Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,026)

Search Parameters:
Keywords = electric vehicle (EV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1426 KiB  
Article
Factors Impacting Consumers’ Purchase Intention of Electric Vehicles in China: Based on the Integration of Theory of Planned Behaviour and Norm Activation Model
by Zhongyang Ji, Hao Jiang and Jingyi Zhu
Sustainability 2024, 16(20), 9092; https://doi.org/10.3390/su16209092 (registering DOI) - 20 Oct 2024
Abstract
Understanding the factors that drive consumers to purchase electric vehicles (EVs) is critical to achieving decarbonization of China’s transportation sector, as well as mitigating global warming. This study aims to construct a research model based on altruistic and self-interested perspectives by integrating the [...] Read more.
Understanding the factors that drive consumers to purchase electric vehicles (EVs) is critical to achieving decarbonization of China’s transportation sector, as well as mitigating global warming. This study aims to construct a research model based on altruistic and self-interested perspectives by integrating the Theory of Planned Behaviour (TPB) and Norm Activation Model (NAM) to predict the psychological factors that influence Chinese consumers’ intention to purchase EVs. Data were collected from 867 participants in China and empirically tested using Structural Equation Modeling (SEM). Self-interested factors, namely subjective norms, attitudes and perceived behavioural control, all had a significant positive effect on EV purchase intention. Additionally, the results showed that personal norms had the greatest effect on EV purchase intention. It was also found that awareness of consequence, ascription of responsibility and subjective norms were positive predictors of personal norms. Awareness of consequence had a positive effect on both the ascription of responsibility and attitudes. The findings contribute to understanding the psychological drivers of Chinese consumers’ intention to purchase EVs and can provide decision-making references for policy makers and manufacturers. Full article
(This article belongs to the Special Issue Low Carbon Energy and Sustainability—2nd Edition)
Show Figures

Figure 1

18 pages, 7064 KiB  
Review
A Review on Advanced Battery Thermal Management Systems for Fast Charging in Electric Vehicles
by Le Duc Tai, Kunal Sandip Garud, Seong-Guk Hwang and Moo-Yeon Lee
Batteries 2024, 10(10), 372; https://doi.org/10.3390/batteries10100372 (registering DOI) - 20 Oct 2024
Abstract
To protect the environment and reduce dependence on fossil fuels, the world is shifting towards electric vehicles (EVs) as a sustainable solution. The development of fast charging technologies for EVs to reduce charging time and increase operating range is essential to replace traditional [...] Read more.
To protect the environment and reduce dependence on fossil fuels, the world is shifting towards electric vehicles (EVs) as a sustainable solution. The development of fast charging technologies for EVs to reduce charging time and increase operating range is essential to replace traditional internal combustion engine (ICE) vehicles. Lithium-ion batteries (LIBs) are efficient energy storage systems in EVs. However, the efficiency of LIBs depends significantly on their working temperature range. However, the huge amount of heat generated during fast charging increases battery temperature uncontrollably and may lead to thermal runaway, which poses serious hazards during the operation of EVs. In addition, fast charging with high current accelerates battery aging and seriously reduces battery capacity. Therefore, an effective and advanced battery thermal management system (BTMS) is essential to ensure the performance, lifetime, and safety of LIBs, particularly under extreme charging conditions. In this perspective, the current review presents the state-of-the-art thermal management strategies for LIBs during fast charging. The serious thermal problems owing to heat generated during fast charging and its impacts on LIBs are discussed. The core part of this review presents advanced cooling strategies such as indirect liquid cooling, immersion cooling, and hybrid cooling for the thermal management of batteries during fast charging based on recently published research studies in the period of 2019–2024 (5 years). Finally, the key findings and potential directions for next-generation BTMSs toward fast charging are proposed. This review offers an in-depth analysis by providing recommendations and potential solutions to develop reliable and efficient BTMSs for LIBs during fast charging. Full article
(This article belongs to the Special Issue Advances in Thermal Management for Batteries)
Show Figures

Figure 1

16 pages, 4926 KiB  
Article
Regional Analysis and Evaluation Method for Assessing Potential for Installation of Renewable Energy and Electric Vehicles
by Yutaro Akimoto, Raimu Okano, Keiichi Okajima and Shin-nosuke Suzuki
World Electr. Veh. J. 2024, 15(10), 477; https://doi.org/10.3390/wevj15100477 (registering DOI) - 19 Oct 2024
Abstract
Many countries are adopting renewable energy (RE) and electric vehicles (EVs) to achieve net-zero emissions by 2050. The indicators of RE and EV potentials are different. Decision-makers want to introduce RE and EVs; however, they need a method to find suitable areas. In [...] Read more.
Many countries are adopting renewable energy (RE) and electric vehicles (EVs) to achieve net-zero emissions by 2050. The indicators of RE and EV potentials are different. Decision-makers want to introduce RE and EVs; however, they need a method to find suitable areas. In addition, this is required in the time-series analysis to provide a detailed resolution. In this study, we conducted a time-series analysis in Japan to evaluate suitable areas for the combined use of RE and EVs. The results showed the surplus RE areas and shortage RE urban areas. The time-series analysis has quantitatively shown that it is not enough to charge EV batteries using surplus RE. Moreover, a ranking methodology was developed for the evaluation based on electric demand and vehicle numbers. This enables the government’s prioritization of prefectures and the prefectures’ prioritization of municipalities according to their policies. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-mobility)
Show Figures

Figure 1

19 pages, 4338 KiB  
Article
Discovering Electric Vehicle Charging Locations Based on Clustering Techniques Applied to Vehicular Mobility Datasets
by Elmer Magsino, Francis Miguel M. Espiritu and Kerwin D. Go
ISPRS Int. J. Geo-Inf. 2024, 13(10), 368; https://doi.org/10.3390/ijgi13100368 (registering DOI) - 18 Oct 2024
Abstract
With the proliferation of vehicular mobility traces because of inexpensive on-board sensors and smartphones, utilizing them to further understand road movements have become easily accessible. These huge numbers of vehicular traces can be utilized to determine where to enhance road infrastructures such as [...] Read more.
With the proliferation of vehicular mobility traces because of inexpensive on-board sensors and smartphones, utilizing them to further understand road movements have become easily accessible. These huge numbers of vehicular traces can be utilized to determine where to enhance road infrastructures such as the deployment of electric vehicle (EV) charging stations. As more EVs are plying today’s roads, the driving anxiety is minimized with the presence of sufficient charging stations. By correctly extracting the various transportation parameters from a given dataset, one can design an adequate and adaptive EV charging network that can provide comfort and convenience for the movement of people and goods from one point to another. In this study, we determined the possible EV charging station locations based on an urban city’s vehicular capacity distribution obtained from taxi and ride-hailing mobility GPS traces. To achieve this, we first transformed the dynamic vehicular environment based on vehicular capacity into its equivalent urban single snapshot. We then obtained the various traffic zone distributions by initially utilizing k-means clustering to allow flexibility in the total number of wanted traffic zones in each dataset. In each traffic zone, iterative clustering techniques employing Density-based Spatial Clustering of Applications with Noise (DBSCAN) or clustering by fast search and find of density peaks (CFS) revealed various area separation where EV chargers were needed. Finally, to find the exact location of the EV charging station, we last ran k-means to locate centroids, depending on the constraint on how many EV chargers were needed. Extensive simulations revealed the strengths and weaknesses of the clustering methods when applied to our datasets. We utilized the silhouette and Calinski–Harabasz indices to measure the validity of cluster formations. We also measured the inter-station distances to understand the closeness of the locations of EV chargers. Our study shows how CFS + k-means clustering techniques are able to pinpoint EV charger locations. However, when utilizing DBSCAN initially, the results did not present any notable outcome. Full article
(This article belongs to the Topic Spatial Decision Support Systems for Urban Sustainability)
Show Figures

Figure 1

19 pages, 4201 KiB  
Article
Novel Droop-Based Techniques for Dynamic Performance Improvement in a Linear Active Disturbance Rejection Controlled-Dual Active Bridge for Fast Battery Charging of Electric Vehicles
by Armel Asongu Nkembi, Danilo Santoro, Fawad Ahmad, Iñigo Kortabarria, Paolo Cova, Emilio Sacchi and Nicola Delmonte
Energies 2024, 17(20), 5171; https://doi.org/10.3390/en17205171 - 17 Oct 2024
Abstract
Electric vehicles (EVs) are rapidly replacing fossil-fuel-powered vehicles, creating a need for a fast-charging infrastructure that is crucial for their widespread adoption. This research addresses this challenge by improving the control of dual active bridge converters, a popular choice for high-power EV charging [...] Read more.
Electric vehicles (EVs) are rapidly replacing fossil-fuel-powered vehicles, creating a need for a fast-charging infrastructure that is crucial for their widespread adoption. This research addresses this challenge by improving the control of dual active bridge converters, a popular choice for high-power EV charging stations. A critical issue in EV battery charging is the smooth transition between charging stages (constant current and constant voltage) which can disrupt converter performance. This work proposes a novel feedforward control method using a combination of droop-based techniques combined with a sophisticated linear active disturbance rejection control system applied to a single-phase shift-modulated dual active bridge. This combination ensures a seamless transition between charging stages and enhances the robustness of the system against fluctuations in both input voltage and load. Numerical simulations using MATLAB/Simulink R2024a demonstrated that this approach not only enables smooth charging but also reduces the peak input converter current, allowing for the use of lower-rated components in the converter design. This translates to potentially lower costs for building these essential charging stations and faster adoption of EVs. Full article
Show Figures

Figure 1

16 pages, 5588 KiB  
Article
The Influence of Thick Cathode Fabrication Processing on Battery Cell Performance
by Dewen Kong, Haijing Liu, Si Chen and Meiyuan Wu
Electrochem 2024, 5(4), 421-436; https://doi.org/10.3390/electrochem5040028 - 16 Oct 2024
Abstract
The lithium-ion battery (LIB) is the key energy storage device for electric transportation. The thick electrode (single-sided areal capacity >4.0 mAh/cm2) design is a straightforward and effective strategy for improving cell energy density by improving the mass proportion of electroactive materials [...] Read more.
The lithium-ion battery (LIB) is the key energy storage device for electric transportation. The thick electrode (single-sided areal capacity >4.0 mAh/cm2) design is a straightforward and effective strategy for improving cell energy density by improving the mass proportion of electroactive materials in whole cell components and for reducing cost of the battery cell without involving new chemistries of uncertainties. Thus, selecting a low-cost and environmentally friendly fabrication process to achieve a thick cathode electrode with good electrochemical performance is of strong interest. This study investigated the impact of fabrication processes on the performance of thick LiNi0.75Mn0.25O2 (NM75) cathode electrodes in pouch cells. Two fabrication methods were compared: the conventional polyvinylidene fluoride (PVDF)-based slurry casting method (C-NM75) and the polytetrafluoroethylene (PTFE)-based powder fibrillating process (F-NM75). The pouch cells with F-NM75 electrodes exhibited significantly improved discharge and charge rate capabilities, with a discharge capacity ratio (3 C vs. C/3) > 62% and a charge capacity ratio (2 C vs. C/3) > 81%. Furthermore, F-NM75 cells demonstrated outstanding C/3 cycling performance, retaining 86% of discharge capacity after 2200 cycles. These results strongly indicated that the PTFE-based powder fibrillating process is a promising solution to construct high-performance thick cathode electrodes for electric vehicles (EVs) applications. Full article
Show Figures

Figure 1

20 pages, 4777 KiB  
Article
An Optimization Strategy for EV-Integrated Microgrids Considering Peer-to-Peer Transactions
by Sen Tian, Qian Xiao, Tianxiang Li, Yu Jin, Yunfei Mu, Hongjie Jia, Wenhua Li, Remus Teodorescu and Josep M. Guerrero
Sustainability 2024, 16(20), 8955; https://doi.org/10.3390/su16208955 - 16 Oct 2024
Abstract
The scale of electric vehicles (EVs) in microgrids is growing prominently. However, the stochasticity of EV charging behavior poses formidable obstacles to exploring their dispatch potential. To solve this issue, an optimization strategy for EV-integrated microgrids considering peer-to-peer (P2P) transactions has been proposed [...] Read more.
The scale of electric vehicles (EVs) in microgrids is growing prominently. However, the stochasticity of EV charging behavior poses formidable obstacles to exploring their dispatch potential. To solve this issue, an optimization strategy for EV-integrated microgrids considering peer-to-peer (P2P) transactions has been proposed in this paper. This research strategy contributes to the sustainable development of microgrids under large-scale EV integration. Firstly, a novel cooperative operation framework considering P2P transactions is established, in which the impact factors of EV charging are regarded to simulate its stochasticity and the energy trading process of the EV-integrated microgrid participating in P2P transactions is defined. Secondly, cost models for the EV-integrated microgrid are established. Thirdly, a three-stage optimization strategy is proposed to simplify the solving process. It transforms the scheduling problem into three solvable subproblems and restructures them with Lagrangian relaxation. Finally, case studies demonstrate that the proposed strategy optimizes EV load distribution, reduces the overall operational cost of the EV-integrated microgrid, and enhances the economic efficiency of each microgrid participating in P2P transactions. Full article
Show Figures

Figure 1

15 pages, 447 KiB  
Article
Enhanced Wavelet Transform Dynamic Attention Transformer Model for Recycled Lithium-Ion Battery Anomaly Detection
by Xin Liu, Haihong Huang, Wenjing Chang, Yongqi Cao and Yuhang Wang
Energies 2024, 17(20), 5139; https://doi.org/10.3390/en17205139 (registering DOI) - 16 Oct 2024
Abstract
Rapid advancements in electric vehicle (EV) technology have highlighted the importance of lithium-ion (Li) batteries. These batteries are essential for safety and reliability. Battery data show non-stationarity and complex dynamics, presenting challenges for current monitoring and prediction methods. These methods often fail to [...] Read more.
Rapid advancements in electric vehicle (EV) technology have highlighted the importance of lithium-ion (Li) batteries. These batteries are essential for safety and reliability. Battery data show non-stationarity and complex dynamics, presenting challenges for current monitoring and prediction methods. These methods often fail to manage the variability seen in real-world environments. To address these challenges, we propose a Transformer model with a wavelet transform dynamic attention mechanism (WADT). The dynamic attention mechanism uses wavelet transform. It focuses adaptively on the most informative parts of the battery data to enhance the anomaly detection accuracy. We also developed a deep learning model with an improved Transformer architecture. This architecture is tailored for the complex dynamics of battery data time series. The model accounts for temporal dependencies and adapts to non-stationary behavior. Experiments on public battery datasets show our approach’s effectiveness. Our model significantly outperforms existing technologies with an accuracy of 0.89 and an AUC score of 0.88. These results validate our method’s innovation and effectiveness. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

16 pages, 5844 KiB  
Article
Comparative Analysis of Electric and Conventional Vehicles Performance in the Evacuation Process of Mount Semeru Eruption Victims Based on Geographic Information Systems
by Rahmad Inca Liperda, Rahul Prima Putra, Galileo Bill Pairunan, Meilinda Fitriani Nur Maghfiroh and Anak Agung Ngurah Perwira Redi
Sustainability 2024, 16(20), 8939; https://doi.org/10.3390/su16208939 - 16 Oct 2024
Abstract
The Lumajang Regency is highly vulnerable to various natural disasters, particularly the potential eruption of Mount Semeru. In disaster response efforts, the local government needs to prepare effective and efficient evacuation routes, taking into account the magnitude of the eruption impact in the [...] Read more.
The Lumajang Regency is highly vulnerable to various natural disasters, particularly the potential eruption of Mount Semeru. In disaster response efforts, the local government needs to prepare effective and efficient evacuation routes, taking into account the magnitude of the eruption impact in the Semeru disaster-prone area. This research focuses on evacuating vulnerable residents using electric and conventional vehicles. This study is categorized as a vehicle routing problem with energy constraint (VRPEC) because the electric vehicles utilized in this research do not require recharging during their operational process, ensuring rapid evacuation as it is essential. By utilizing Geographic Information Systems (GIS)-based optimization, the best route to evacuate all victims within 12 h is determined. This study involves developing scenarios considering the number of vehicles and their travel distances. There are also evacuation guidelines, including the implementation of priority points and evacuation zone usage. The research results indicate that scenarios EV 5, 8, and 10 are the most optimal for using electric vehicles. Meanwhile, the optimal scenario for conventional vehicles is scenario 5. This analysis shows that implementing electric vehicle scenarios is superior to conventional vehicle scenarios in terms of the total time required to evacuate all victims. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

17 pages, 1567 KiB  
Article
Transition from Electric Vehicles to Energy Storage: Review on Targeted Lithium-Ion Battery Diagnostics
by Ganna Kostenko and Artur Zaporozhets
Energies 2024, 17(20), 5132; https://doi.org/10.3390/en17205132 (registering DOI) - 15 Oct 2024
Abstract
This paper examines the transition of lithium-ion batteries from electric vehicles (EVs) to energy storage systems (ESSs), with a focus on diagnosing their state of health (SOH) to ensure efficient and safe repurposing. It compares direct methods, model-based diagnostics, and data-driven techniques, evaluating [...] Read more.
This paper examines the transition of lithium-ion batteries from electric vehicles (EVs) to energy storage systems (ESSs), with a focus on diagnosing their state of health (SOH) to ensure efficient and safe repurposing. It compares direct methods, model-based diagnostics, and data-driven techniques, evaluating their strengths and limitations for both EV and ESS applications. This study underscores the necessity of accurate SOH diagnostics to maximize battery reuse, promoting sustainability and circular economy objectives. By providing a comprehensive overview of the battery lifecycle—from manufacturing to recycling—this research offers strategies for effective lifecycle management and cost-effective, environmentally sustainable secondary battery applications. Key findings highlight the potential of second-life EV batteries in ESSs. The integration of the considered diagnostic methods was shown to extend battery lifespan by up to 30%, reduce waste, and optimize resource efficiency, which is crucial for achieving circular economy objectives. This paper’s insights are crucial for advancing sustainable energy systems and informing future research on improving diagnostic methods for evolving battery technologies. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

15 pages, 879 KiB  
Entry
Synthetic Fuels for Decarbonising UK Rural Transport
by Al-Amin Abba Dabo, Andrew Gough and F. Frank Alparslan
Encyclopedia 2024, 4(4), 1553-1567; https://doi.org/10.3390/encyclopedia4040101 - 15 Oct 2024
Definition
Decarbonising transport is a crucial element of the UK’s strategy to achieve net-zero carbon emissions by 2050, as the transport sector is currently the largest contributor to the UK’s greenhouse gas emissions. Rural communities face distinct challenges in this effort due to their [...] Read more.
Decarbonising transport is a crucial element of the UK’s strategy to achieve net-zero carbon emissions by 2050, as the transport sector is currently the largest contributor to the UK’s greenhouse gas emissions. Rural communities face distinct challenges in this effort due to their reliance on internal combustion engines (ICEs) across vehicles and machinery essential for daily life, including farming equipment and private transport. While the upcoming ban on new petrol and diesel vehicles paves the way for the adoption of Electric Vehicles (EVs), this solution may not fully address the unique needs of rural areas where infrastructure limitations and specific mobility requirements pose significant barriers. In this context, synthetic fuels, produced using renewable energy sources, offer a potential alternative. These fuels can be used directly in existing internal combustion engines without requiring major modifications and have the added benefit of reducing overall greenhouse gas emissions by capturing CO2 during production. This entry explores the potential advantages of adopting synthetic fuels, particularly in rural areas, and examines how community-based buying cooperatives could support their wider use through bulk purchasing, cost reduction, and community empowerment. Full article
(This article belongs to the Section Social Sciences)
Show Figures

Figure 1

21 pages, 1709 KiB  
Article
Electric Vehicle Adoption: Implications for Employment in South Africa’s Automotive Component Industry
by Nalini Sooknanan Pillay and Alaize Dall-Orsoletta
World Electr. Veh. J. 2024, 15(10), 471; https://doi.org/10.3390/wevj15100471 (registering DOI) - 15 Oct 2024
Abstract
The transition to electric vehicles (EVs) will require significant changes in the automotive industry, particularly concerning its labour force. This study evaluates the impact of EVs on employment within South Africa’s automotive component manufacturing sector. A system dynamics model was developed to assess [...] Read more.
The transition to electric vehicles (EVs) will require significant changes in the automotive industry, particularly concerning its labour force. This study evaluates the impact of EVs on employment within South Africa’s automotive component manufacturing sector. A system dynamics model was developed to assess the effect of EV market penetration on component manufacturing employment over time. Key drivers of employment in the conventional and the EV component industries were identified and incorporated into the model. The results indicate a negative impact of EV penetration on employment of 18.3% when considering 20.0% EV sales (EV20) in 2040. Scenario analyses highlighted the influence of individual components, battery localisation, and load shedding on labour. Tyre and wheel manufacturing was found to be the most labour impactful component in the conventional industry against electrical engines in the EV counterpart. Localising 25.0% of battery production could increase employment by 6.9% and 2.7% in the EV40 and EV20 Scenarios. Load shedding has a detrimental effect on the country’s economy, assumed to reduce employment by 30.0%. However, strategic industry and policy interventions can mitigate the adverse effects of this transition. Full article
Show Figures

Figure 1

14 pages, 1005 KiB  
Article
EOS: Impact Evaluation of Electric Vehicle Adoption on Peak Load Shaving Using Agent-Based Modeling
by William J. Howell, Ziqian Dong and Roberto Rojas-Cessa
Energies 2024, 17(20), 5110; https://doi.org/10.3390/en17205110 (registering DOI) - 15 Oct 2024
Abstract
The increasing adoption of electric vehicles (EVs) by the general population creates an opportunity to deploy the energy storage capability of EVs for performing peak energy shaving in their households and ultimately in their neighborhood grid during surging demand. However, the impact of [...] Read more.
The increasing adoption of electric vehicles (EVs) by the general population creates an opportunity to deploy the energy storage capability of EVs for performing peak energy shaving in their households and ultimately in their neighborhood grid during surging demand. However, the impact of the adoption rate in a neighborhood might be counterbalanced by the energy demand of EVs during off-peak hours. Therefore, achieving optimal peak energy shaving is a product of a sensitive balancing process that depends on the EV adoption rate. In this paper, we propose EOS, an agent-based simulation model, to represent independent household energy usage and estimate the real-time neighborhood energy consumption and peak shaving energy amount of a neighborhood. This study uses Residential Energy Consumption Survey (RECS) and the American Time Use Survey (ATUS) data to model realistic real-time household energy use. We evaluate the impact of the EV adoption rates of a neighborhood on performing energy peak shaving during sudden energy surges. Our findings reveal these trade-offs and, specifically, a reduction of up to 30% of the peak neighborhood energy usage for the optimal neighborhood EV adoption rate in a 1089 household neighborhood. Full article
Show Figures

Figure 1

17 pages, 6883 KiB  
Article
Forecasting Motor Vehicle Ownership and Energy Demand Considering Electric Vehicle Penetration
by Ning Mao, Jianbing Ma, Yongzhi Chen, Jinrui Xie, Qi Yu and Jie Liu
Energies 2024, 17(20), 5094; https://doi.org/10.3390/en17205094 (registering DOI) - 14 Oct 2024
Abstract
Given the increasing environmental concerns and energy consumption, the transformation of the new energy vehicle industry is a key link in the innovation of the energy structure. The shift from traditional fossil fuels to clean energy encompasses various dimensions such as technological innovation, [...] Read more.
Given the increasing environmental concerns and energy consumption, the transformation of the new energy vehicle industry is a key link in the innovation of the energy structure. The shift from traditional fossil fuels to clean energy encompasses various dimensions such as technological innovation, policy support, infrastructure development, and changes in consumer preferences. Predicting the future ownership of electric vehicles (EVs) and then estimating the energy demand for transportation is a pressing issue in the field of new energy. This study starts from dimensions such as cost, technology, environment, and consumer preferences, deeply explores the influencing factors on the ownership of EVs, analyzes the mechanisms of various factors on the development of EVs, establishes a predictive model for the ownership of motor vehicles considering the penetration of electric vehicles based on system dynamics, and then simulates the future annual trends in EV and conventional vehicle (CV) ownership under different scenarios based on the intensity of government funding. Using energy consumption formulas under different power modes, this study quantifies the electrification energy demand for transportation flows as fleet structure changes. The results indicate that under current policy implementation, the domestic ownership of EVs and CVs is projected to grow to 172.437 million and 433.362 million, respectively, by 2035, with the proportion of EV ownership in vehicles and energy consumption per thousand vehicles at 28.46% and 566,781 J·km−1, respectively. By increasing the technical and environmental factors by 40% and extending the preferential policies for purchasing new energy vehicles, domestic EV ownership is expected to increase to 201.276 million by 2035. This study provides data support for the government to formulate promotional policies and can also offer data support for the development of basic charging infrastructure. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

14 pages, 4694 KiB  
Article
Two-Stage Multiple-Vector Model Predictive Control for Multiple-Phase Electric-Drive-Reconstructed Power Management for Solar-Powered Vehicles
by Qingyun Zhu, Zhen Zhang and Zhihao Zhu
World Electr. Veh. J. 2024, 15(10), 466; https://doi.org/10.3390/wevj15100466 - 14 Oct 2024
Abstract
Electric-drive-reconstructed onboard chargers (EDROCs), also known as electric-drive-reconstructed power management systems, are a promising alternative to conventional onboard chargers due to their characteristics of low cost and high power density. The model predictive control offers a fast dynamic response, simple implementation, and the [...] Read more.
Electric-drive-reconstructed onboard chargers (EDROCs), also known as electric-drive-reconstructed power management systems, are a promising alternative to conventional onboard chargers due to their characteristics of low cost and high power density. The model predictive control offers a fast dynamic response, simple implementation, and the ability to control multiple targets simultaneously. In this paper, a two-stage multi-vector model predictive current control (MPCC) of a six-phase EDROC for solar-powered electric vehicles (EVs) is proposed. Firstly, the topology for the EDROC incorporating a six-phase symmetrical permanent magnet synchronous machine (PMSM) is introduced, and the operation principles of the DC charge mode, the drive mode, and, especially, the in-motion charge mode are analyzed in detail. After that, a two-stage multi-vector MPCC method is proposed by using the multi-vector MPC technique and designing a two-stage MPC structure to eliminate the regulation of the weighting factor of the MPC. Finally, the effectiveness of the proposed method is verified on a self-designed 2 kW EDROC platform. Full article
Show Figures

Figure 1

Back to TopTop