Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = electrolyte-solution-gate field-effect transistor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 660 KiB  
Abstract
Merging Surface Plasmon Optical Detection with Electronic Sensing
by Wolfgang Knoll
Proceedings 2024, 97(1), 196; https://doi.org/10.3390/proceedings2024097196 - 19 Apr 2024
Viewed by 3330
Abstract
In one of the “classical” configurations of electrolyte-gated field effect transistors (EGOFETs) for biosensing, the planar gate electrode is functionalized by (a monolayer of) receptors, to which the analyte molecules of interest bind from the analyte solution, thereby modifying the gate potential, which [...] Read more.
In one of the “classical” configurations of electrolyte-gated field effect transistors (EGOFETs) for biosensing, the planar gate electrode is functionalized by (a monolayer of) receptors, to which the analyte molecules of interest bind from the analyte solution, thereby modifying the gate potential, which in turn modifies the source drain current as the sensor output signal [...] Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

37 pages, 7033 KiB  
Article
Developing an Active Microfluidic Pump and Mixer Driven by AC Field-Effect-Mediated Induced-Charge Electro-Osmosis of Metal–Dielectric Janus Micropillars: Physical Perspective and Simulation Analysis
by Weiyu Liu, Ye Tao, Yaoyao Chen, Zhenyou Ge, Junshuo Chen and Yanbo Li
Appl. Sci. 2023, 13(14), 8253; https://doi.org/10.3390/app13148253 - 16 Jul 2023
Cited by 2 | Viewed by 1636
Abstract
We propose herein a novel microfluidic approach for the simultaneous active pumping and mixing of analytes in a straight microchannel via the AC field-effect control of induced-charge electro-osmosis (ICEO) around metal–dielectric solid Janus cylinders of inherent inhomogeneous electrical polarizability immersed in an electrolyte [...] Read more.
We propose herein a novel microfluidic approach for the simultaneous active pumping and mixing of analytes in a straight microchannel via the AC field-effect control of induced-charge electro-osmosis (ICEO) around metal–dielectric solid Janus cylinders of inherent inhomogeneous electrical polarizability immersed in an electrolyte solution. We coin the term “Janus AC flow field-effect transistor (Janus AC-FFET)” to describe this interesting physical phenomenon. The proposed technique utilizes a simple device geometry, in which one or a series of Janus microcylinders are arranged in parallel along the centerline of the channel’s bottom surface, embedding a pair of 3D sidewall driving electrodes. By combining symmetry breaking in both surface polarizability and the AC powering scheme, it is possible, on demand, to adjust the degree of asymmetry of the ICEO flow profile in two orthogonal directions, which includes the horizontal pump and transversal rotating motion. A comprehensive mathematical model was developed under the Debye–Hückel limit to elucidate the physical mechanism underlying the field-effect-reconfigurable diffuse-charge dynamics on both the dielectric and the metal-phase surfaces of the Janus micropillar. For innovation in applied science, an advanced microdevice design integrating an array of discrete Janus cylinders subjected to two oppositely polarized gate terminals is recommended for constructing an active microfluidic pump and mixer, even without external moving parts. Supported by a simulation analysis, our physical demonstration of Janus AC-FFET provides a brand-new approach to muti-directional electro-convective manipulation in modern microfluidic systems. Full article
(This article belongs to the Topic Advances in Microfluidics and Lab on a Chip Technology)
Show Figures

Figure 1

13 pages, 2633 KiB  
Article
High-Performance Potassium-Selective Biosensor Platform Based on Resistive Coupling of a-IGZO Coplanar-Gate Thin-Film Transistor
by Tae-Hwan Hyun and Won-Ju Cho
Int. J. Mol. Sci. 2023, 24(7), 6164; https://doi.org/10.3390/ijms24076164 - 24 Mar 2023
Cited by 3 | Viewed by 2506
Abstract
The potassium (K+) ion is an essential mineral for balancing body fluids and electrolytes in biological systems and regulating bodily function. It is associated with various disorders. Given that it exists at a low concentration in the human body and should [...] Read more.
The potassium (K+) ion is an essential mineral for balancing body fluids and electrolytes in biological systems and regulating bodily function. It is associated with various disorders. Given that it exists at a low concentration in the human body and should be maintained at a precisely stable level, the development of highly efficient potassium-selective sensors is attracting considerable interest in the healthcare field. Herein, we developed a high-performance, potassium-selective field-effect transistor-type biosensor platform based on an amorphous indium gallium zinc oxide coplanar-gate thin-film transistor using a resistive coupling effect with an extended gate containing a potassium-selective membrane. The proposed sensor can detect potassium in KCl solutions with a high sensitivity of 51.9 mV/dec while showing a low sensitivity of <6.6 mV/dec for NaCl, CaCl2, and pH buffer solutions, indicating its high selectivity to potassium. Self-amplification through the resistive-coupling effect enabled an even greater potassium sensitivity of 597.1 mV/dec. Additionally, we ensured the stability and reliability of short- and long-term detection through the assessment of non-ideal behaviors, including hysteresis and drift effects. Therefore, the proposed potassium-sensitive biosensor platform is applicable to high-performance detection in a living body, with high sensitivity and selectivity for potassium. Full article
(This article belongs to the Special Issue Feature Papers in 'Physical Chemistry and Chemical Physics' 2023)
Show Figures

Figure 1

22 pages, 13752 KiB  
Article
Intense pH Sensitivity Modulation in Carbon Nanotube-Based Field-Effect Transistor by Non-Covalent Polyfluorene Functionalization
by Gookbin Cho, Eva Grinenval, Jean-Christophe P. Gabriel and Bérengère Lebental
Nanomaterials 2023, 13(7), 1157; https://doi.org/10.3390/nano13071157 - 24 Mar 2023
Viewed by 2064
Abstract
We compare the pH sensing performance of non-functionalized carbon nanotubes (CNT) field-effect transistors (p-CNTFET) and CNTFET functionalized with a conjugated polyfluorene polymer (labeled FF-UR) bearing urea-based moieties (f-CNTFET). The devices are electrolyte-gated, PMMA-passivated, 5 µm-channel FETs with unsorted, inkjet-printed single-walled CNT. In phosphate [...] Read more.
We compare the pH sensing performance of non-functionalized carbon nanotubes (CNT) field-effect transistors (p-CNTFET) and CNTFET functionalized with a conjugated polyfluorene polymer (labeled FF-UR) bearing urea-based moieties (f-CNTFET). The devices are electrolyte-gated, PMMA-passivated, 5 µm-channel FETs with unsorted, inkjet-printed single-walled CNT. In phosphate (PBS) and borate (BBS) buffer solutions, the p-CNTFETs exhibit a p-type operation while f-CNTFETs exhibit p-type behavior in BBS and ambipolarity in PBS. The sensitivity to pH is evaluated by measuring the drain current at a gate and drain voltage of −0.8 V. In PBS, p-CNTFETs show a linear, reversible pH response between pH 3 and pH 9 with a sensitivity of 26 ± 2.2%/pH unit; while f-CNTFETs have a much stronger, reversible pH response (373%/pH unit), but only over the range of pH 7 to pH 9. In BBS, both p-CNTFET and f-CNTFET show a linear pH response between pH 5 and 9, with sensitivities of 56%/pH and 96%/pH, respectively. Analysis of the I–V curves as a function of pH suggests that the increased pH sensitivity of f-CNTFET is consistent with interactions of FF-UR with phosphate ions in PBS and boric acid in BBS, with the ratio and charge of the complexed species depending on pH. The complexation affects the efficiency of electrolyte gating and the surface charge around the CNT, both of which modify the I–V response of the CNTFET, leading to the observed current sensitivity as a function of pH. The performances of p-CNTFET in PBS are comparable to the best results in the literature, while the performances of the f-CNTFET far exceed the current state-of-the-art by a factor of four in BBS and more than 10 over a limited range of pH in BBS. This is the first time that a functionalization other than carboxylate moieties has significantly improved the state-of-the-art of pH sensing with CNTFET or CNT chemistors. On the other hand, this study also highlights the challenge of transferring this performance to a real water matrix, where many different species may compete for interactions with FF-UR. Full article
(This article belongs to the Special Issue Nanostructures for Integrated Devices)
Show Figures

Figure 1

12 pages, 2540 KiB  
Article
Potentiometric Chloride Ion Biosensor for Cystic Fibrosis Diagnosis and Management: Modeling and Design
by Annabella la Grasta, Martino De Carlo, Attilio Di Nisio, Francesco Dell’Olio and Vittorio M. N. Passaro
Sensors 2023, 23(5), 2491; https://doi.org/10.3390/s23052491 - 23 Feb 2023
Cited by 8 | Viewed by 2715
Abstract
The ion-sensitive field-effect transistor is a well-established electronic device typically used for pH sensing. The usability of the device for detecting other biomarkers in easily accessible biologic fluids, with dynamic range and resolution compliant with high-impact medical applications, is still an open research [...] Read more.
The ion-sensitive field-effect transistor is a well-established electronic device typically used for pH sensing. The usability of the device for detecting other biomarkers in easily accessible biologic fluids, with dynamic range and resolution compliant with high-impact medical applications, is still an open research topic. Here, we report on an ion-sensitive field-effect transistor that is able to detect the presence of chloride ions in sweat with a limit-of-detection of 0.004 mol/m3. The device is intended for supporting the diagnosis of cystic fibrosis, and it has been designed considering two adjacent domains, namely the semiconductor and the electrolyte containing the ions of interest, by using the finite element method, which models the experimental reality with great accuracy. According to the literature explaining the chemical reactions that take place between the gate oxide and the electrolytic solution, we have concluded that anions directly interact with the hydroxyl surface groups and replace protons previously adsorbed from the surface. The achieved results confirm that such a device can be used to replace the traditional sweat test in the diagnosis and management of cystic fibrosis. In fact, the reported technology is easy-to-use, cost-effective, and non-invasive, leading to earlier and more accurate diagnoses. Full article
(This article belongs to the Special Issue Novel Field-Effect Transistor Gas/Chem/Bio Sensing)
Show Figures

Figure 1

13 pages, 1312 KiB  
Article
Applying of C8-BTBT-Based EGOFETs at Different pH Values of the Electrolyte
by Polina A. Shaposhnik, Elena Y. Poimanova, Anton A. Abramov, Askold A. Trul, Daniil S. Anisimov, Elena A. Kretova, Elena V. Agina and Sergey A. Ponomarenko
Chemosensors 2023, 11(2), 74; https://doi.org/10.3390/chemosensors11020074 - 17 Jan 2023
Cited by 3 | Viewed by 2752
Abstract
Electrolyte-gated organic field-effect transistors (EGOFETs) is a popular platform for numerous sensing and biosensing applications in aqueous media. In this work, the variation of electrical characteristics of EGOFETs based on small-molecule organic semiconductor C8-BTBT and polystyrene blend in water solutions at different pH [...] Read more.
Electrolyte-gated organic field-effect transistors (EGOFETs) is a popular platform for numerous sensing and biosensing applications in aqueous media. In this work, the variation of electrical characteristics of EGOFETs based on small-molecule organic semiconductor C8-BTBT and polystyrene blend in water solutions at different pH values was investigated. A positive shift of the threshold voltage with near-Nernstian pH sensitivity was demonstrated in the pH range from 4.9 to 2.8, while no measurable pH dependence in the range from 4.9 to 8.6 pH was registered. These results indicate chemical doping of the molecules of organic semiconductors by protons from the electrolyte in the acidic region. In order to check the applicability of the EGOFETs in a flow mode, a flow chamber was designed and assembled. The preliminary results obtained in the flow mode measurements showed a fast response to pH variation. Full article
Show Figures

Figure 1

12 pages, 2919 KiB  
Communication
Effect of DNA Aptamer Concentration on the Conductivity of a Water-Gated Al:ZnO Thin-Film Transistor-Based Biosensor
by Andrejs Ogurcovs, Kevon Kadiwala, Eriks Sledevskis, Marina Krasovska, Ilona Plaksenkova and Edgars Butanovs
Sensors 2022, 22(9), 3408; https://doi.org/10.3390/s22093408 - 29 Apr 2022
Cited by 4 | Viewed by 2562
Abstract
Field-effect transistor-based biosensors (bio-FETs) are promising candidates for the rapid high-sensitivity and high-selectivity sensing of various analytes in healthcare, clinical diagnostics, and the food industry. However, bio-FETs still have several unresolved problems that hinder their technological transfer, such as electrical stability. Therefore, it [...] Read more.
Field-effect transistor-based biosensors (bio-FETs) are promising candidates for the rapid high-sensitivity and high-selectivity sensing of various analytes in healthcare, clinical diagnostics, and the food industry. However, bio-FETs still have several unresolved problems that hinder their technological transfer, such as electrical stability. Therefore, it is important to develop reliable, efficient devices and establish facile electrochemical characterization methods. In this work, we have fabricated a flexible biosensor based on an Al:ZnO thin-film transistor (TFT) gated through an aqueous electrolyte on a polyimide substrate. In addition, we demonstrated techniques for establishing the operating range of such devices. The Al:ZnO-based devices with a channel length/width ratio of 12.35 and a channel thickness of 50 nm were produced at room temperature via magnetron sputtering. These Al:ZnO-based devices exhibited high field-effect mobility (μ = 6.85 cm2/Vs) and threshold voltage (Vth = 654 mV), thus showing promise for application on temperature-sensitive substrates. X-ray photoelectron spectroscopy was used to verify the chemical composition of the deposited films, while the morphological aspects of the films were assessed using scanning electron and atomic force microscopies. The gate–channel electric capacitance of 40 nF/cm2 was determined using electrochemical impedance spectroscopy, while the electrochemical window of the gate–channel system was determined as 1.8 V (from −0.6 V to +1.2 V) using cyclic voltammetry. A deionized water solution of 10 mer (CCC AAG GTC C) DNA aptamer (molar weight −2972.9 g/mol) in a concentration ranging from 1–1000 pM/μL was used as an analyte. An increase in aptamer concentration caused a proportional decrease in the TFT channel conductivity. The techniques demonstrated in this work can be applied to optimize the operating parameters of various semiconductor materials in order to create a universal detection platform for biosensing applications, such as multi-element FET sensor arrays based on various composition nanostructured films, which use advanced neural network signal processing. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

9 pages, 2153 KiB  
Article
Fluorine-Terminated Polycrystalline Diamond Solution-Gate Field-Effect Transistor Sensor with Smaller Amount of Unexpectedly Generated Fluorocarbon Film Fabricated by Fluorine Gas Treatment
by Yukihiro Shintani and Hiroshi Kawarada
Materials 2022, 15(9), 2966; https://doi.org/10.3390/ma15092966 - 19 Apr 2022
Cited by 1 | Viewed by 2112
Abstract
In this study, a partially fluorine-terminated solution-gate field-effect transistor sensor with a smaller amount of unexpectedly generated fluorohydrocarbon film on a polycrystalline diamond channel is described. A conventional method utilizing inductively coupled plasma with fluorocarbon gas leads the hydrogen-terminated diamond to transfer to [...] Read more.
In this study, a partially fluorine-terminated solution-gate field-effect transistor sensor with a smaller amount of unexpectedly generated fluorohydrocarbon film on a polycrystalline diamond channel is described. A conventional method utilizing inductively coupled plasma with fluorocarbon gas leads the hydrogen-terminated diamond to transfer to a partially fluorine-terminated diamond (C–F diamond); an unexpected fluorohydrocarbon film is formed on the surface of the diamond. To overcome this issue, we newly applied fluorine gas for the fluoridation of the diamond. Analytical results of X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry suggest that the fluorocarbon film does not exist or only a smaller amount of fluorocarbon film exists on the diamond surface. Conversely, the C–F diamond fabricated by the conventional method of inductively coupled plasma with a perfluoropropane gas (C3F8 gas) source possesses a certain amount of fluorocarbon film on its surface. The C–F diamond with a smaller amount of unexpectedly generated fluorohydrocarbon film possesses nearly ideal drain–source–voltage vs. gate–source–current characteristics, corresponding to metal–oxide–silicon semiconductor field-effect transistor theory. The results indicate that the fluorine gas (F2 gas) treatment proposed in this study effectively fabricates a C–F diamond sensor without unexpected semiconductor damage. Full article
Show Figures

Figure 1

11 pages, 5156 KiB  
Article
Drift Suppression of Solution-Gated Graphene Field-Effect Transistors by Cation Doping for Sensing Platforms
by Naruto Miyakawa, Ayumi Shinagawa, Yasuko Kajiwara, Shota Ushiba, Takao Ono, Yasushi Kanai, Shinsuke Tani, Masahiko Kimura and Kazuhiko Matsumoto
Sensors 2021, 21(22), 7455; https://doi.org/10.3390/s21227455 - 10 Nov 2021
Cited by 14 | Viewed by 3633
Abstract
Solution-gated graphene field-effect transistors (SG-GFETs) provide an ideal platform for sensing biomolecules owing to their high electron/hole mobilities and 2D nature. However, the transfer curve often drifts in an electrolyte solution during measurements, making it difficult to accurately estimate the analyte concentration. One [...] Read more.
Solution-gated graphene field-effect transistors (SG-GFETs) provide an ideal platform for sensing biomolecules owing to their high electron/hole mobilities and 2D nature. However, the transfer curve often drifts in an electrolyte solution during measurements, making it difficult to accurately estimate the analyte concentration. One possible reason for this drift is that p-doping of GFETs is gradually countered by cations in the solution, because the cations can permeate into the polymer residue and/or between graphene and SiO2 substrates. Therefore, we propose doping sufficient cations to counter p-doping of GFETs prior to the measurements. For the pre-treatment, GFETs were immersed in a 15 mM sodium chloride aqueous solution for 25 h. The pretreated GFETs showed that the charge neutrality point (CNP) drifted by less than 3 mV during 1 h of measurement in a phosphate buffer, while the non-treated GFETs showed that the CNP was severely drifted by approximately 50 mV, demonstrating a 96% reduction of the drift by the pre-treatment. X-ray photoelectron spectroscopy analysis revealed the accumulation of sodium ions in the GFETs through pre-treatment. Our method is useful for suppressing drift, thus allowing accurate estimation of the target analyte concentration. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

11 pages, 1714 KiB  
Article
Two-Channel Graphene pH Sensor Using Semi-Ionic Fluorinated Graphene Reference Electrode
by Dae Hoon Kim, Woo Hwan Park, Hong Gi Oh, Dong Cheol Jeon, Joon Mook Lim and Kwang Soup Song
Sensors 2020, 20(15), 4184; https://doi.org/10.3390/s20154184 - 28 Jul 2020
Cited by 13 | Viewed by 3778
Abstract
A reference electrode is necessary for the working of ion-sensitive field-effect transistor (ISFET)-type sensors in electrolyte solutions. The Ag/AgCl electrode is normally used as a reference electrode. However, the Ag/AgCl reference electrode limits the advantages of the ISFET sensor. In this work, we [...] Read more.
A reference electrode is necessary for the working of ion-sensitive field-effect transistor (ISFET)-type sensors in electrolyte solutions. The Ag/AgCl electrode is normally used as a reference electrode. However, the Ag/AgCl reference electrode limits the advantages of the ISFET sensor. In this work, we fabricated a two-channel graphene solution gate field-effect transistor (G-SGFET) to detect pH without an Ag/AgCl reference electrode in the electrolyte solution. One channel is the sensing channel for detecting the pH and the other channel is the reference channel that serves as the reference electrode. The sensing channel was oxygenated, and the reference channel was fluorinated partially. Both the channels were directly exposed to the electrolyte solution without sensing membranes or passivation layers. The transfer characteristics of the two-channel G-SGFET showed ambipolar field-effect transistor (FET) behavior (p-channel and n-channel), which is a typical characteristic curve for the graphene ISFET, and the value of VDirac was shifted by 18.2 mV/pH in the positive direction over the range of pH values from 4 to 10. The leakage current of the reference channel was 16.48 nA. We detected the real-time pH value for the two-channel G-SGFET, which operated stably for 60 min in the buffer solution. Full article
(This article belongs to the Special Issue Two-Dimensional Materials Based Sensors)
Show Figures

Figure 1

12 pages, 4581 KiB  
Article
P3HT Processing Study for In-Liquid EGOFET Biosensors: Effects of the Solvent and the Surface
by Matteo Parmeggiani, Alessio Verna, Alberto Ballesio, Matteo Cocuzza, Erik Piatti, Vittorio Fra, Candido Fabrizio Pirri and Simone Luigi Marasso
Sensors 2019, 19(20), 4497; https://doi.org/10.3390/s19204497 - 17 Oct 2019
Cited by 10 | Viewed by 5390
Abstract
In-liquid biosensing is the new frontier of health and environment monitoring. A growing number of analytes and biomarkers of interest correlated to different diseases have been found, and the miniaturized devices belonging to the class of biosensors represent an accurate and cost-effective solution [...] Read more.
In-liquid biosensing is the new frontier of health and environment monitoring. A growing number of analytes and biomarkers of interest correlated to different diseases have been found, and the miniaturized devices belonging to the class of biosensors represent an accurate and cost-effective solution to obtaining their recognition. In this study, we investigate the effect of the solvent and of the substrate modification on thin films of organic semiconductor Poly(3-hexylthiophene) (P3HT) in order to improve the stability and electrical properties of an Electrolyte Gated Organic Field Effect Transistor (EGOFET) biosensor. The studied surface is the relevant interface between the P3HT and the electrolyte acting as gate dielectric for in-liquid detection of an analyte. Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) characterizations were employed to study the effect of two solvents (toluene and 1,2-dichlorobenzene) and of a commercial adhesion promoter (Ti Prime) on the morphological structure and electronic properties of P3HT film. Combining the results from these surface characterizations with electrical measurements, we investigate the changes on the EGOFET performances and stability in deionized (DI) water with an Ag/AgCl gate electrode. Full article
Show Figures

Figure 1

10 pages, 1858 KiB  
Article
Role of Carboxyl and Amine Termination on a Boron-Doped Diamond Solution Gate Field Effect Transistor (SGFET) for pH Sensing
by Shaili Falina, Sora Kawai, Nobutaka Oi, Hayate Yamano, Taisuke Kageura, Evi Suaebah, Masafumi Inaba, Yukihiro Shintani, Mohd Syamsul and Hiroshi Kawarada
Sensors 2018, 18(7), 2178; https://doi.org/10.3390/s18072178 - 6 Jul 2018
Cited by 15 | Viewed by 5049
Abstract
In this paper, we report on the effect of carboxyl- and amine terminations on a boron-doped diamond surface (BDD) in relation to pH sensitivity. Carboxyl termination was achieved by anodization oxidation in Carmody buffer solution (pH 7). The carboxyl-terminated diamond surface was exposed [...] Read more.
In this paper, we report on the effect of carboxyl- and amine terminations on a boron-doped diamond surface (BDD) in relation to pH sensitivity. Carboxyl termination was achieved by anodization oxidation in Carmody buffer solution (pH 7). The carboxyl-terminated diamond surface was exposed to nitrogen radicals to generate an amine-terminated surface. The pH sensitivity of the carboxyl- and amine-terminated surfaces was measured from pH 2 to pH 12. The pH sensitivities of the carboxyl-terminated surface at low and high pH are 45 and 3 mV/pH, respectively. The pH sensitivity after amine termination is significantly higher—the pH sensitivities at low and high pH are 65 and 24 mV/pH, respectively. We find that the negatively-charged surface properties of the carboxyl-terminated surface due to ionization of –COOH causes very low pH detection in the high pH region (pH 7–12). In the case of the amine-terminated surface, the surface properties are interchangeable in both acidic and basic solutions; therefore, we observed pH detection at both low and high pH regions. The results presented here may provide molecular-level understanding of surface properties with charged ions in pH solutions. The understanding of these surface terminations on BDD substrate may be useful to design diamond-based biosensors. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

10 pages, 16108 KiB  
Article
Regenerative, Highly-Sensitive, Non-Enzymatic Dopamine Sensor and Impact of Different Buffer Systems in Dopamine Sensing
by Saumya Joshi, Vijay Deep Bhatt, Andreas Märtl, Markus Becherer and Paolo Lugli
Biosensors 2018, 8(1), 9; https://doi.org/10.3390/bios8010009 - 24 Jan 2018
Cited by 20 | Viewed by 8623
Abstract
Carbon nanotube field-effect transistors are used extensively in ultra-sensitive biomolecule sensing applications. Along with high sensitivity, the possibility of regeneration is highly desired in bio-sensors. An important constituent of such bio-sensing systems is the buffer used to maintain pH and provide an ionic [...] Read more.
Carbon nanotube field-effect transistors are used extensively in ultra-sensitive biomolecule sensing applications. Along with high sensitivity, the possibility of regeneration is highly desired in bio-sensors. An important constituent of such bio-sensing systems is the buffer used to maintain pH and provide an ionic conducting medium, among its other properties. In this work, we demonstrate highly-sensitive regenerative dopamine sensors and the impact of varying buffer composition and type on the electrolyte gated field effect sensors. The role of the buffer system is an often ignored condition in the electrical characterization of sensors. Non-enzymatic dopamine sensors are fabricated and regenerated in hydrochloric acid (HCl) solution. The sensors are finally measured against four different buffer solutions. The impact of the nature and chemical structure of buffer molecules on the dopamine sensors is shown, and the appropriate buffer systems are demonstrated. Full article
Show Figures

Figure 1

31688 KiB  
Article
Flexible, Low-Cost Sensor Based on Electrolyte Gated Carbon Nanotube Field Effect Transistor for Organo-Phosphate Detection
by Vijay Deep Bhatt, Saumya Joshi, Markus Becherer and Paolo Lugli
Sensors 2017, 17(5), 1147; https://doi.org/10.3390/s17051147 - 18 May 2017
Cited by 29 | Viewed by 7337
Abstract
A flexible enzymatic acetylcholinesterase biosensor based on an electrolyte-gated carbon nanotube field effect transistor is demonstrated. The enzyme immobilization is done on a planar gold gate electrode using 3-mercapto propionic acid as the linker molecule. The sensor showed good sensing capability as a [...] Read more.
A flexible enzymatic acetylcholinesterase biosensor based on an electrolyte-gated carbon nanotube field effect transistor is demonstrated. The enzyme immobilization is done on a planar gold gate electrode using 3-mercapto propionic acid as the linker molecule. The sensor showed good sensing capability as a sensor for the neurotransmitter acetylcholine, with a sensitivity of 5.7 μA/decade, and demonstrated excellent specificity when tested against interfering analytes present in the body. As the flexible sensor is supposed to suffer mechanical deformations, the endurance of the sensor was measured by putting it under extensive mechanical stress. The enzymatic activity was inhibited by more than 70% when the phosphate-buffered saline (PBS) buffer was spiked with 5 mg/mL malathion (an organophosphate) solution. The biosensor was successfully challenged with tap water and strawberry juice, demonstrating its usefulness as an analytical tool for organophosphate detection. Full article
(This article belongs to the Special Issue Advanced Sensors Based on Carbon Electrodes)
Show Figures

Figure 1

2495 KiB  
Article
An All-Solid-State pH Sensor Employing Fluorine-Terminated Polycrystalline Boron-Doped Diamond as a pH-Insensitive Solution-Gate Field-Effect Transistor
by Yukihiro Shintani, Mikinori Kobayashi and Hiroshi Kawarada
Sensors 2017, 17(5), 1040; https://doi.org/10.3390/s17051040 - 5 May 2017
Cited by 8 | Viewed by 5784
Abstract
A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential [...] Read more.
A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential FET (field-effect transistor) sensing, a sensitivity of 27 mv/pH was obtained in the pH range of 2–10; therefore, it demonstrated excellent performance for an all-solid-state pH sensor with a pH-sensitive oxygen-terminated polycrystalline BDD SGFET and a platinum quasi-reference electrode, respectively. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

Back to TopTop