Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (677)

Search Parameters:
Keywords = drying shrinkage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3454 KiB  
Article
Three-Dimensional Characterization of Potatoes Under Different Drying Methods: Quality Optimization for Hybrid Drying Approach
by Yinka Sikiru, Jitendra Paliwal and Chyngyz Erkinbaev
Foods 2024, 13(22), 3633; https://doi.org/10.3390/foods13223633 - 14 Nov 2024
Viewed by 317
Abstract
The quality evaluation of processed potatoes is vital in the food industry. In this study, the effect of three different drying methods on the post-processing quality of potatoes utilizing 4, 8, 12, and 16 h of freeze drying (FD), infrared drying (ID), and [...] Read more.
The quality evaluation of processed potatoes is vital in the food industry. In this study, the effect of three different drying methods on the post-processing quality of potatoes utilizing 4, 8, 12, and 16 h of freeze drying (FD), infrared drying (ID), and oven drying (OD) was investigated. The impact of the drying methods on the potato’s microstructure was analyzed and quantified using 3D X-ray micro-computed tomography images. A new Hybrid Quality Score Evaluator (HQSE) was introduced and used to assess the Quality Index (QI) and Specific Energy Consumption Index (SECI) across various drying methods and durations. Mathematical models were developed to predict the optimal drying method. FD showed significantly higher (p < 0.05) colour retention, rehydration ratio, and total porosity, with minimal shrinkage, although it had higher energy consumption. ID had the shortest drying time, followed by OD and FD. The optimization showed that for FD, the optimal time of 5.78 h increased QI by 9.7% and SECI by 30.6%. The mathematical models could accurately predict the QI and SECI under different drying methods, balancing quality preservation with energy efficiency. The findings suggest that a hybrid drying system could optimize potato quality and energy consumption. Full article
Show Figures

Figure 1

12 pages, 3364 KiB  
Article
Variations in Physical and Mechanical Properties Between Clear and Knotty Wood of Chinese Fir
by Yingchao Ruan, Zongming He, Shaohui Fan, Zhiyun Chen, Ming Li, Xiangqing Ma and Shuaichao Sun
Forests 2024, 15(11), 2007; https://doi.org/10.3390/f15112007 - 14 Nov 2024
Viewed by 256
Abstract
Significant market value discrepancies exist between clear and knotty Chinese fir (Cunninghamia lanceolata) wood, distinguished not only by their aesthetic variations but also by their distinct material properties. This study aimed to explore the differences in physical and mechanical properties between [...] Read more.
Significant market value discrepancies exist between clear and knotty Chinese fir (Cunninghamia lanceolata) wood, distinguished not only by their aesthetic variations but also by their distinct material properties. This study aimed to explore the differences in physical and mechanical properties between clear and knotty Chinese fir wood. Nine standard trees were chosen from a 26-year-old Chinese fir plantation for the experiment. Subsequent to felling, trunk segments below 7 m in length were transported to the laboratory. For each tree, detailed preparations were made to obtain clear and knotty wood specimens, and these distinct wood specimens were subjected to thorough physical and mechanical assessments. The results revealed significant variations in properties between clear and knotty Chinese fir wood. The shrinkage and swelling coefficients of knotty wood were generally lower than those of clear wood, except for higher radial and tangential air-dry shrinkage. Specifically, the swelling ratio of knotty wood was at least 0.40% lower, and the oven-dry shrinkage was at least 0.58% lower than that of clear wood. Knotty wood exhibited higher air-dry and oven-dry densities, with its density being at least 0.15 g cm−3 higher than that of clear wood. However, its mechanical properties, including tensile strength, compression strength, impact bending strength, bending strength, and modulus of elasticity, were lower than those of clear wood. For instance, the tensile strength parallel to the grain of clear wood was 40.63 MPa higher, the modulus of elasticity was 1595 MPa higher, and the impact bending strength was 27.12 kJ m−2 greater than that of knotty wood. Although the tangential and radial surface hardness of knotty wood increased significantly compared to clear wood, the end hardness remained relatively lower. Overall, knotty Chinese fir wood displayed enhanced physical properties, whereas clear wood showcased superior mechanical properties. Careful selection between clear and knotty wood is recommended based on the specific requirements of wooden structural elements to optimize timber resource utilization. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

27 pages, 3722 KiB  
Review
Superabsorbent Polymers for Internal Curing Concrete: An Additional Review on Characteristics, Effects, and Applications
by Bo Zhou, Kejin Wang, Peter C. Taylor and Yucun Gu
Materials 2024, 17(22), 5462; https://doi.org/10.3390/ma17225462 - 8 Nov 2024
Viewed by 647
Abstract
Superabsorbent polymers (SAPs) are a promising admixture that can provide internal curing to freshly cast concrete and enhance concrete properties. Although many reviews have explored aspects of SAPs, the links among SAPs’ chemical and physical properties, internal curing behaviors, concrete performance, and their [...] Read more.
Superabsorbent polymers (SAPs) are a promising admixture that can provide internal curing to freshly cast concrete and enhance concrete properties. Although many reviews have explored aspects of SAPs, the links among SAPs’ chemical and physical properties, internal curing behaviors, concrete performance, and their large-scale applications are often weakly elucidated. This paper provides an additional review of the chemical structures and physical dimensions of SAPs and their effects on the internal curing kinetic behavior as well as on concrete properties, such as workability, strength, and durability. In addition, different approaches to introducing SAP particles into concrete mixtures are also summarized. Case studies on the use of SAPs in the concrete industry are introduced to provide a better understanding of the greatest potential of SAPs in field applications. The results confirm that the utilization of SAPs in concrete mixtures provides multiple benefits such as improved water curing, reduced shrinkage, and enhanced workability. Selecting the appropriate SAPs is crucial and involves considering factors like absorption rate, durability, and stability. However, achieving uniform distribution of dry SAPs in concrete poses challenges. Further research is required to gain a deeper understanding of the impact of SAPs on transport properties and frost durability. Additionally, the absence of a standard makes it difficult to maintain consistent water-to-cement ratios. These findings provide a theoretical foundation for using SAPs to enhance concrete performance while also highlighting future research directions and challenges. In this article, scientists, engineers, and contractors will find a comprehensive explanation encompassing laboratory investigations, field implementation, and relevant guidance. Full article
Show Figures

Figure 1

17 pages, 5812 KiB  
Article
Study on the Development Rule of Mudstone Cracks in Open-Pit Mine Dumps Improved with Xanthan Gum
by Xiang Qi, Wei Zhou, Rui Li, Ya Tian and Xiang Lu
Appl. Sci. 2024, 14(22), 10194; https://doi.org/10.3390/app142210194 - 6 Nov 2024
Viewed by 405
Abstract
The stability of open-pit mine slopes is crucial for safety, especially for spoil dump slopes, which are prone to cracks leading to landslides. This study investigates the use of xanthan gum (XG) to enhance the stability of mudstone in spoil dumps. Various concentrations [...] Read more.
The stability of open-pit mine slopes is crucial for safety, especially for spoil dump slopes, which are prone to cracks leading to landslides. This study investigates the use of xanthan gum (XG) to enhance the stability of mudstone in spoil dumps. Various concentrations of xanthan gum were mixed with mudstone and subjected to dry–wet cycle tests to assess the impact on crack development. Pore and crack analysis system (PCAS) was utilized for image recognition and crack analysis, comparing the efficiency of crack rate and length modification. The study found that xanthan gum addition significantly improved mudstone’s resistance to crack development post-drying shrinkage. A 2% xanthan gum content reduced the mudstone crack rate by 45% on average, while 1.5% xanthan gum reduced crack length by 46.2% and crack width by 26.3%. Xanthan gum also influenced the fractal dimension and water retention of mudstone cracks. The optimal xanthan gum content for mudstone modification was identified as between 1.5% and 2%. Scanning electron microscopy imaging and X-ray diffraction tests supported the findings, indicating that xanthan gum modifies mudstone by encapsulation and penetration in wet conditions and matrix concentration and connection in dry conditions. These results are expected to aid in the development of crack prevention methods and engineering applications for open-pit mine spoil dump slopes. Full article
Show Figures

Figure 1

18 pages, 5811 KiB  
Article
Effect of Olive Waste Ash as a Partial Replacement of Cement on the Volume Stability of Cement Paste
by Safa Ghazzawi, Hassan Ghanem, Jamal Khatib, Samer El Zahab and Adel Elkordi
Infrastructures 2024, 9(11), 193; https://doi.org/10.3390/infrastructures9110193 - 29 Oct 2024
Viewed by 521
Abstract
Over the last decades, concrete has been excessively prone to cracks resulting from shrinkage. These dimensional changes can be affected by the incorporation of supplementary cementitious materials. This work used olive waste ash (OWA), which could substantially tackle this problem and achieve sustainability [...] Read more.
Over the last decades, concrete has been excessively prone to cracks resulting from shrinkage. These dimensional changes can be affected by the incorporation of supplementary cementitious materials. This work used olive waste ash (OWA), which could substantially tackle this problem and achieve sustainability goals. For this issue, five cement paste mixes were prepared by replacing cement with OWA at different percentages varying from 0 to 20% by weight with a constant increment of 5%. The water-to-cement ratio was 0.45 for all mixes. Compressive strength and flexural strength were investigated at 7, 28, and 90 days. In addition, three shrinkage tests (drying, autogenous, and chemical) and expansion tests were also conducted for each mix and measured during 90 days of curing. The experimental findings indicated that there was a loss in compressive and flexural strength in the existence of OWA. Among all mixes containing OWA, the samples incorporating 10% OWA exhibited maximum strength values. Furthermore, the chemical and autogenous shrinkage decreased with the incorporation of OWA. However, the drying shrinkage decreased at lower levels of substitutions and increased at higher replacement levels. In addition, there was a growth in expansion rates for up to 10% of OWA content, followed by a decrease at higher levels (beyond 10%). Additionally, correlations between these volumetric stability tests were performed. It was shown that a positive linear correlation existed between chemical shrinkage and autogenous and drying shrinkage; however, there was a negative relationship between chemical shrinkage and expansion. Full article
(This article belongs to the Special Issue Sustainable and Digital Transformation of Road Infrastructures)
Show Figures

Figure 1

19 pages, 5438 KiB  
Article
Synthesis and Characterization of an Alkali-Activated Binder from Blast Furnace Slag and Marble Waste
by Gülden Çagın Ulubeyli and Recep Artır
Materials 2024, 17(21), 5248; https://doi.org/10.3390/ma17215248 - 28 Oct 2024
Viewed by 482
Abstract
This study reports an alkali-activated binder including blast furnace slag (BFS) together with marble waste (MW). Cement is an industrial product that emits a significant amount of CO2 during its production and incurs high energy costs. MW is generated during the extraction, [...] Read more.
This study reports an alkali-activated binder including blast furnace slag (BFS) together with marble waste (MW). Cement is an industrial product that emits a significant amount of CO2 during its production and incurs high energy costs. MW is generated during the extraction, cutting, and processing of marble in production facilities, where dust mixes with water to form a settling sludge. This sludge is an environmentally harmful waste that must be disposed of in accordance with legal regulations. In this study, a substantial amount of MW, a by-product with considerable environmental and economic impacts worldwide, was utilized in the production of a binder through the alkaline activation of BFS. In doing this, different experimental parameters were tested to obtain the best binder samples according to workability and mechanical properties. Then, some experiments such as drying shrinkage determination, strength testing, and microstructure analyses were fulfilled through samples with the best values. The findings supported the improvement of the rapid-setting property of BFS by means of the addition of MW. MW reduced the time-dependent drying shrinkage values of BFS by 55%, especially in slag alkaline activation systems with a low or moderate alkali activator content. The substitution of MW (≤50%) in BFS increased flexural and compressive strengths (4.5 and 61.7 MPa), while a reference sample contained BFS only. Although the use of MW did not create a new phase, it contributed to a C-S-H bonding structure during the alkali activation of BFS in a microstructure analysis. Full article
Show Figures

Figure 1

17 pages, 4153 KiB  
Article
Analysis of the Impact and Mechanism of Polyacrylate-Based Composite Paste on the Performance of Recycled Aggregate
by Huaisen Li, Chunhe Li, Hua Wei, Qingan Li, Hao Lu and Jinyu Ge
Materials 2024, 17(21), 5242; https://doi.org/10.3390/ma17215242 - 28 Oct 2024
Viewed by 466
Abstract
This study developed three composite slurries for coating recycled aggregate by incorporating polyacrylate emulsion, fly ash, and gypsum into a cement-based mixture. The filling and pozzolanic effects of fly ash help to improve microcracks in the recycled aggregates. The polyacrylate emulsion forms a [...] Read more.
This study developed three composite slurries for coating recycled aggregate by incorporating polyacrylate emulsion, fly ash, and gypsum into a cement-based mixture. The filling and pozzolanic effects of fly ash help to improve microcracks in the recycled aggregates. The polyacrylate emulsion forms a strong bonding layer between the cement matrix and the aggregates, enhancing the interfacial bond strength. Based on relevant studies, the following mix designs were developed: Slurry 1 consists of pure cement paste; Slurry 2 contains 15% fly ash and 3% gypsum added to the cement paste; Slurry 3 adds 22% polyacrylate emulsion to the slurry. The study first compared the effects of the three composite slurries on the crushing value and water absorption of recycled aggregates, and then analyzed their impact on the mechanical properties, permeability, and drying shrinkage of concrete. Finally, the mechanisms behind the enhancement were investigated using the Vickers Hardness Test (HV), Mercury Intrusion Porosimetry (MIP), and scanning electron microscopy–energy-dispersive spectroscopy (SEM-EDS). The results showed that the polyacrylate emulsion composite slurry had the most significant improvement effect. For recycled aggregate AL, the crushing value decreased from 28.8% to 22.5% and the saturated surface–dry water absorption decreased from 15.1% to 13.8% after cement slurry modification. After coating with the composite slurry, the crushing value further dropped to 18.2% and the water absorption to 9.5%. Two aspects of the performance of recycled aggregates are enhanced with the polymer composite slurry: first, fly ash provides nucleation sites for CH, reducing the tendency for directional CH alignment. Second, the long chains of PAE (polyacrylic ester) encapsulate cementitious particles, effectively filling surface defects on the recycled aggregates, improving the bonding strength at the new-to-old interface, and significantly enhancing the performance of both recycled aggregates and recycled concrete. Full article
(This article belongs to the Special Issue Materials, Structures and Designs for Durable Roads)
Show Figures

Figure 1

25 pages, 397 KiB  
Review
Evaluating Waste-Based Alkali Activated Materials as Pavement Quality Concrete
by Joseph Abdayem, Marianne Saba, Fateh Fakhari Tehrani and Joseph Absi
Infrastructures 2024, 9(11), 190; https://doi.org/10.3390/infrastructures9110190 - 24 Oct 2024
Viewed by 787
Abstract
The utilization of Ordinary Portland Cement as the primary material of choice in the construction industry has had its drawbacks due to the large amounts of pollution Portland cement’s production causes. Significant findings have been discovered, and alkali-activated materials have been implemented as [...] Read more.
The utilization of Ordinary Portland Cement as the primary material of choice in the construction industry has had its drawbacks due to the large amounts of pollution Portland cement’s production causes. Significant findings have been discovered, and alkali-activated materials have been implemented as an alternative cementitious material to the traditional concrete of today. Alkali-activated materials can be formulated using industrial wastes, making them eco-friendly and a more sustainable replacement for concrete. This study aims to assess whether alkali-activated materials can be implemented in infrastructural fields and seeks to evaluate the possibility of alkali-activated materials acting as pavement-quality concrete in infrastructural applications. This review presents the results of various studies, demonstrating that alkali-activated materials can meet the requirements for pavement-quality concrete with the proper incorporation of industrial wastes. This outlines the viability of alkali-activated materials (AAMs) as a green alternative for pavement applications as most AAMs attain required mechanical properties, mostly reaching compressive strength values higher than the required 40 MPa, all while simultaneously adhering to the needed durability, workability, drying shrinkage, and abrasion resistance attributes. Using industrial waste-based alkali-activated materials renders the material eco-friendly and sustainable, all while enhancing the material’s characteristics and properties necessary for large-scale infrastructural applications. This review highlights AAMs’ suitability as a durable and eco-friendly solution for pavement construction. Full article
24 pages, 12102 KiB  
Article
Numerical Study on the Variable-Temperature Drying and Rehydration of Shiitake
by Lizhe Zhang, Long Jiang, Meriem Adnouni, Sheng Li and Xuejun Zhang
Foods 2024, 13(21), 3356; https://doi.org/10.3390/foods13213356 - 23 Oct 2024
Viewed by 442
Abstract
Variable-temperature convective drying (VTCD) is a promising technology for obtaining high-quality dried mushrooms, particularly when considering rehydration capacity. However, accurate numerical models for variable-temperature convective drying and rehydration of shiitake mushrooms are lacking. This study addresses this gap by employing a model with [...] Read more.
Variable-temperature convective drying (VTCD) is a promising technology for obtaining high-quality dried mushrooms, particularly when considering rehydration capacity. However, accurate numerical models for variable-temperature convective drying and rehydration of shiitake mushrooms are lacking. This study addresses this gap by employing a model with thermo–hydro and mechanical bidirectional coupling to investigate five dehydration characteristics (moisture ratio, drying rate, temperature, evaporation rate, and volume shrinkage ratio) and a drying load characteristic (enthalpy difference) during VTCD. Additionally, a mathematical model combining drying and rehydration is proposed to analyze the effect of VTCD processes on the rehydration performance of shiitake mushrooms. The results demonstrate that, compared to constant-temperature drying, VTCD-dried mushrooms exhibit moderate shrinkage rates and drying time (16.89 h), along with reduced temperature variation and evaporation rate gradient (Max. 1.50 mol/(m3·s)). VTCD also improves enthalpy stability, reducing the maximum drying load by 58.84% compared to 338.15 K constant-temperature drying. Furthermore, drying time at medium temperatures (318.15–328.15 K) greatly influences rehydration performance. This study quantitatively highlights the superiority of variable-temperature convective drying, offering valuable insights for optimizing the shiitake mushroom drying processes. Full article
Show Figures

Figure 1

16 pages, 6476 KiB  
Article
Cross-Linked Polyimide Aerogels with Excellent Thermal and Mechanical Properties
by Haoran Qian, Zhiqi Li and Song He
Gels 2024, 10(10), 667; https://doi.org/10.3390/gels10100667 - 19 Oct 2024
Viewed by 886
Abstract
With the increasing development of productivity, new materials that allow for the efficient use of energy are slowly becoming a sought-after goal, as well as a challenge that is currently being faced. For this reason, we have made aerogels as the target of [...] Read more.
With the increasing development of productivity, new materials that allow for the efficient use of energy are slowly becoming a sought-after goal, as well as a challenge that is currently being faced. For this reason, we have made aerogels as the target of our research and prepared different series (CLPI (1–5)) of cross-linked polyimide aerogels by mixing and cross-linking the heat-insulating cross-linking agent 1,3,5-tris(4-aminobenzylamino)benzene (TAB) with polyamic acid solution. We created a three-dimensional spatial organization by using vacuum freeze-drying and programmed high-temperature drying, then controlled the concentration of the polyamidate solution to investigate the concentration and TAB’s influence on aerogel-related properties. Among them, the shrinkage is reduced from 40% in CLPI-1 to 28% in CLPI-5, and it also shows excellent mechanical characteristics, the highest compression strength (CLPI-5) reaches 0.81 MPa and specific modulus reaches 41.95 KN m/Kg. In addition, adding TAB improves the aerogel thermal resistance, T5 in N2 from PI-2 519 °C to CLPI-2 556 °C. The three-dimensional network-type structure of the aerogel shows an excellent thermal insulation effect, where the thermal conductivity can be as low as 24.4 mWm−1 K−1. Compared with some protective materials, cross-linked polyimide aerogel presents better flame-retardant properties, greatly improving the scope of its application in the industrial protection. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

20 pages, 8251 KiB  
Article
Improving Geotechnical Properties of Expansive Subgrade Using Sugar Cane Molasses and Cement
by Sohail Ahmad, Tianbo Peng, Hassan Ayaz and Yicheng Wu
Appl. Sci. 2024, 14(20), 9489; https://doi.org/10.3390/app14209489 - 17 Oct 2024
Viewed by 574
Abstract
Soil stabilization using Portland cement is a widely adopted technique. Previous research has demonstrated that molasses, which contains sugars, enhances the reaction between cement and aggregates. This study investigates the impact of adding molasses to soil stabilized with Ordinary Portland Cement (OPC) on [...] Read more.
Soil stabilization using Portland cement is a widely adopted technique. Previous research has demonstrated that molasses, which contains sugars, enhances the reaction between cement and aggregates. This study investigates the impact of adding molasses to soil stabilized with Ordinary Portland Cement (OPC) on geotechnical properties. Expansive clay soil samples from Taru Jabba, District Nowshera, Pakistan, were treated with various combinations of molasses and cement. The concentrations of each stabilizer were varied at 0%, 4%, 8%, and 12% by dry weight of the soil. Additionally, the soil was treated with constant molasses contents of 4%, 8%, and 12%, while varying the cement content at 4%, 8%, and 12% by dry weight. Geotechnical tests, including Proctor compaction, Atterberg limits, Unconfined Compressive Strength (UCS), California Bearing Ratio (CBR), and swelling potential, were conducted to assess the effects of the stabilizers. The results indicated that the addition of molasses improved soil strength, mitigated shrinkage cracks, and reduced brittleness. Specifically, the CBR value increased from 3.2% in the native soil to 12.3% with 12% molasses and 12% cement. The Plasticity Index (PI) decreased from 14.23% to 8.12%, and the CBR swell value reduced from 9.66% to 3.82%. Furthermore, the UCS of the stabilized soil increased by 64.7% compared to the untreated soil after a 7 day curing period. Full article
Show Figures

Figure 1

23 pages, 8794 KiB  
Article
Use of Milled Acanthocardia tuberculate Seashell as Fine Aggregate in Self-Compacting Mortars
by Ágata González-Caro, Antonio Manuel Merino-Lechuga, Enrique Fernández-Ledesma, José María Fernández-Rodríguez, José Ramón Jiménez and David Suescum-Morales
Materials 2024, 17(18), 4665; https://doi.org/10.3390/ma17184665 - 23 Sep 2024
Viewed by 465
Abstract
This study focuses on the feasibility of using ground Acanthocardia tuberculate seashells as fine aggregates for self-compacting mortar production. The obtained results show a promising future for coastal industries as their use eliminates waste products and improves the durability of these materials. The [...] Read more.
This study focuses on the feasibility of using ground Acanthocardia tuberculate seashells as fine aggregates for self-compacting mortar production. The obtained results show a promising future for coastal industries as their use eliminates waste products and improves the durability of these materials. The use of Acanthocardia tuberculate recycled aggregate, in terms of durability, improves the performance of all mixes made with seashells compared to those made with natural sand, although it decreases workability and slightly reduces mechanical strength. Proper mix design has beneficial effects, as it improves compressive strength, especially when the powder/sand ratio is 0.7. Three replacement ratios based on the volume (0%, 50%, and 100%) of natural limestone sand with recycled fine aggregate from Acanthocardia tuberculate seashells, and three different dosages modifying the powder/sand ratio (0.6, 0.7, and 0.8), were tested. The fresh-state properties of each self-compacting mixture were evaluated based on workability. The mineralogical phases of the hardened mixtures were characterised using X-ray diffraction, thermogravimetry, and differential analyses. Subsequently, the mechanical and durability properties were evaluated based on the compressive and flexural strengths, dry bulk density, accessible porosity for water and water absorption, drying shrinkage, mercury intrusion porosimetry, and water absorption by capillarity. Therefore, the use of Acanthocardia tuberculate seashells in cement-based systems contributes to circular economy. Full article
Show Figures

Figure 1

36 pages, 8335 KiB  
Article
The Properties and Behavior of Ultra-High-Performance Concrete: The Effects of Aggregate Volume Content and Particle Size
by Evgenii Matiushin, Ivan Sizyakov, Victoria Shvetsova and Vadim Soloviev
Buildings 2024, 14(9), 2891; https://doi.org/10.3390/buildings14092891 - 12 Sep 2024
Cited by 1 | Viewed by 721
Abstract
Ultra-High-Performance Concrete (UHPC) and Ultra-High-Performance Fiber-Reinforced Concrete (UHPFRC) represent promising materials in the field of construction, offering exceptional strength and durability, making them ideal for the development of a wide range of infrastructure projects. One of the goals is to better understand the [...] Read more.
Ultra-High-Performance Concrete (UHPC) and Ultra-High-Performance Fiber-Reinforced Concrete (UHPFRC) represent promising materials in the field of construction, offering exceptional strength and durability, making them ideal for the development of a wide range of infrastructure projects. One of the goals is to better understand the impact of each component of the materials on their key properties in the hardened state. This work examines the effect of the aggregate on the properties of UHPC and UHPFRC. This article provides test results for five compositions without fiber, and five compositions with 2% corrugated steel fiber. Three aggregate concentrations (0, 0.2, and 0.4 m3) and quartz sand with different maximum particle sizes (0.4 and 0.8 mm) were selected. It was found that the mechanical properties of the material, such as the steel fiber bond strength, compressive and axial tensile strength, fracture energy, and critical stress intensity factor, depend on both the concentration of the aggregate and the size of its particles. A novel mix-design parameter was proposed, which reflects the total surface area of the aggregate in the composition (Sagg,tot). The relationships between the parameter Sagg,tot and the mechanical characteristics of UHPC and UHPFRC were established. The steel fiber bond strength, axial tensile strength, and fracture energy-related parameters grew non-linearly when the parameter Sagg,tot increased. When the parameter Sagg,tot was changed from 0 to 12.38 · 103 m2, the fiber bond strength increased by 1.38 times. The axial tensile strength and total fracture energy of the UHPFRC increased by 1.48 and 1.63 times, respectively. The compressive strength changed linearly and increased by 1.12 times. The improvement in the mechanical properties of the material was associated with an increase in the friction force between the fiber and the matrix, which was confirmed by the formation of a greater number of scratches on the surface of the fiber with an increasing value of the parameter Sagg,tot. The deformation characteristics, such as modulus of elasticity, Poisson’s ratio, and drying shrinkage strain, were determined solely by the volumetric concentration of the aggregate, as in conventional concrete. An increase in the aggregate volume content from 0 to 0.4 m3 led to an increase in the modulus of elasticity of 1.41–1.44 times, and a decrease in the ultimate shrinkage strain of almost 2 times. The dependencies obtained in this work can be used to predict the properties of UHPC and UHPFRC, taking into account the type and volume concentration of the aggregate. Full article
Show Figures

Figure 1

20 pages, 2658 KiB  
Article
Impact of Ultrasound Pre-Treatment on the Drying Kinetics and Quality of Chicken Breast—A Comparative Study of Convective and Freeze-Drying Methods
by Iwona Szymanska, Aleksandra Matys, Katarzyna Rybak, Magdalena Karwacka, Dorota Witrowa-Rajchert and Malgorzata Nowacka
Foods 2024, 13(17), 2850; https://doi.org/10.3390/foods13172850 - 8 Sep 2024
Viewed by 1108
Abstract
Fresh meat has a limited shelf life and is prone to spoilage. Drying serves as a common method for food preservation. Non-thermal techniques such as ultrasound treatment (US) can positively affect the drying processes and alter the final product. The study aimed to [...] Read more.
Fresh meat has a limited shelf life and is prone to spoilage. Drying serves as a common method for food preservation. Non-thermal techniques such as ultrasound treatment (US) can positively affect the drying processes and alter the final product. The study aimed to evaluate the impact of US pre-treatment on the hot air (HA) and freeze-drying (FD) of chicken breast meat and the quality of the dried products. US pre-treatment had a varied impact depending on the drying method used. The contact US method extended the HA drying time (about 50%) but improved water removal during FD (about 30%) compared to the untreated samples. Both methods resulted in low water content (<8.3%) and low water activity (<0.44). While rehydration properties (RR) and hygroscopicity (H) were not significantly affected by US pre-treatment in HA drying (about 1.35% and about 1.1, respectively), FD noticed differences due to shrinkage and porosity variations (RR: 2.4–3.2%, H: 1.19–1.25). The HA-dried samples exhibited notably greater tissue shrinkage and a darker surface color than the FD meat. Ultrasonic processing holds substantial potential in creating dried meat products with tailored characteristics. Hence, meticulous consideration of processing methods and parameters is of utmost importance. Full article
Show Figures

Figure 1

12 pages, 2279 KiB  
Article
Shrinkage and Creep Properties of Low-Carbon Hybrid Cement
by Vít Šmilauer, Lenka Dohnalová and Pavel Martauz
Materials 2024, 17(17), 4417; https://doi.org/10.3390/ma17174417 - 7 Sep 2024
Viewed by 594
Abstract
Hybrid cements combine clinker with large amount of supplementary cementitious materials while utilizing hydration and alkali activation processes. This paper summarizes shrinkage and creep properties of industrially produced H-cement, containing only 20% of Portland clinker. In comparison with a reference cement CEM II/B-S [...] Read more.
Hybrid cements combine clinker with large amount of supplementary cementitious materials while utilizing hydration and alkali activation processes. This paper summarizes shrinkage and creep properties of industrially produced H-cement, containing only 20% of Portland clinker. In comparison with a reference cement CEM II/B-S 32.5 R, autogenous shrinkage is smaller after 7 days, and drying shrinkage is similar at similar times. A different capillary system of H-cement leads to faster water mass loss during drying. Basic and total creep of concrete remains in the standard deviation of B4 and EC2 creep models. The results demonstrate that shrinkage and creep properties of concrete made from H-cement have similar behavior as conventional structural concrete or high-volume fly ash concrete. Full article
Show Figures

Figure 1

Back to TopTop