Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,350)

Search Parameters:
Keywords = electricity distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2614 KiB  
Article
Refinement of Recloser Operation and Safety Enhancement in Distribution Systems: A Study Based on Real Data
by Geonho Kim, Tae-Hwan Kim and Jun-Hyeok Kim
Energies 2024, 17(22), 5700; https://doi.org/10.3390/en17225700 (registering DOI) - 14 Nov 2024
Abstract
This study analyzes recloser operation in the South Korean distribution system to propose effective operational strategies for improving safety and efficiency. This research is based on actual data, such as recloser operation data and fault statistics provided by the Ministry of the Interior [...] Read more.
This study analyzes recloser operation in the South Korean distribution system to propose effective operational strategies for improving safety and efficiency. This research is based on actual data, such as recloser operation data and fault statistics provided by the Ministry of the Interior and Safety and the Korea Electric Power Corporation, without the use of simulation tools or experiments. Key operational elements, such as reclosure counts, sequence settings, and high-current interruption features, were analyzed. First, an analysis of reclosure counts revealed that over 73% of faults were cleared after the first reclosure, and when the second reclosure was included, more than 90% were successfully restored. This finding suggests that reducing the number of reclosures from the standard three to one or two would not significantly impact fault restoration performance while simultaneously reducing arc generation, thereby improving safety. Additionally, a review of recloser sequence settings highlighted the fact that the traditional 2F2D (two fast, two delayed) sequence often led to frequent instantaneous tripping, increasing the risk of arc generation. The 1F1D (one fast, one delayed) sequence, which applies a delayed trip after an initial fast trip, offers a better fault-clearing performance and reduces the risk of arc generation. Lastly, an analysis of the high-current interruption feature suggested that enabling this function for faults with low reclosing success rates, particularly in cases of short-circuit faults, and setting an immediate trip threshold for fault currents exceeding 3 kA would enhance both safety and efficiency. This operational strategy was implemented in the South Korean distribution system over a three-year period, starting in 2021. While there was a 2.1% decrease in reclosure success rates, this strategy demonstrated that similar success levels could be maintained while reducing the number of reclosures, thus mitigating equipment damage risks and improving safety measures. The refined recloser operation plan derived from this study is expected to enhance the overall stability and reliability of distribution systems. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

25 pages, 4366 KiB  
Article
Hybrid AI-Powered Real-Time Distributed Denial of Service Detection and Traffic Monitoring for Software-Defined-Based Vehicular Ad Hoc Networks: A New Paradigm for Securing Intelligent Transportation Networks
by Onur Polat, Saadin Oyucu, Muammer Türkoğlu, Hüseyin Polat, Ahmet Aksoz and Fahri Yardımcı
Appl. Sci. 2024, 14(22), 10501; https://doi.org/10.3390/app142210501 (registering DOI) - 14 Nov 2024
Abstract
Vehicular Ad Hoc Networks (VANETs) are wireless networks that improve traffic efficiency, safety, and comfort for smart vehicle users. However, with the rise of smart and electric vehicles, traditional VANETs struggle with issues like scalability, management, energy efficiency, and dynamic pricing. Software Defined [...] Read more.
Vehicular Ad Hoc Networks (VANETs) are wireless networks that improve traffic efficiency, safety, and comfort for smart vehicle users. However, with the rise of smart and electric vehicles, traditional VANETs struggle with issues like scalability, management, energy efficiency, and dynamic pricing. Software Defined Networking (SDN) can help address these challenges by centralizing network control. The integration of SDN with VANETs, forming Software Defined-based VANETs (SD-VANETs), shows promise for intelligent transportation, particularly with autonomous vehicles. Nevertheless, SD-VANETs are susceptible to cyberattacks, especially Distributed Denial of Service (DDoS) attacks, making cybersecurity a crucial consideration for their future development. This study proposes a security system that incorporates a hybrid artificial intelligence model to detect DDoS attacks targeting the SDN controller in SD-VANET architecture. The proposed system is designed to operate as a module within the SDN controller, enabling the detection of DDoS attacks. The proposed attack detection methodology involves the collection of network traffic data, data processing, and the classification of these data. This methodology is based on a hybrid artificial intelligence model that combines a one-dimensional Convolutional Neural Network (1D-CNN) and Decision Tree models. According to experimental results, the proposed attack detection system identified that approximately 90% of the traffic in the SD-VANET network under DDoS attack consisted of malicious DDoS traffic flows. These results demonstrate that the proposed security system provides a promising solution for detecting DDoS attacks targeting the SD-VANET architecture. Full article
(This article belongs to the Special Issue Emerging Technologies in Network Security and Cryptography)
Show Figures

Figure 1

25 pages, 1257 KiB  
Article
Moving Toward the Expansion of Energy Storage Systems in Renewable Energy Systems—A Techno-Institutional Investigation with Artificial Intelligence Consideration
by Armin Razmjoo, Arezoo Ghazanfari, Poul Alberg Østergaard, Mehdi Jahangiri, Andreas Sumper, Sahar Ahmadzadeh and Reza Eslamipoor
Sustainability 2024, 16(22), 9926; https://doi.org/10.3390/su16229926 (registering DOI) - 14 Nov 2024
Abstract
The role of energy storage as an effective technique for supporting energy supply is impressive because energy storage systems can be directly connected to the grid as stand-alone solutions to help balance fluctuating power supply and demand. This comprehensive paper, based on political, [...] Read more.
The role of energy storage as an effective technique for supporting energy supply is impressive because energy storage systems can be directly connected to the grid as stand-alone solutions to help balance fluctuating power supply and demand. This comprehensive paper, based on political, economic, sociocultural, and technological analysis, investigates the transition toward electricity systems with a large capacity for renewable energy sources combined with energy storage systems (ESS), along with a comprehensive overview of energy storage technologies; the role of AI in the development of ESS is also presented. This study aims to demonstrate how energy storage systems can be implemented with successful integration to increase electric grid flexibility. The results of the study indicate that this goal can be achieved with suitable planning and cooperation by the national, provincial, and local governments, while taking into account stakeholders’ needs and environmental concerns. In this regard, comprehensive analysis has revealed that procedures such as planning, increasing rewards for renewable energy storage, technological innovation, expanding subsidies, and encouraging investment in infrastructure for renewable energy and large-scale battery storage are crucial for the development of energy storage systems. Furthermore, stakeholders should be able to comprehend the benefits of energy storage systems and their provided valuable services, and engage in the adoption process. Moreover, leveraging AI can significantly enhance the implementation and operation of energy storage systems in energy systems, enabling governments and policymakers to optimize the storage and distribution of energy from renewable sources. Full article
Show Figures

Figure 1

9 pages, 3305 KiB  
Communication
Hybrid High-Power AlGaN/CdZnO/GaN/AlGaN HEMT with High Breakdown Voltage
by Bonghwan Kim and Seung-Hwan Park
Materials 2024, 17(22), 5560; https://doi.org/10.3390/ma17225560 (registering DOI) - 14 Nov 2024
Abstract
This study investigates the effects of incorporating a CdZnO layer in place of the conventional InGaN layer in an AlGaN/InGaN/GaN/AlGaN/SiC high-electron mobility transistor (HEMT) structure. We examine the resulting characteristics and assess the potential of high-power HEMT applications, including high-power switching converters, through [...] Read more.
This study investigates the effects of incorporating a CdZnO layer in place of the conventional InGaN layer in an AlGaN/InGaN/GaN/AlGaN/SiC high-electron mobility transistor (HEMT) structure. We examine the resulting characteristics and assess the potential of high-power HEMT applications, including high-power switching converters, through simulation analysis. Both structures demonstrate increased drain current and transconductance with increasing Al content in the barrier layer. However, HEMTs with a CdZnO layer exhibit higher drain current compared to those with an InGaN layer at the same Al content. The breakdown voltage decreases rapidly with increasing Al content, attributed to changes in electric field distribution. HEMTs with a CdZnO/GaN channel exhibit a slightly higher breakdown voltage (~795 V) compared to those with an InGaN/GaN channel (~768 V) at a lower Al content of x = 0.10. These results suggest that CdZnO-based HEMTs have significant potential for high-power, high-frequency applications. Full article
Show Figures

Figure 1

13 pages, 1067 KiB  
Article
Novel Approach to Diagnose Safe Electrical Power Distribution
by Lars Braun, Minh Le, Jürgen Motz and Kai Peter Birke
Energies 2024, 17(22), 5685; https://doi.org/10.3390/en17225685 (registering DOI) - 14 Nov 2024
Viewed by 158
Abstract
The integrity of the 12Vdc power distribution system on a vehicle is essential to guarantee continuous power supply to safety-relevant consumers. Safety-relevant consumers are critical loads, for example, electric power steering, braking systems with functionalities like Anti-Lock Braking or Electronic Stability [...] Read more.
The integrity of the 12Vdc power distribution system on a vehicle is essential to guarantee continuous power supply to safety-relevant consumers. Safety-relevant consumers are critical loads, for example, electric power steering, braking systems with functionalities like Anti-Lock Braking or Electronic Stability Control, and autonomous drive systems. To prevent insufficient power supply for safety-relevant consumers due to an increased wiring harness resistance, a novel diagnostic approach is developed to determine the condition of the power distribution, especially the electrical resistance. The influence of measurement errors and bus commutation on the estimation is investigated by using a simulation. By using the diagnostic, a resistance determination in the milliohm range with a standard deviation of σ=0.3mΩ can be achieved under realistic conditions. This ensures that failures in the wiring harness can be identified, avoiding cascading effects and minimizing recalls. Compared to the state of the art, redundancies, costs, and weight can be saved with the proposed diagnostic system based on electrical resistance estimation. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

19 pages, 10637 KiB  
Article
A Study on the Determination Method of the Gear Reduction Ratio for Electric Trains Considering Drive Shaft Relative Damage and Motor Efficiency
by Soonhyun Kwon, Jongbok Jeong, Dongkyeom Kim and Wonsik Lim
Appl. Sci. 2024, 14(22), 10472; https://doi.org/10.3390/app142210472 (registering DOI) - 14 Nov 2024
Viewed by 174
Abstract
This study presents a method for determining the optimal gear ratio in electric trains by examining the effects of motor efficiency, wheel wear, and relative damage to the input and output shafts of the reduction gear. In electric trains, reduction gears and wheels [...] Read more.
This study presents a method for determining the optimal gear ratio in electric trains by examining the effects of motor efficiency, wheel wear, and relative damage to the input and output shafts of the reduction gear. In electric trains, reduction gears and wheels are critical for converting the driving motor’s torque and determining the motor’s operational point, which in turn affects efficiency and durability. Over time, wheel wear from regular use and periodic profiling reduces the wheel radius, causing an effective increase in the gear ratio, which impacts the motor efficiency and load distribution across drivetrain components. This study models the dynamic behavior of the vehicle’s drivetrain system using MATLAB/Simulink and incorporates real-world data on wheel wear to address the problem. Through simulations with varying gear ratios, it analyzes changes in motor efficiency and uses Miner’s rule to assess the relative damage on the reduction gear’s input and output shafts. The results enable the identification of a gear ratio that balances motor efficiency and reduces cumulative fatigue damage, which is especially important for maintaining long-term drivetrain durability. This approach provides a systematic way to enhance the overall performance and lifespan of electric train systems by selecting a gear ratio that optimally aligns efficiency and durability. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

22 pages, 12163 KiB  
Article
Assessing the Use of Electrical Resistivity for Monitoring Crude Oil Contaminant Distribution in Unsaturated Coastal Sands Under Varying Salinity
by Margaret A. Adeniran, Michael A. Oladunjoye and Kennedy O. Doro
Geosciences 2024, 14(11), 308; https://doi.org/10.3390/geosciences14110308 (registering DOI) - 14 Nov 2024
Viewed by 184
Abstract
Monitoring crude oil spills in coastal areas is challenging due to limitations in traditional in situ methods. Electrical resistivity imaging (ERI) offers a high-resolution approach to monitoring the subsurface spatial distribution of crude oil, but its effectiveness in highly-resistive, unsaturated coastal sands with [...] Read more.
Monitoring crude oil spills in coastal areas is challenging due to limitations in traditional in situ methods. Electrical resistivity imaging (ERI) offers a high-resolution approach to monitoring the subsurface spatial distribution of crude oil, but its effectiveness in highly-resistive, unsaturated coastal sands with varying salinity remains unexplored. This study assessed the effectiveness of ERI for monitoring crude oil spills in sandy soil using a 200 × 60 × 60 cm 3D sandbox filled with medium-fine-grained sand under unsaturated conditions. Two liters of crude oil were spilled under controlled conditions and monitored for 48 h using two surface ERI transects with 98 electrodes spaced every 2 cm and a dipole–dipole electrode array. The influence of varying salinity was simulated by varying the pore-fluid conductivities at four levels (0.6, 20, 50, and 85 mS/cm). After 48 h, the results show a percentage resistivity increase of 980%, 280%, 142%, and 70% for 0.6, 20, 50, and 85 mS/cm, respectively. The crude oil migration patterns varied with porewater salinity as higher salinity enhanced the crude oil retention at shallow depth. High salinity produces a smaller resistivity contrast, thus limiting the sensitivity of ERI in detecting the crude oil contaminant. These findings underscore the need to account for salinity variations when designing remediation strategies, as elevated salinity may restrict crude oil migration, resulting in localized contaminations. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

17 pages, 5180 KiB  
Article
Modeling Electrochemical Impedance Spectroscopy Using Time-Dependent Finite Element Method
by Yawar Abbas, Laura van Smeden, Alwin R. M. Verschueren, Marcel A. G. Zevenbergen and Jos F. M. Oudenhoven
Sensors 2024, 24(22), 7264; https://doi.org/10.3390/s24227264 (registering DOI) - 13 Nov 2024
Viewed by 196
Abstract
A time-dependent electrochemical impedance spectroscopy (EIS) model is presented using the finite element method (FEM) to simulate a 2D interdigitated electrode in an aqueous NaCl electrolyte. Developed in COMSOL Multiphysics, the model incorporates ion transport, electric field distribution, Stern layer effects, and electrode [...] Read more.
A time-dependent electrochemical impedance spectroscopy (EIS) model is presented using the finite element method (FEM) to simulate a 2D interdigitated electrode in an aqueous NaCl electrolyte. Developed in COMSOL Multiphysics, the model incorporates ion transport, electric field distribution, Stern layer effects, and electrode sheet resistance, governed by the Poisson and Nernst–Planck equations. This model can predict the transient current response to an applied excitation voltage, which gives information about the dynamics of the electrochemical system. The simulation results are compared with the experimental data, reproducing key features of the measurements. The transient current response indicates the need for multiple excitation cycles to stabilize the impedance measurement. At low frequencies (<1 kHz), the voltage drop at the Stern layer is significant, while at higher frequencies (>100 kHz), the voltage drop due to sheet resistance dominates. Moreover, the amplitude of the excitation voltage influences the EIS measurement, higher amplitudes (above 0.1 V) lead to non-linear impedance behavior, particularly at low ion concentrations. Discrepancies at low frequencies suggest that Faradaic processes may need to be incorporated for improved accuracy. Overall, this model provides quantitative insights for optimizing EIS sensor design and highlights critical factors for high-frequency and low-concentration conditions, laying the foundation for future biosensing applications with functionalized electrodes. Full article
(This article belongs to the Special Issue Electrical Impedance Spectroscopy Technology)
Show Figures

Figure 1

19 pages, 24669 KiB  
Article
Investigation of the Thermophysical Simulation and Material Removal Mechanism of the High-Volume-Fraction SiCp/Al Composite in Wire Electrical Discharge Machining
by Zhi Chen, Jiawen Hu, Hongbing Zhou, Yumeng Wei, Guojun Zhang and Fenglin Han
Materials 2024, 17(22), 5546; https://doi.org/10.3390/ma17225546 - 13 Nov 2024
Viewed by 195
Abstract
SiC particle reinforced aluminum matrix composites (SiCp/Al) are widely used in aviation, weaponry, and automobiles because of their excellent service performance. Wire electrical discharge machining (WEDM) regardless of workpiece hardness has become an alternative method for processing SiCp/Al composites. In this paper, the [...] Read more.
SiC particle reinforced aluminum matrix composites (SiCp/Al) are widely used in aviation, weaponry, and automobiles because of their excellent service performance. Wire electrical discharge machining (WEDM) regardless of workpiece hardness has become an alternative method for processing SiCp/Al composites. In this paper, the temperature distribution and the discharge crater size of the SiCp/Al composite are simulated by a thermophysical model during a single-pulse discharge process (SPDP) based on the random distribution of SiC particles. The material removal mechanism of the SiCp/Al composite during the multi-pulse discharge process (MPDP) is revealed, and the surface roughness (Ra) of the SiCp/Al composite is predicted during the MPDP. The thermophysical model simulation results during the MPDP and experimental characterization data indicate that the removal mechanism of SiCp/Al composite material consists of the melting and vaporization of the aluminum matrix, as well as the heat decomposition and shedding of silicon carbide particles. Pulse-on time (Ton), pulse-off time (Toff), and servo voltage (SV) have a great influence on surface roughness. The Ra increases with an increase in Ton and SV, but decreases slightly with an increase in Toff. Moreover, compared with experimental data, the relative error of Ra calculated from the thermophysical model is 0.47–7.54%. This means that the developed thermophysical model has a good application and promotion value for the WEDM of metal matrix composite material. Full article
Show Figures

Figure 1

25 pages, 3232 KiB  
Article
A Framework for Distributed Orchestration of Cyber-Physical Systems: An Energy Trading Case Study
by Kostas Siozios
Technologies 2024, 12(11), 229; https://doi.org/10.3390/technologies12110229 - 13 Nov 2024
Viewed by 356
Abstract
The increasing number of active energy consumers, also known as energy prosumers, is dramatically changing the electricity system. New products and services that adopt the concept of dynamic pricing are available to the market, where demand and price forecasting are applied to determine [...] Read more.
The increasing number of active energy consumers, also known as energy prosumers, is dramatically changing the electricity system. New products and services that adopt the concept of dynamic pricing are available to the market, where demand and price forecasting are applied to determine schedule loads and prices. Throughout this manuscript, a novel framework for energy trading among prosumers is introduced. Rather than solving the problem in a centralized manner, the proposed orchestrator relies on a distributed game theory to determine optimal bids. Experimental results validate the efficiency of proposed solution, since it achieves average energy cost reduction of 2×, as compared to the associated cost from the main grid. Additionally, the hardware implementation of the introduced framework onto a low-cost embedded device achieves near real-time operation with comparable performance to state-of-the-art computational intensive solvers. Full article
Show Figures

Graphical abstract

17 pages, 4492 KiB  
Article
Advanced Numerical Modeling and Experimental Analysis of Thermal Gradients in Gleeble Compression Configuration for 2017-T4 Aluminum Alloy
by Olivier Pantalé, Yannis Muller and Yannick Balcaen
Appl. Mech. 2024, 5(4), 839-855; https://doi.org/10.3390/applmech5040047 - 13 Nov 2024
Viewed by 318
Abstract
Gleeble thermomechanical simulators are widely utilized tools for the investigation of high-temperature deformation behavior in materials. However, temperature gradients that develop within the specimen during Gleeble compression tests have the potential to result in non-uniform deformation, which may subsequently impact the accuracy of [...] Read more.
Gleeble thermomechanical simulators are widely utilized tools for the investigation of high-temperature deformation behavior in materials. However, temperature gradients that develop within the specimen during Gleeble compression tests have the potential to result in non-uniform deformation, which may subsequently impact the accuracy of the measured mechanical properties. This study presents an experimental and numerical investigation of the temperature fields in 2017-T4 aluminum alloy specimens prior to Gleeble compression tests at temperatures ranging from 300 °C to 500 °C utilizing uniform temperature distribution (ISO-T) tungsten carbide anvils. The use of multiple thermocouples, welded to both the specimen and anvils, offers valuable insights into the temperature gradients and their evolutions. A coupled thermal–electrical finite-element model was developed in Abaqus for the purpose of simulating the resistive heating process. A user amplitude subroutine (UAMP) is implemented to regulate the heating based on a proportional–integral–derivative (PID) algorithm that modulates the current density to follow the specified temperature profile. The numerical results demonstrate that the temperature gradients within the specimen at the end of the heating process, reaching a temperature of 400 °C, are minimal, with values below 1.9 °C. This is in accordance with the experimental observations. The addition of graphite foils between the specimen and anvils has been shown to effectively reduce the gradients. The use of the measured anvil temperature as a boundary condition, rather than a constant value of 20 °C, has been demonstrated to improve the agreement between the simulated and experimental cooling curves. The modeling approach provides a framework for quantifying temperature gradients in Gleeble compression specimens and for assessing their impact on the measured constitutive response of materials at elevated temperatures. Full article
Show Figures

Figure 1

32 pages, 4874 KiB  
Article
Power Quality Analysis of a Microgrid-Based on Renewable Energy Sources: A Simulation-Based Approach
by Emmanuel Hernández-Mayoral, Christian R. Jiménez-Román, Jesús A. Enriquez-Santiago, Andrés López-López, Roberto A. González-Domínguez, Javier A. Ramírez-Torres, Juan D. Rodríguez-Romero and O. A. Jaramillo
Computation 2024, 12(11), 226; https://doi.org/10.3390/computation12110226 - 12 Nov 2024
Viewed by 289
Abstract
At present, microgrids (μGs) are a focal point in both academia and industry due to their capability to sustain operations that are stable, resilient, reliable, and of high power quality. Power converters (PCs), a vital component in μGs, enable the decentralization of power [...] Read more.
At present, microgrids (μGs) are a focal point in both academia and industry due to their capability to sustain operations that are stable, resilient, reliable, and of high power quality. Power converters (PCs), a vital component in μGs, enable the decentralization of power generation. However, this decentralization introduces challenges related to power quality. This paper introduces a μG model, based on the IEEE 14-bus distribution system, with the objective of investigating power quality when the μG is operating in conjunction with the conventional power grid. The μG model was developed using MATLAB-Simulink®, a tool specialized for electrical engineering simulations. The results obtained undergo thorough analysis and are compared with the compatibility levels set by the IEEE-519 standard. This method enables a precise evaluation of the μGs’ capacity to maintain acceptable power quality levels while interconnected with the conventional power grid. In conclusion, this study contributes significantly to the field of μGs by providing a detailed and quantitative assessment of power quality. This will assist in the design and optimization of μGs for effective implementation in real-world electric power systems. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

12 pages, 4503 KiB  
Article
Research on the Carrier Characteristics of Power Cables Considering the Aging Status of Insulation and Semiconducting Layers
by Xiaohua Yang, Zixuan Wang, Jiahao Li, Ming Wu, Guanpan Wang, Xueting Gao and Jinghui Gao
Energies 2024, 17(22), 5655; https://doi.org/10.3390/en17225655 - 12 Nov 2024
Viewed by 295
Abstract
The 10 kV XPLE cable is widely used in highly cabled transmission and distribution networks. It is necessary to closely monitor the transient current, harmonic content, and electric field distribution of each layer of the insulation and semiconductive layers of the cable when [...] Read more.
The 10 kV XPLE cable is widely used in highly cabled transmission and distribution networks. It is necessary to closely monitor the transient current, harmonic content, and electric field distribution of each layer of the insulation and semiconductive layers of the cable when they age and deteriorate, so as to promptly carry out circuit breaking treatment and prevent safety accidents. Considering the frequency sensitivity and dielectric sensitivity of the distributed Runit, Lunit, Gunit, and Cunit parameters of long cables, this paper quantitatively analyzes the frequency variation of 10 kV cable parameters under different aging states. Reconstructing the frequency variation process of typical electrical quantities through MATLAB PSCAD joint simulation, constructing fault circuits for cable insulation and semiconducting layers, obtaining transient currents in each layer of the cable under aging conditions, and conducting total harmonic distortion (THD) analysis to provide theoretical guidance for the subsequent monitoring and fault diagnosis of distribution cable status. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

22 pages, 7114 KiB  
Article
Use of Distributed Energy Resources Integrated with the Electric Grid in the Amazon: A Case Study of the Universidade Federal do Pará Poraquê Electric Boat Using a Digital Twin
by Bruno Santana de Albuquerque, Maria Emília de Lima Tostes, Ubiratan Holanda Bezerra, Carminda Célia Moura de Moura Carvalho and Ayrton Lucas Lisboa do Nascimento
Machines 2024, 12(11), 803; https://doi.org/10.3390/machines12110803 - 12 Nov 2024
Viewed by 287
Abstract
Electric mobility is a global trend and necessity, with electric and solar boats offering a promising alternative for transportation electrification and carbon emission reduction, especially in the Amazon region. This study analyzes the system of a solar boat from an electric mobility project—to [...] Read more.
Electric mobility is a global trend and necessity, with electric and solar boats offering a promising alternative for transportation electrification and carbon emission reduction, especially in the Amazon region. This study analyzes the system of a solar boat from an electric mobility project—to be implemented at Universidade Federal do Pará (UFPA)—using MATLAB software for modeling. The Simulink tool was utilized to model the system, focusing on operational parameters such as module voltage, converter voltage, and speed. The results indicate that the solar boat’s operational cost is significantly lower compared to a similar internal combustion model, considering diesel’s high consumption and cost. The environmental impact is also reduced, with nearly 72 tons of CO2 emissions avoided annually, thanks to Brazil’s renewable energy matrix. Simulations confirmed the project’s parameters, demonstrating the efficiency of digital-twin technology in monitoring and predicting system performance. The study underscores the importance of digital twins and renewable energy in promoting sustainable transportation solutions, advocating for the replication of such projects globally. Future research should focus on further advancing digital-twin applications in electric mobility to enhance predictive maintenance and operational efficiency. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

23 pages, 5827 KiB  
Article
Design Study for a Superconducting High-Power Fan Drive for a Long-Range Aircraft
by Jan Hoffmann, Wolf-Rüdiger Canders and Markus Henke
Energies 2024, 17(22), 5652; https://doi.org/10.3390/en17225652 - 12 Nov 2024
Viewed by 282
Abstract
New aerodynamic aircraft concepts enable the storage of volumetric liquid hydrogen (LH2). Additionally, the low temperatures of LH2 enable technologies such as the superconductivity of electrical fan drives and power distribution components. An increased power density of the onboard wiring harness and the [...] Read more.
New aerodynamic aircraft concepts enable the storage of volumetric liquid hydrogen (LH2). Additionally, the low temperatures of LH2 enable technologies such as the superconductivity of electrical fan drives and power distribution components. An increased power density of the onboard wiring harness and the electrical machine can be expected. The highest system efficiency and the smallest fuel and tank weight will be achieved with a highly efficient energy conversion by the fuel cell from LH2 to electrical energy. This publication shows a comprehensive study for cryogenic fan drives based on experimental-driven tape superconductor investigations, mission profile-based considerations, design analyses of superconducting electrical machines, and studies of the cooling concepts. A cryogenic system cannot be considered without a feasible cooling concept. Here, an approach with a safe He-based cooling system is proposed, using the LH2 flow to the fuel cell as a heat sink for the losses in the electrical system. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop