Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = edge-missing area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4056 KiB  
Article
Performance Evaluation of Gradient Descent Optimizers in Estuarine Turbidity Estimation with Multilayer Perceptron and Sentinel-2 Imagery
by Naledzani Ndou and Nolonwabo Nontongana
Hydrology 2024, 11(10), 164; https://doi.org/10.3390/hydrology11100164 - 3 Oct 2024
Abstract
Accurate monitoring of estuarine turbidity patterns is important for maintaining aquatic ecological balance and devising informed estuarine management strategies. This study aimed to enhance the prediction of estuarine turbidity patterns by enhancing the performance of the multilayer perceptron (MLP) network through the introduction [...] Read more.
Accurate monitoring of estuarine turbidity patterns is important for maintaining aquatic ecological balance and devising informed estuarine management strategies. This study aimed to enhance the prediction of estuarine turbidity patterns by enhancing the performance of the multilayer perceptron (MLP) network through the introduction of stochastic gradient descent (SGD) and momentum gradient descent (MGD). To achieve this, Sentinel-2 multispectral imagery was used as the base on which spectral radiance properties of estuarine waters were analyzed against field-measured turbidity data. In this case, blue, green, red, red edge, near-infrared and shortwave spectral bands were selected for empirical relationship establishment and model development. Inverse distance weighting (IDW) spatial interpolation was employed to produce raster-based turbidity data of the study area based on field-measured data. The IDW image was subsequently binarized using the bi-level thresholding technique to produce a Boolean image. Prior to empirical model development, the selected spectral bands were calibrated to turbidity using multilayer perceptron neural network trained with the sigmoid activation function with stochastic gradient descent (SGD) optimizer and then with sigmoid activation function with momentum gradient descent optimizer. The Boolean image produced from IDW interpolation was used as the base on which the sigmoid activation function calibrated image pixels to turbidity. Empirical models were developed using selected uncalibrated and calibrated spectral bands. The results from all the selected models generally revealed a stronger relationship of the red spectral channel with measured turbidity than with other selected spectral bands. Among these models, the MLP trained with MGD produced a coefficient of determination (r2) value of 0.92 on the red spectral band, followed by the MLP with MGD on the green spectral band and SGD on the red spectral band, with r2 values of 0.75 and 0.72, respectively. The relative error of mean (REM) and r2 results revealed accurate turbidity prediction by the sigmoid with MGD compared to other models. Overall, this study demonstrated the prospect of deploying ensemble techniques on Sentinel-2 multispectral bands in spatially constructing missing estuarine turbidity data. Full article
(This article belongs to the Section Marine Environment and Hydrology Interactions)
Show Figures

Figure 1

26 pages, 15611 KiB  
Article
Integrated Multi-Scale Aircraft Detection and Recognition with Scattering Point Intensity Adaptiveness in Complex Background Clutter SAR Images
by Xuyuan Ye and Chuan Du
Remote Sens. 2024, 16(13), 2471; https://doi.org/10.3390/rs16132471 - 5 Jul 2024
Viewed by 577
Abstract
Detecting aircraft targets in Synthetic Aperture Radar (SAR) images is critical for military and civilian applications. However, due to SAR’s special imaging mechanism, aircraft targets often consist of scattering points with large fluctuations in intensity. This often leads to the detector failing to [...] Read more.
Detecting aircraft targets in Synthetic Aperture Radar (SAR) images is critical for military and civilian applications. However, due to SAR’s special imaging mechanism, aircraft targets often consist of scattering points with large fluctuations in intensity. This often leads to the detector failing to detect weak scattering points. Not only that, previous SAR image aircraft-object-detection models have focused more on detecting and locating targets, with little emphasis on target recognition. This paper proposes a scattering-point-intensity-adaptive detection and recognition network (SADRN). In order to correctly detect the target area, we propose a Self-adaptive Bell-shaped Kernel (SBK) within the detector, which constructs a bell-shaped two-dimensional distribution centered on the target center, making the detection “threshold” for the target decrease from the center towards the periphery, reducing the missed alarms of weak scattering points at the edges of the target. To help the model adapt to multi-scale targets, we propose the FADLA-34 backbone network, aggregating information from feature maps across different scales. We also embed CBAM into the detector, which enhances the attention to the target area in the spatial dimension and strengthens the extraction of useful features in the channel dimension, reducing interference from the complex background clutter on object detection. Furthermore, to integrate detection and recognition, we introduce the multi-task head, which utilizes the three feature maps from the backbone network to generate the detection boxes and categories of the targets. Finally, the SADRN achieves superior detection and recognition performance on the SAR-AIRcraft-1.0, exceeding other mainstream methods. Visualization and analysis further confirm the effectiveness and superiority of the SADRN. Full article
Show Figures

Figure 1

29 pages, 10225 KiB  
Article
Study on Dynamic Scanning Trajectory of Large Aerospace Parts Based on 3D Scanning
by Jing Li, Yang Wang, Ligang Qu, Minghai Wang, Guangming Lv and Pengfei Su
Aerospace 2024, 11(7), 515; https://doi.org/10.3390/aerospace11070515 - 25 Jun 2024
Viewed by 830
Abstract
The aim of manufacturing large aerospace parts for the three-dimensional scanning field demands high precision and efficiency. However, it may be more challenging to meet the full coverage of the measurement problems for large aerospace parts with the scanning range of traditional three-dimensional [...] Read more.
The aim of manufacturing large aerospace parts for the three-dimensional scanning field demands high precision and efficiency. However, it may be more challenging to meet the full coverage of the measurement problems for large aerospace parts with the scanning range of traditional three-dimensional scanning methods. This paper establishes a dynamic posturing scanning measurement system for large aerospace parts with a six-degree-of-freedom posturing platform and a six-degree-of-freedom industrial robot linkage. It establishes a mathematical model of dynamic three-dimensional scanning posturing. It proposes a platform attitude adjustment strategy based on the field of view angle of a 3D scanner during the adjustment of a six-degree-of-freedom platform. The dynamic scanning path planning is carried out using the three-dimensional spatial decomposition method, and the vector coordinates of the critical points at the edges of the missing areas of the scan are used to re-scan the missing areas to establish the dynamic scanning paths of large aerospace parts. It is experimentally verified that the system can realize the dynamic scanning of complex curved large aerospace parts. The experimental results show that the measurement efficiency is improved by more than 75%, and the point cloud coverage of the scanning reconstruction is improved by 18% for large aerospace components with complex surfaces. Full article
Show Figures

Figure 1

19 pages, 7444 KiB  
Article
Intelligent Detection of Tunnel Leakage Based on Improved Mask R-CNN
by Wenkai Wang, Xiangyang Xu and Hao Yang
Symmetry 2024, 16(6), 709; https://doi.org/10.3390/sym16060709 - 7 Jun 2024
Cited by 2 | Viewed by 539
Abstract
The instance segmentation model based on deep learning has addressed the challenges in intelligently detecting water leakage in shield tunneling. Due to the limited generalization ability of the baseline model, occurrences of missed detections, false detections, and repeated detections are encountered during the [...] Read more.
The instance segmentation model based on deep learning has addressed the challenges in intelligently detecting water leakage in shield tunneling. Due to the limited generalization ability of the baseline model, occurrences of missed detections, false detections, and repeated detections are encountered during the actual detection of tunnel water leakage. This paper adopts Mask R-CNN as the baseline model and introduces a mask cascade strategy to enhance the quality of positive samples. Additionally, the backbone network in the model is replaced with RegNetX to enlarge the model’s receptive field, and MDConv is introduced to enhance the model’s feature extraction capability in the edge receptive field region. Building upon these improvements, the proposed model is named Cascade-MRegNetX. The backbone network MRegNetX features a symmetrical block structure, which, when combined with deformable convolutions, greatly assists in extracting edge features from corresponding regions. During the dataset preprocessing stage, we augment the dataset through image rotation and classification, thereby improving both the quality and quantity of samples. Finally, by leveraging pre-trained models through transfer learning, we enhance the robustness of the target model. This model can effectively extract features from water leakage areas of different scales or deformations. Through instance segmentation experiments conducted on a dataset comprising 766 images of tunnel water leakage, the experimental results demonstrate that the improved model achieves higher precision in tunnel water leakage mask detection. Through these enhancements, the detection effectiveness, feature extraction capability, and generalization ability of the baseline model are improved. The improved Cascade-MRegNetX model achieves respective improvements of 7.7%, 2.8%, and 10.4% in terms of AP, AP0.5, and AP0.75 compared to the existing Cascade Mask R-CNN model. Full article
Show Figures

Figure 1

37 pages, 20496 KiB  
Article
An Urban Built Environment Analysis Approach for Street View Images Based on Graph Convolutional Neural Networks
by Changmin Liu, Yang Wang, Weikang Li, Liufeng Tao, Sheng Hu and Mengqi Hao
Appl. Sci. 2024, 14(5), 2108; https://doi.org/10.3390/app14052108 - 3 Mar 2024
Cited by 2 | Viewed by 934
Abstract
Traditionally, research in the field of traffic safety has predominantly focused on two key areas—the identification of traffic black spots and the analysis of accident causation. However, such research heavily relies on historical accident records obtained from the traffic management department, which often [...] Read more.
Traditionally, research in the field of traffic safety has predominantly focused on two key areas—the identification of traffic black spots and the analysis of accident causation. However, such research heavily relies on historical accident records obtained from the traffic management department, which often suffer from missing or incomplete information. Moreover, these records typically offer limited insight into the various attributes associated with accidents, thereby posing challenges to comprehensive analyses. Furthermore, the collection and management of such data incur substantial costs. Consequently, there is a pressing need to explore how the features of the urban built environment can effectively facilitate the accurate identification and analysis of traffic black spots, enabling the formulation of effective management strategies to support urban development. In this study, we research the Kowloon Peninsula in Hong Kong, with a specific focus on road intersections as the fundamental unit of our analysis. We propose leveraging street view images as a valuable source of data, enabling us to depict the urban built environment comprehensively. Through the utilization of models such as random forest approaches, we conduct research on traffic black spot identification, attaining an impressive accuracy rate of 87%. To account for the impact of the built environment surrounding adjacent road intersections on traffic black spot identification outcomes, we adopt a node-based approach, treating road intersections as nodes and establishing spatial relationships between them as edges. The features characterizing the built environment at these road intersections serve as node attributes, facilitating the construction of a graph structure representation. By employing a graph-based convolutional neural network, we enhance the traffic black spot identification methodology, resulting in an improved accuracy rate of 90%. Furthermore, based on the distinctive attributes of the urban built environment, we analyze the underlying causes of traffic black spots. Our findings highlight the significant influence of buildings, sky conditions, green spaces, and billboards on the formation of traffic black spots. Remarkably, we observe a clear negative correlation between buildings, sky conditions, and green spaces, while billboards and human presence exhibit a distinct positive correlation. Full article
(This article belongs to the Special Issue Emerging GIS Technologies and Their Applications)
Show Figures

Figure 1

22 pages, 12276 KiB  
Article
Dual-Task Network for Terrace and Ridge Extraction: Automatic Terrace Extraction via Multi-Task Learning
by Jun Zhang, Jun Zhang, Xiao Huang, Weixun Zhou, Huyan Fu, Yuyan Chen and Zhenghao Zhan
Remote Sens. 2024, 16(3), 568; https://doi.org/10.3390/rs16030568 - 1 Feb 2024
Cited by 1 | Viewed by 945
Abstract
Terrace detection and ridge extraction from high-resolution remote sensing imagery are crucial for soil conservation and grain production on sloping land. Traditional methods use low-to-medium resolution images, missing detailed features and lacking automation. Terrace detection and ridge extraction are closely linked, with each [...] Read more.
Terrace detection and ridge extraction from high-resolution remote sensing imagery are crucial for soil conservation and grain production on sloping land. Traditional methods use low-to-medium resolution images, missing detailed features and lacking automation. Terrace detection and ridge extraction are closely linked, with each influencing the other’s outcomes. However, most studies address these tasks separately, overlooking their interdependence. This research introduces a cutting-edge, multi-scale, and multi-task deep learning framework, termed DTRE-Net, designed for comprehensive terrace information extraction. This framework bridges the gap between terrace detection and ridge extraction, executing them concurrently. The network incorporates residual networks, multi-scale fusion modules, and multi-scale residual correction modules to enhance the model’s robustness in feature extraction. Comprehensive evaluations against other deep learning-based semantic segmentation methods using GF-2 terraced imagery from two distinct areas were undertaken. The results revealed intersection over union (IoU) values of 85.18% and 86.09% for different terrace morphologies and 59.79% and 73.65% for ridges. Simultaneously, we have confirmed that the connectivity of results is improved when employing multi-task learning for ridge extraction compared to directly extracting ridges. These outcomes underscore DTRE-Net’s superior capability in the automation of terrace and ridge extraction relative to alternative techniques. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

19 pages, 10316 KiB  
Article
Suitable-Matching Areas’ Selection Method Based on Multi-Level Saliency
by Supeng Jiang, Haibo Luo and Yunpeng Liu
Remote Sens. 2024, 16(1), 161; https://doi.org/10.3390/rs16010161 - 30 Dec 2023
Cited by 1 | Viewed by 793
Abstract
Scene-matching navigation is one of the essential technologies for achieving precise navigation in satellite-denied environments. Selecting suitable-matching areas is crucial for planning trajectory and reducing yaw. Most traditional selection methods of suitable-matching areas use hierarchical screening based on multiple feature indicators. However, these [...] Read more.
Scene-matching navigation is one of the essential technologies for achieving precise navigation in satellite-denied environments. Selecting suitable-matching areas is crucial for planning trajectory and reducing yaw. Most traditional selection methods of suitable-matching areas use hierarchical screening based on multiple feature indicators. However, these methods rarely consider the interrelationship between different feature indicators and use the same set of screening thresholds for different categories of images, which has poor versatility and can easily cause mis-selection and omission. To solve this problem, a suitable-matching areas’ selection method based on multi-level saliency is proposed. The matching performance score is obtained by fusing several segmentation levels’ salient feature extraction results and performing weighted calculations with the sub-image edge density. Compared with the hierarchical screening methods, the matching performance of the candidate areas selected by our algorithm is at least 22.2% higher, and it also has a better matching ability in different scene categories. In addition, the number of missed and wrong selections is significantly reduced. The average matching accuracy of the top three areas selected by our method reached 0.8549, 0.7993, and 0.7803, respectively, under the verification of multiple matching algorithms. Experimental results show this paper’s suitable-matching areas’ selection method is more robust. Full article
(This article belongs to the Special Issue Remote Sensing Satellites Calibration and Validation)
Show Figures

Figure 1

26 pages, 15478 KiB  
Article
Newly Designed Identification Scheme for Monitoring Ice Thickness on Power Transmission Lines
by Nalini Rizkyta Nusantika, Xiaoguang Hu and Jin Xiao
Appl. Sci. 2023, 13(17), 9862; https://doi.org/10.3390/app13179862 - 31 Aug 2023
Cited by 2 | Viewed by 1123
Abstract
Overhead power transmission line icing (PTLI) disasters are one of the most severe dangers to power grid safety. Automatic iced transmission line identification is critical in various fields. However, existing methods primarily focus on the linear characteristics of transmission lines, employing a two-step [...] Read more.
Overhead power transmission line icing (PTLI) disasters are one of the most severe dangers to power grid safety. Automatic iced transmission line identification is critical in various fields. However, existing methods primarily focus on the linear characteristics of transmission lines, employing a two-step process involving edge and line detection for PTLI identification. Nonetheless, these traditional methods are often complicated when confronted with challenges such as background noise or variations in illumination, leading to incomplete identification of the target area, missed target regions, or misclassification of background pixels as foreground. This paper proposes a new iced transmission line identification scheme to overcome this limitation. In the initial stage, we integrate the image restoration method with image filter enhancement to restore the image’s color information. This combined approach effectively retains valuable information and preserves the original image quality, thereby mitigating the noise presented during the image acquisition. Subsequently, in the second stage, we introduce an enhanced multi-threshold algorithm to separate background and target pixels. After image segmentation, we enhance the image and obtain the region of interest (ROI) through connected component labeling modification and mathematical morphology operations, eliminating background regions. Our proposed scheme achieves an accuracy value of 97.72%, a precision value of 96.24%, a recall value of 86.22%, and a specificity value of 99.48% based on the average value of test images. Through object segmentation and location, the proposed method can avoid background interference, effectively solve the problem of transmission line icing identification, and achieve 90% measurement accuracy compared to manual measurement on the collected PTLI dataset. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

19 pages, 2891 KiB  
Article
Metrological Comparison of Available Methods to Correct Edge-Effect Local Plasticity in Instrumented Indentation Test
by Jasurkhuja Kholkhujaev, Giacomo Maculotti, Gianfranco Genta and Maurizio Galetto
Materials 2023, 16(12), 4262; https://doi.org/10.3390/ma16124262 - 8 Jun 2023
Viewed by 1282
Abstract
The Instrumented Indentation Test (IIT) mechanically characterizes materials from the nano to the macro scale, enabling the evaluation of microstructure and ultra-thin coatings. IIT is a non-conventional technique applied in strategic sectors, e.g., automotive, aerospace and physics, to foster the development of innovative [...] Read more.
The Instrumented Indentation Test (IIT) mechanically characterizes materials from the nano to the macro scale, enabling the evaluation of microstructure and ultra-thin coatings. IIT is a non-conventional technique applied in strategic sectors, e.g., automotive, aerospace and physics, to foster the development of innovative materials and manufacturing processes. However, material plasticity at the indentation edge biases the characterization results. Correcting such effects is extremely challenging, and several methods have been proposed in the literature. However, comparisons of these available methods are rare, often limited in scope, and neglect metrological performance of the different methods. After reviewing the main available methods, this work innovatively proposes a performance comparison within a metrological framework currently missing in the literature. The proposed framework for performance comparison is applied to some available methods, i.e., work-based, topographical measurement of the indentation to evaluate the area and the volume of the pile-up, Nix–Gao model and the electrical contact resistance (ECR) approach. The accuracy and measurement uncertainty of the correction methods is compared considering calibrated reference materials to establish traceability of the comparison. Results, also discussed in light of the practical convenience of the methods, show that the most accurate method is the Nix–Gao approach (accuracy of 0.28 GPa, expanded uncertainty of 0.57 GPa), while the most precise is the ECR (accuracy of 0.33 GPa, expanded uncertainty of 0.37 GPa), which also allows for in-line and real-time corrections. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

21 pages, 3185 KiB  
Article
Intelligent Detection Method for Concrete Dam Surface Cracks Based on Two-Stage Transfer Learning
by Jianyuan Li, Xiaochun Lu, Ping Zhang and Qingquan Li
Water 2023, 15(11), 2082; https://doi.org/10.3390/w15112082 - 31 May 2023
Cited by 6 | Viewed by 1962
Abstract
The timely identification and detection of surface cracks in concrete dams, an important public safety infrastructure, is of great significance in predicting engineering hazards and ensuring dam safety. Due to their low efficiency and accuracy, manual detection methods are gradually being replaced by [...] Read more.
The timely identification and detection of surface cracks in concrete dams, an important public safety infrastructure, is of great significance in predicting engineering hazards and ensuring dam safety. Due to their low efficiency and accuracy, manual detection methods are gradually being replaced by computer vision techniques, and deep learning semantic segmentation methods have higher accuracy and robustness than traditional image methods. However, the lack of data images and insufficient detection performance remain challenges in concrete dam surface crack detection scenarios. Therefore, this paper proposes an intelligent detection method for concrete dam surface cracks based on two-stage transfer learning. First, relevant domain knowledge is transferred to the target domain using two-stage transfer learning, cross-domain and intradomain learning, allowing the model to be fully trained with a small dataset. Second, the segmentation capability is enhanced by using residual network 50 (ResNet50) as a UNet model feature extraction network to enhance crack feature information extraction. Finally, multilayer parallel residual attention (MPR) is integrated into its jump connection path to improve the focus on critical information for clearer fracture edge segmentation. The results show that the proposed method achieves optimal mIoU and mPA of 88.3% and 92.7%, respectively, among many advanced semantic segmentation models. Compared with the benchmark UNet model, the proposed method improves mIoU and mPA by 4.6% and 3.2%, respectively, reduces FLOPs by 36.7%, improves inference speed by 48.9%, verifies its better segmentation performance on dam face crack images with a low fine crack miss detection rate and clear crack edge segmentation, and achieves an accuracy of over 85.7% in crack area prediction. In summary, the proposed method has higher efficiency and accuracy in concrete dam face crack detection, with greater robustness, and can provide a better alternative or complementary approach to dam safety inspections than the benchmark UNet model. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Hydraulic Engineering)
Show Figures

Figure 1

21 pages, 3191 KiB  
Article
Graph Neural Network-Based Efficient Subgraph Embedding Method for Link Prediction in Mobile Edge Computing
by Xiaolong Deng, Jufeng Sun and Junwen Lu
Sensors 2023, 23(10), 4936; https://doi.org/10.3390/s23104936 - 20 May 2023
Cited by 2 | Viewed by 2155
Abstract
Link prediction is critical to completing the missing links in a network or to predicting the generation of new links according to current network structure information, which is vital for analyzing the evolution of a network, such as the logical architecture construction of [...] Read more.
Link prediction is critical to completing the missing links in a network or to predicting the generation of new links according to current network structure information, which is vital for analyzing the evolution of a network, such as the logical architecture construction of MEC (mobile edge computing) routing links of a 5G/6G access network. Link prediction can provide throughput guidance for MEC and select appropriate c nodes through the MEC routing links of 5G/6G access networks. Traditional link prediction algorithms are always based on node similarity, which needs predefined similarity functions, is highly hypothetical and can only be applied to specific network structures without generality. To solve this problem, this paper proposes a new efficient link prediction algorithm PLAS (predicting links by analysis subgraph) and its GNN (graph neural network) version PLGAT (predicting links by graph attention networks) based on the target node pair subgraph. In order to automatically learn the graph structure characteristics, the algorithm first extracts the h-hop subgraph of the target node pair, and then predicts whether the target node pair will be linked according to the subgraph. Experiments on eleven real datasets show that our proposed link prediction algorithm is suitable for various network structures and is superior to other link prediction algorithms, especially in some 5G MEC Access networks datasets with higher AUC (area under curve) values. Full article
(This article belongs to the Special Issue 6G Space-Air-Ground Communication Networks and Key Technologies)
Show Figures

Figure 1

14 pages, 7288 KiB  
Article
Weak-Edge Extraction of Nuclear Plate Fuel Neutron Images at Low Lining Degree
by Qibiao Wang, Yushi Luo, Yong Sun, Yang Wu, Bin Tang, Shuming Peng and Xianguo Tuo
Appl. Sci. 2023, 13(8), 5090; https://doi.org/10.3390/app13085090 - 19 Apr 2023
Viewed by 1100
Abstract
Neutron imaging is an effective nondestructive testing (NDT) technique widely applied to detect structural defects and the enrichment of nuclear fuel elements due to its high penetration and nuclide-sensitive properties. Since the fuel element pellet is sealed in the cladding, the transmission imaging [...] Read more.
Neutron imaging is an effective nondestructive testing (NDT) technique widely applied to detect structural defects and the enrichment of nuclear fuel elements due to its high penetration and nuclide-sensitive properties. Since the fuel element pellet is sealed in the cladding, the transmission imaging result is a superposition of the two parts. Therefore, the attenuation of neutrons by the cladding is interference that must be considered in the enrichment analysis. It is necessary to extract and separate cladding and pellets using an edge extraction method. However, the low neutron cross-section of the cladding material (e.g., aluminum and zirconium) leads to poor grayscale contrast at the cladding edge in the imaging result, and the intensity of the cladding edge is significantly lower than that of the pellet edge. In addition, affected by the noise from the imaging environment, the boundaries of targets are further blurred, making edge detection more challenging. Traditional detection algorithms extract the weak edges of cladding incompletely, and the results are discontinuous, with obvious edge breaks and missing areas. This paper proposes a method to extract edges in neutron images based on phase congruency (PC). This study utilized the classical perceptual field model to improve contrast at weak edges. The enriched edge map was generated using our PC model from six directions, allowing more weak edges to be detected accurately. The non-maximum suppression ensured precise localization and avoided edge breaks. Furthermore, the edge results were optimized by eliminating noise through morphological operations. The experimental results demonstrate that the proposed method effectively detects the weak edges of the cladding, is superior in accuracy and integrity to traditional detection, and is able to obtain stable and reliable results with different materials of neutron images. The edge integrity improved by 64.1%, and the edge localization accuracy reached 94.3%. The extracted edge information is useful in the next stage of the high-precision enrichment analysis. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

16 pages, 8320 KiB  
Article
An Optimised Region-Growing Algorithm for Extraction of the Loess Shoulder-Line from DEMs
by Zihan Liu, Hongming Zhang, Liang Dong, Zhitong Sun, Shufang Wu, Biao Zhang, Linlin Yuan, Zhenfei Wang and Qimeng Jia
ISPRS Int. J. Geo-Inf. 2023, 12(4), 140; https://doi.org/10.3390/ijgi12040140 - 24 Mar 2023
Viewed by 1310
Abstract
The positive and negative terrains (P–N terrains) of the Loess Plateau of China are important geographical topography elements for measuring the degree of surface erosion and distinguishing the types of landforms. Loess shoulder-lines are an important terrain feature in the Loess Plateau and [...] Read more.
The positive and negative terrains (P–N terrains) of the Loess Plateau of China are important geographical topography elements for measuring the degree of surface erosion and distinguishing the types of landforms. Loess shoulder-lines are an important terrain feature in the Loess Plateau and are often used as a criterion for distinguishing P–N terrains. The extraction of shoulder lines is important for predicting erosion and recognising a gully head. However, existing extraction algorithms for loess shoulder-lines in areas with insignificant slopes need to be improved. This study proposes a regional fusion (RF) method that integrates the slope variation-based method and region-growing algorithm to extract loess shoulder-lines based on a Digital Elevation Model (DEM) at a spatial resolution of 5 m. The RF method introduces different terrain factors into the growth standards of the region-growing algorithm to extract loess-shoulder lines. First, we employed a slope-variation-based method to build the initial set of loess shoulder-lines and used the difference between the smoothed and real DEMs to extract the initial set for the N terrain. Second, the region-growing algorithm with improved growth standards was used to generate a complete area of the candidate region of the loess shoulder-lines and the N terrain, which were fused to generate and integrate contours to eliminate the discontinuity. Finally, loess shoulder-lines were identified by detecting the edge of the integrated contour, with results exhibiting congregate points or spurs, eliminated via a hit-or-miss transform to optimise the final results. Validation of the experimental area of loess ridges and hills in Shaanxi Province showed that the accuracy of the RF method based on the Euclidean distance offset percentage within a 10-m deviation range reached 96.9% compared to the manual digitalisation method. Based on the mean absolute error and standard absolute deviation values, compared with Zhou’s improved snake model and the bidirectional DEM relief-shading methods, the proposed RF method extracted the loess shoulder-lines highly accurately. Full article
Show Figures

Figure 1

15 pages, 11854 KiB  
Article
Research on Automatic Recognition Method of Artificial Ground Target Based on Improved HED
by Wei Zhong, Yueqiu Jiang and Xin Zhang
Appl. Sci. 2023, 13(5), 3163; https://doi.org/10.3390/app13053163 - 1 Mar 2023
Viewed by 1368
Abstract
Automatic target recognition technology is an important research direction in the field of machine vision. Artificial ground targets, such as bridges, airports and houses, are mostly composed of straight lines. The ratio of geometric primitive lines to the triangle area formed by their [...] Read more.
Automatic target recognition technology is an important research direction in the field of machine vision. Artificial ground targets, such as bridges, airports and houses, are mostly composed of straight lines. The ratio of geometric primitive lines to the triangle area formed by their combination is used as the feature quantity to describe the group of lines, so as to characterize the artificial ground target. In view of the shortcomings of traditional edge detection methods, such as background suppression, non-prominent targets, missing positions, etc., this paper proposed an image edge detection method based on depth learning. By combining the traditional edge detection algorithm with the edge detection algorithm based on an improved HED network, the real-time target image edge detection was completed. An automatic target recognition method based on template matching was proposed. This method solved the problem of both homologous template matching and heterogeneous template matching, which has important theoretical value. First, the lines were combined to form the geometric primitives of the line group, and then the relationship of the lines in the group was determined by using the characteristic quantity of the line group. The best line group matching the target template was found in the image edge, and the homonymous points in the real-time image and the target template were calculated. The affine transformation matrix between the two images was obtained according to the homonymous points, and then the accurate position of the target in the real-time image was found. Full article
(This article belongs to the Special Issue Advances in Nonlinear Dynamics and Mechanical Vibrations)
Show Figures

Figure 1

17 pages, 3292 KiB  
Article
An Intelligent Anomaly Detection Approach for Accurate and Reliable Weather Forecasting at IoT Edges: A Case Study
by Şükrü Mustafa Kaya, Buket İşler, Adnan M. Abu-Mahfouz, Jawad Rasheed and Abdulaziz AlShammari
Sensors 2023, 23(5), 2426; https://doi.org/10.3390/s23052426 - 22 Feb 2023
Cited by 6 | Viewed by 2957
Abstract
Industrialization and rapid urbanization in almost every country adversely affect many of our environmental values, such as our core ecosystem, regional climate differences and global diversity. The difficulties we encounter as a result of the rapid change we experience cause us to encounter [...] Read more.
Industrialization and rapid urbanization in almost every country adversely affect many of our environmental values, such as our core ecosystem, regional climate differences and global diversity. The difficulties we encounter as a result of the rapid change we experience cause us to encounter many problems in our daily lives. The background of these problems is rapid digitalization and the lack of sufficient infrastructure to process and analyze very large volumes of data. Inaccurate, incomplete or irrelevant data produced in the IoT detection layer causes weather forecast reports to drift away from the concepts of accuracy and reliability, and as a result, activities based on weather forecasting are disrupted. A sophisticated and difficult talent, weather forecasting needs the observation and processing of enormous volumes of data. In addition, rapid urbanization, abrupt climate changes and mass digitization make it more difficult for the forecasts to be accurate and reliable. Increasing data density and rapid urbanization and digitalization make it difficult for the forecasts to be accurate and reliable. This situation prevents people from taking precautions against bad weather conditions in cities and rural areas and turns into a vital problem. In this study, an intelligent anomaly detection approach is presented to minimize the weather forecasting problems that arise as a result of rapid urbanization and mass digitalization. The proposed solutions cover data processing at the edge of the IoT and include filtering out the missing, unnecessary or anomaly data that prevent the predictions from being more accurate and reliable from the data obtained through the sensors. Anomaly detection metrics of five different machine learning (ML) algorithms, including support vector classifier (SVC), Adaboost, logistic regression (LR), naive Bayes (NB) and random forest (RF), were also compared in the study. These algorithms were used to create a data stream using the time, temperature, pressure, humidity and other sensor-generated information. Full article
(This article belongs to the Special Issue Soft Sensors and Sensing Techniques)
Show Figures

Figure 1

Back to TopTop