imatinib—A Report of Two Cases and a Literature Review
by Natasa Kusic, Vesna Tomic Spiric, Snezana Arandjelovic, Aleksandra Peric Popadic, Ivana Bozic Antic, Milan Dimitrijevic, Rada Miskovic, Ljiljana Stefanovic and Aleksandra Plavsic
Healthcare 2024, 12(6), 601; https://doi.org/10.3390/healthcare12060601 - 7 Mar 2024
Viewed by 953
Abstract
Background: Drug desensitization allows for safe administration of a drug to a patient with a previous hypersensitivity reaction. Successful desensitization protocols have been described for different medications, including protocols for oncology patients. Few cases of desensitization to sorafenib and imatinib have been described [...] Read more.
Background: Drug desensitization allows for safe administration of a drug to a patient with a previous hypersensitivity reaction. Successful desensitization protocols have been described for different medications, including protocols for oncology patients. Few cases of desensitization to sorafenib and imatinib have been described in the literature so far. Objective: The objective of this paper is to describe the process of the sorafenib and imatinib drug hypersensitivity diagnosis and desensitization process in two patients. Methods: Two oncology patients who experienced non-immediate hypersensitivity reactions to sorafenib and imatinib underwent desensitization to these drugs. We designed a protocol for the first patient and used a modified protocol from the literature for the second patient. Results: By using a slow desensitization technique and gradual tapering of corticosteroids and antihistamines, both patients reached the target dose of the incriminated drug. Conclusions: Desensitization to sorafenib and imatinib can be an effective therapeutic option in patients with hypersensitivity to those medications, without alternative treatment options. Full article
(This article belongs to the Special Issue Allergy and Immunology in Healthcare)
9 pages, 953 KiB  
Communication
Membranes and Synaptosomes Used to Investigate Synaptic GABAergic Currents in Epileptic Patients
by Alessandro Gaeta, Lilian Juliana Lissner, Veronica Alfano, Pierangelo Cifelli, Alessandra Morano, Cristina Roseti, Angela Di Iacovo, Eleonora Aronica, Eleonora Palma and Gabriele Ruffolo
Membranes 2024, 14(3), 64; https://doi.org/10.3390/membranes14030064 - 2 Mar 2024
Viewed by 1591
Abstract
Among the most prevalent neurological disorders, epilepsy affects about 1% of the population worldwide. We previously found, using human epileptic tissues, that GABAergic neurotransmission impairment is a key mechanism that drives the pathological phenomena that ultimately lead to generation and recurrence of seizures. [...] Read more.
Among the most prevalent neurological disorders, epilepsy affects about 1% of the population worldwide. We previously found, using human epileptic tissues, that GABAergic neurotransmission impairment is a key mechanism that drives the pathological phenomena that ultimately lead to generation and recurrence of seizures. Using both a “microtransplantation technique” and synaptosomes preparations from drug-resistant temporal lobe epilepsies (TLEs), we used the technique of two-electrode voltage clamp to record GABA-evoked currents, focusing selectively on the synaptic “fast inhibition” mediated by low-affinity GABAA receptors. Here, we report that the use-dependent GABA current desensitization (i.e., GABA rundown, which is evoked by applying to the cells consecutive pulses of GABA, at high concentration), which is a distinguishing mark of TLE, is mainly dependent on a dysfunction that affects synaptic GABAA receptors. In addition, using the same approaches, we recorded a depolarized GABA reversal potential in synaptosomes samples from the human epileptic subicula of TLE patients. These results, which confirm previous experiments using total membranes, suggest an altered chloride homeostasis in the synaptic area. Finally, the lack of a Zn2+ block of GABA-evoked currents using the synaptosomes supports the enrichment of “synaptic fast inhibitory” GABAA receptors in this preparation. Altogether, our findings suggest a pathophysiological role of low-affinity GABAA receptors at the synapse, especially during the fast and repetitive GABA release underlying recurrent seizures. Full article
(This article belongs to the Special Issue The Xenopus Oocyte: A Tool for Membrane Biology, Second Edition)
Show Figures

Figure 1

16 pages, 748 KiB  
Review
Drug-Induced Anaphylaxis in Children
by Annamaria Bianchi, Rocco Valluzzi, Giuseppe Crisafulli, Paolo Bottau, Silvia Caimmi, Fabrizio Franceschini, Lucia Liotti, Francesca Mori, Sara Riscassi, Francesca Saretta, Sara Scavone and Carlo Caffarelli
Biomedicines 2024, 12(3), 527; https://doi.org/10.3390/biomedicines12030527 - 27 Feb 2024
Cited by 2 | Viewed by 1723
Abstract
Drug-induced anaphylaxis in children is less common than in adults and primarily involves beta-lactams and nonsteroidal anti-inflammatory drugs. Epidemiological studies show variable prevalence, influenced by age, gender, and atopic diseases. The pathophysiology includes IgE-mediated reactions and non-IgE mechanisms, like cytokine release reactions. We [...] Read more.
Drug-induced anaphylaxis in children is less common than in adults and primarily involves beta-lactams and nonsteroidal anti-inflammatory drugs. Epidemiological studies show variable prevalence, influenced by age, gender, and atopic diseases. The pathophysiology includes IgE-mediated reactions and non-IgE mechanisms, like cytokine release reactions. We address drug-induced anaphylaxis in children, focusing on antibiotics, nonsteroidal anti-inflammatory drugs, neuromuscular blocking agents, and monoclonal antibodies. Diagnosis combines clinical criteria with in vitro, in vivo, and drug provocation tests. The immediate management of acute anaphylaxis primarily involves the use of adrenaline, coupled with long-term strategies, such as allergen avoidance and patient education. Desensitization protocols are crucial for children allergic to essential medications, particularly antibiotics and chemotherapy agents. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

20 pages, 2408 KiB  
Review
Targeting TRPV1 for Cancer Pain Relief: Can It Work?
by Arpad Szallasi
Cancers 2024, 16(3), 648; https://doi.org/10.3390/cancers16030648 - 2 Feb 2024
Cited by 3 | Viewed by 2671
Abstract
Chronic intractable pain affects a large proportion of cancer patients, especially those with metastatic bone disease. Blocking sensory afferents for cancer pain relief represents an attractive alternative to opioids and other drugs acting in the CNS in that sensory nerve blockers are not [...] Read more.
Chronic intractable pain affects a large proportion of cancer patients, especially those with metastatic bone disease. Blocking sensory afferents for cancer pain relief represents an attractive alternative to opioids and other drugs acting in the CNS in that sensory nerve blockers are not addictive and do not affect the mental state of the patient. A distinct subpopulation of sensory afferents expresses the capsaicin receptor TRPV1. Intrathecal resiniferatoxin, an ultrapotent capsaicin analog, ablates TRPV1-expressing nerve endings exposed to the cerebrospinal fluid, resulting in permanent analgesia in women with cervical cancer metastasis to the pelvic bone. High-dose capsaicin patches are effective pain killers in patients with chemotherapy-induced peripheral neuropathic pain. However, large gaps remain in our knowledge since the mechanisms by which cancer activates TRPV1 are essentially unknown. Most important, it is not clear whether or not sensory denervation mediated by TRPV1 agonists affects cancer progression. In a murine model of breast cancer, capsaicin desensitization was reported to accelerate progression. By contrast, desensitization mediated by resiniferatoxin was found to block melanoma growth. These observations imply that TRPV1 blockade for pain relief may be indicated for some cancers and contraindicated for others. In this review, we explore the current state of this field and compare the analgesic potential of TRPV1 antagonism and sensory afferent desensitization in cancer patients. Full article
Show Figures

Figure 1

Back to TopTop