Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = emergency diesel generator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8478 KiB  
Article
Methods for Determining Losses and Parameters of Cylindrical-Rotor Medium-Power Synchronous Generators
by Krzysztof Komeza and Maria Dems
Electronics 2024, 13(14), 2766; https://doi.org/10.3390/electronics13142766 - 14 Jul 2024
Viewed by 475
Abstract
This paper presents the analytical and numerical application of a method to determine the parameters and power losses in the core of two medium-power synchronous generators. These generators are used as emergency power sources powered by diesel engines, gas engines, and gas turbines. [...] Read more.
This paper presents the analytical and numerical application of a method to determine the parameters and power losses in the core of two medium-power synchronous generators. These generators are used as emergency power sources powered by diesel engines, gas engines, and gas turbines. They cover peak electricity demand but can also be used in traction drives. This article presents a new numerical method for determining losses in the generator core based on the use of a time-stepping solution using the FEM method and calculating these losses using analytical formulas. In calculating the losses for the FEM method, approximations of the loss characteristics of the sheet were used with a wide range of induction values and frequencies. This method is specific to the solution used and was adapted from the authors’ previous work on losses in induction machines. A one-phase winding with alternating voltage was supplied to determine the basic parameters in the form of synchronous reactance. Also, an important novelty is the introduction of a new method of determining the saturation state of the magnetic circuit, which significantly affects the machine parameters. The obtained results were used in analytical calculations and implemented in a computer program that allows for the calculation of electromagnetic parameters, operating characteristics, and core losses, taking into account additional losses, total losses, and efficiency, as well as machine parameters in unsteady operating states and the current characteristics of a three-phase symmetrical short circuit at the machine terminals. The calculations obtained were verified experimentally by measurements of real machines. Full article
(This article belongs to the Special Issue Advances in Renewable Energy and Electricity Generation)
Show Figures

Figure 1

27 pages, 4101 KiB  
Article
Designing a Dispatch Engine for Hybrid Renewable Power Stations Using a Mixed-Integer Linear Programming Technique
by Myada Shadoul, Rashid Al Abri, Hassan Yousef and Abdullah Al Shereiqi
Energies 2024, 17(13), 3281; https://doi.org/10.3390/en17133281 - 4 Jul 2024
Viewed by 714
Abstract
Hybrid power plants have recently emerged as reliable and flexible electricity generation stations by combining multiple renewable energy sources, energy storage systems (ESS), and fossil-based output. However, the effective operation of the hybrid power plants to ensure continuous energy dispatch under challenging conditions [...] Read more.
Hybrid power plants have recently emerged as reliable and flexible electricity generation stations by combining multiple renewable energy sources, energy storage systems (ESS), and fossil-based output. However, the effective operation of the hybrid power plants to ensure continuous energy dispatch under challenging conditions is a complex task. This paper proposes a dispatch engine (DE) based on mixed-integer linear programming (MILP) for the planning and management of hybrid power plants. To maintain the committed electricity output, the dispatch engine will provide schedules for operation over extended time periods as well as monitor and reschedule the operation in real time. Through precise prediction of the load and the photovoltaic (PV) and wind power outputs, the proposed approach guarantees optimum scheduling. The precise predictions of the load, PV, and wind power levels are achieved by employing a predictor of the Feed-Forward Neural Network (FFNN) type. With such a dispatch engine, the operational costs of the hybrid power plants and the use of diesel generators (DGs) are both minimized. A case study is carried out to assess the feasibility of the proposed dispatch engine. Real-time measurement data pertaining to load and the wind and PV power outputs are obtained from different locations in the Sultanate of Oman. The real-time data are utilized to predict the future levels of power output from PV and from the wind farm over the course of 24 h. The predicted power levels are then used in combination with a PV–Wind–DG–ESS–Grid hybrid plant to evaluate the performance of the proposed dispatch engine. The proposed approach is implemented and simulated using MATLAB. The results of the simulation reveal the proposed FFNN’s powerful forecasting abilities. In addition, the results demonstrate that adopting the proposed DE can minimize the use of DG units and reduce a plant’s running expenses. Full article
Show Figures

Figure 1

22 pages, 7570 KiB  
Article
A Prescriptive Model for Failure Analysis in Ship Machinery Monitoring Using Generative Adversarial Networks
by Baris Yigin and Metin Celik
J. Mar. Sci. Eng. 2024, 12(3), 493; https://doi.org/10.3390/jmse12030493 - 15 Mar 2024
Cited by 3 | Viewed by 1228
Abstract
In recent years, advanced methods and smart solutions have been investigated for the safe, secure, and environmentally friendly operation of ships. Since data acquisition capabilities have improved, data processing has become of great importance for ship operators. In this study, we introduce a [...] Read more.
In recent years, advanced methods and smart solutions have been investigated for the safe, secure, and environmentally friendly operation of ships. Since data acquisition capabilities have improved, data processing has become of great importance for ship operators. In this study, we introduce a novel approach to ship machinery monitoring, employing generative adversarial networks (GANs) augmented with failure mode and effect analysis (FMEA), to address a spectrum of failure modes in diesel generators. GANs are emerging unsupervised deep learning models known for their ability to generate realistic samples that are used to amplify a number of failures within training datasets. Our model specifically targets critical failure modes, such as mechanical wear and tear on turbochargers and fuel injection system failures, which can have environmental effects, providing a comprehensive framework for anomaly detection. By integrating FMEA into our GAN model, we do not stop at detecting these failures; we also enable timely interventions and improvements in operational efficiency in the maritime industry. This methodology not only boosts the reliability of diesel generators, but also sets a precedent for prescriptive maintenance approaches in the maritime industry. The model was demonstrated with real-time data, including 33 features, gathered from a diesel generator installed on a 310,000 DWT oil tanker. The developed algorithm provides high-accuracy results, achieving 83.13% accuracy. The final model demonstrates a precision score of 36.91%, a recall score of 83.47%, and an F1 score of 51.18%. The model strikes a balance between precision and recall in order to eliminate operational drift and enables potential early action in identified positive cases. This study contributes to managing operational excellence in tanker ship fleets. Furthermore, this study could be expanded to enhance the current functionalities of engine health management software products. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

20 pages, 5232 KiB  
Article
Droop Control Optimization for Improved Power Sharing in AC Islanded Microgrids Based on Centripetal Force Gravity Search Algorithm
by Mohammed Qasim Taha and Sefer Kurnaz
Energies 2023, 16(24), 7953; https://doi.org/10.3390/en16247953 - 7 Dec 2023
Cited by 10 | Viewed by 1295
Abstract
The urgent demand for clean and renewable energy sources has led to the emergence of the microgrid (MG) concept. MGs are small grids connecting various micro-sources, such as diesel, photovoltaic wind, and fuel cells. They operate flexibly, connected to the grid, standalone, and [...] Read more.
The urgent demand for clean and renewable energy sources has led to the emergence of the microgrid (MG) concept. MGs are small grids connecting various micro-sources, such as diesel, photovoltaic wind, and fuel cells. They operate flexibly, connected to the grid, standalone, and in clusters. In AC MG control, a hierarchical system consists of three levels: primary, secondary, and tertiary. It monitors and ensures MG stability, power quality, and power sharing based on the specifications of governing protocols. Various challenging transient disturbances exist, such as generator tripping, secondary control failure due to communication delay, and drastic load changes. Although several optimal power sharing methods have been invented, they pose complex control requirements and provide limited improvement. Therefore, in this paper, a novel optimized droop control is proposed using a metaheuristic multi-objective evolutionary algorithm called the Centripetal Force-Gravity Search Algorithm (CF-GSA) to improve the droop performance of power sharing, voltage and frequency stability, and power quality. CF-GSA is an improved algorithm designed to address the issue of local solutions commonly encountered in optimization algorithms. The effectiveness and superiority of the proposed method are validated through a series of simulations. The results of these simulations show that the proposed multi-objective optimization droop control method works well to fix problems caused by power sharing errors in isolated AC microgrids that have to deal with high inductive loads and changes in line impedance. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

20 pages, 3280 KiB  
Article
Improved Gorilla Troops Optimizer-Based Fuzzy PD-(1+PI) Controller for Frequency Regulation of Smart Grid under Symmetry and Cyber Attacks
by Rajivgandhi Pachaiyappan, Elankurisil Arasan and Kannan Chandrasekaran
Symmetry 2023, 15(11), 2013; https://doi.org/10.3390/sym15112013 - 2 Nov 2023
Cited by 1 | Viewed by 1048
Abstract
In a smart grid (SG) system with load uncertainties and the integration of variable solar and wind energies, an effective frequency control strategy is necessary for generation and load balancing. Cyberattacks are emerging threats, and SG systems are typical cyber-attack targets. This work [...] Read more.
In a smart grid (SG) system with load uncertainties and the integration of variable solar and wind energies, an effective frequency control strategy is necessary for generation and load balancing. Cyberattacks are emerging threats, and SG systems are typical cyber-attack targets. This work suggests an improved gorilla troops optimizer (iGTO)-based fuzzy PD-(1+PI) (FPD-(1+PI)) structure for the frequency control of an SG system. The SG contains a diesel engine generator (DEG), renewable sources like wind turbine generators(WTGs), solar photovoltaic (PV), and storage elements such as flywheel energy storage systems (FESSs) and battery energy storage systems (BESSs) in conjunction with electric vehicles (EVs). Initially, the dominance of the projected iGTO over the gorilla troops optimizer (GTO) and some recently suggested optimization algorithms are demonstrated by considering benchmark test functions. In the next step, a traditional PID controller is used, and the efficacy of the GTO method is compared with that of the GTO, particle swarm optimization (PSO), and genetic algorithm (GA) methods. In the next stage, the superiority of the proposed FPD-(1+PI) structure over fuzzy PID (FPID) and PID structures is demonstrated under various symmetry operating conditions as well as under different cyberattacks, leading to a denial of service (DoS) and delay in signal transmission. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

24 pages, 2173 KiB  
Article
Biomethane Microturbines as a Storage-Free Dispatchable Solution for Resilient Critical Buildings
by Enrique Rosales-Asensio, Iker de Loma-Osorio, Emin Açıkkalp and David Borge-Diez
Buildings 2023, 13(10), 2516; https://doi.org/10.3390/buildings13102516 - 4 Oct 2023
Viewed by 909
Abstract
Climate-change-related events are increasing the costs of power outages, including losses of product, revenue, and productivity. Given the increase in meteorological disasters in recent years related to climate change effects, the number of costly blackouts, from an economic perspective, has increased in a [...] Read more.
Climate-change-related events are increasing the costs of power outages, including losses of product, revenue, and productivity. Given the increase in meteorological disasters in recent years related to climate change effects, the number of costly blackouts, from an economic perspective, has increased in a directly proportional manner. As a result, there is increasing interest in the use of alternators to supply dependable, instantaneous, and uninterruptible electricity. Traditional research has focused on the installation of diesel backup systems to ensure power requirements without deeply considering the resilience capabilities of systems, which is the ability of a system to recover or survive adversity, such as a power outage. This research presents a novel approach focusing on the resiliency impact of backup systems’ storage-free dispatchable solutions on buildings and compares the advantages and disadvantages of biomethane microturbines, natural gas engines, and diesel engines backup systems, discussing the revenue resulting from the resilience provided by emergency generators. The results show that, for several diesel fuel and natural gas safety assumptions, natural gas alternators have a lower probability of failure at the time of a blackout than diesel generators, and therefore, resilience increases. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 2162 KiB  
Article
Case Studies for Supplying the Alternating Current Auxiliary Systems of Substations with a Voltage Equal to or Higher than 230 kV
by Mariana de Morais Cavalcanti, Tatiane Costa, Alex C. Pereira, Eduardo B. Jatobá, José Bione de Melo Filho, Elisabete Barreto, Mohamed A. Mohamed, Adrian Ilinca and Manoel H. N. Marinho
Energies 2023, 16(14), 5396; https://doi.org/10.3390/en16145396 - 15 Jul 2023
Cited by 1 | Viewed by 1453
Abstract
This paper presents case studies for replacing diesel generators (DGs) that are used as the main and emergency power sources for alternating current (AC) auxiliary services in substations (SS) within the transmission network (voltage greater than or equal to 230 kV). The objective [...] Read more.
This paper presents case studies for replacing diesel generators (DGs) that are used as the main and emergency power sources for alternating current (AC) auxiliary services in substations (SS) within the transmission network (voltage greater than or equal to 230 kV). The objective of this research is to present a solution that is more reliable, environmentally friendly, and financially viable than DGs. To achieve this, the proposed solutions incorporate Battery Energy Storage Systems (BESSs) with or without the integration of Photovoltaic (PV) Systems. These solutions were simulated using the HOMER PRO Version 3.14.5 software for the Messias SS /AL, and the results were analyzed and compared to the DG in terms of reliability, financial viability, and environmental impact. Based on the conducted analyses, the BESS solution with the PV system was found to be the most suitable for the main source. However, in the case of the emergency source, if one of the main sources is a DG/BESS, maintaining the emergency DG is the preferable option. If both main sources are independent, the BESS solution with the PV system is a suitable solution. Full article
(This article belongs to the Special Issue The Future of Renewable Energies)
Show Figures

Figure 1

12 pages, 1634 KiB  
Article
Usage of Methanol Fuel Cells to Reduce Power Outages in the Etelä-Savo Region, Finland
by Pedro Gomez Hernandez, Thomas Leopold Berg and George Xydis
Environments 2023, 10(6), 96; https://doi.org/10.3390/environments10060096 - 5 Jun 2023
Cited by 1 | Viewed by 1765
Abstract
The operation of the electricity grid can be heavily affected by unexpected meteorological phenomena which generate emergency situations that cause extensive outages. This often has to do with weather-related events. In several places in the world, an electricity network operator is responsible for [...] Read more.
The operation of the electricity grid can be heavily affected by unexpected meteorological phenomena which generate emergency situations that cause extensive outages. This often has to do with weather-related events. In several places in the world, an electricity network operator is responsible for fairly compensating end-users. In Finland, there are areas where these weather-related impacts are significantly harsher than those in other areas. Based on this and historic data, the applicability and viability of a high-temperature proton-exchange membrane fuel cell (HT-PEMFC) backup power system was studied in order to assess the opportunity for its installation in the affected municipalities and regions. When implemented on a larger scale, from both technoeconomic and social perspectives, such systems have the potential to yield significant benefits. Compared to a diesel generator, the HT-PEMFC produced nearly half of the volume of CO2 and its fuel costs were six times smaller; however, it remains inapplicable to individual detached households. Full article
(This article belongs to the Special Issue Net-Zero Principles and Practices)
Show Figures

Figure 1

35 pages, 2844 KiB  
Review
State-of-the-Art Literature Review of Power Flow Control Methods for Low-Voltage AC and AC-DC Microgrids
by Pavel Ilyushin, Vladislav Volnyi, Konstantin Suslov and Sergey Filippov
Energies 2023, 16(7), 3153; https://doi.org/10.3390/en16073153 - 31 Mar 2023
Cited by 15 | Viewed by 2644
Abstract
The development of AC distribution systems provides for the seamless integration of low-voltage microgrids with distributed energy resources (DERs). This poses new challenges for the control of normal, emergency, and post-emergency states of microgrids, calling for the creation and development of information and [...] Read more.
The development of AC distribution systems provides for the seamless integration of low-voltage microgrids with distributed energy resources (DERs). This poses new challenges for the control of normal, emergency, and post-emergency states of microgrids, calling for the creation and development of information and communications technology infrastructure. Power converters/inverters that are used to integrate renewable DERs lack inertia. Along with them, fossil fuel-fired generation units are also being integrated into microgrids. These include gas generator sets, diesel generator sets, and microturbines, having small (up to 1–2 s) values of mechanical inertia constants—Tj. This leads to an increase in the rate of transients by a factor of 5–10. Under these conditions, the technical requirements for the speed of automatic power flow control systems, as well as the methods they rely on, have to be reconsidered. Microgrids include DC microgrids, AC microgrids, and hybrid (AC-DC) microgrids. In the case of hybrid microgrids, DERs are connected to the DC grid and are integrated into the AC grid through a common inverter. The complexity of the task of microgrid control is due to the need to choose properly the type and extent of control actions so as to prevent the emergence and development of accidents. The employed control methods must ensure the reliable power supply to consumers and the quality of power in microgrids, as well as the reliable operation of the external distribution systems into which they are integrated. The article gives an overview of control methods for low-voltage AC and AC-DC microgrids, which allow one to tackle effectively solve the tasks. Full article
(This article belongs to the Special Issue Optimal Design of Off-Grid Power Systems)
Show Figures

Figure 1

27 pages, 7726 KiB  
Article
Predicting Thermoelectric Power Plants Diesel/Heavy Fuel Oil Engine Fuel Consumption Using Univariate Forecasting and XGBoost Machine Learning Models
by Elias Amancio Siqueira-Filho, Maira Farias Andrade Lira, Attilio Converti, Hugo Valadares Siqueira and Carmelo J. A. Bastos-Filho
Energies 2023, 16(7), 2942; https://doi.org/10.3390/en16072942 - 23 Mar 2023
Cited by 4 | Viewed by 2043
Abstract
Monitoring and controlling thermoelectric power plants (TPPs) operational parameters have become essential to ensure system reliability, especially in emergencies. Due to system complexity, operating parameters control is often performed based on technical know-how and simplified analytical models that can result in limited observations. [...] Read more.
Monitoring and controlling thermoelectric power plants (TPPs) operational parameters have become essential to ensure system reliability, especially in emergencies. Due to system complexity, operating parameters control is often performed based on technical know-how and simplified analytical models that can result in limited observations. An alternative to this task is using time series forecasting methods that seek to generalize system characteristics based on past information. However, the analysis of these techniques on large diesel/HFO engines used in Brazilian power plants under the dispatch regime has not yet been well-explored. Therefore, given the complex characteristics of engine fuel consumption during power generation, this work aimed to investigate patterns generalization abilities when linear and nonlinear univariate forecasting models are used on a representative database related to an engine-driven generator used in a TPP located in Pernambuco, Brazil. Fuel consumption predictions based on artificial neural networks were directly compared to XGBoost regressor adaptation to perform this task as an alternative with lower computational cost. AR and ARIMA linear models were applied as a benchmark, and the PSO optimizer was used as an alternative during model adjustment. In summary, it was possible to observe that AR and ARIMA-PSO had similar performances in operations and lower error distributions during full-load power output with normal error frequency distribution of −0.03 ± 3.55 and 0.03 ± 3.78 kg/h, respectively. Despite their similarities, ARIMA-PSO achieved better adherence in capturing load adjustment periods. On the other hand, the nonlinear approaches NAR and XGBoost showed significantly better performance, achieving mean absolute error reductions of 42.37% and 30.30%, respectively, when compared with the best linear model. XGBoost modeling was 8.7 times computationally faster than NAR during training. The nonlinear models were better at capturing disturbances related to fuel consumption ramp, shut-down, and sudden fluctuations steps, despite being inferior in forecasting at full-load, especially XGBoost due to its high sensitivity with slight fuel consumption variations. Full article
Show Figures

Figure 1

18 pages, 10258 KiB  
Article
Campus Microgrids within the South African Context: A Case Study to Illustrate Unique Design, Control Challenges, and Hybrid Dispatch Strategies
by Stephanus Erasmus, Nicolaas Esterhuysen and Jacques Maritz
Energies 2023, 16(3), 1519; https://doi.org/10.3390/en16031519 - 3 Feb 2023
Cited by 3 | Viewed by 1502
Abstract
South African universities boast a remarkable solar photovoltaic (PV) resource as a primary renewable energy component. Due to high peak demand tariffs and inherent prominent heating and cooling loads, fast and granular demand response programs are well established within typical campus grids, with [...] Read more.
South African universities boast a remarkable solar photovoltaic (PV) resource as a primary renewable energy component. Due to high peak demand tariffs and inherent prominent heating and cooling loads, fast and granular demand response programs are well established within typical campus grids, with electrical networks adapted towards hosting centralized PV plants and emergency diesel generation. With unreliable utility supply and aging infrastructure comes a natural landscape and niche application for campus microgrids (MG) in South Africa. One such case, the University of the Free State’s QwaQwa satellite campus in the Phuthaditjhaba district, is no exception to this, as it has sufficient solar PV generation, but it also has an unreliable utility component. This paper investigates a possible MG for the UFS QwaQwa campus with an emphasis on Hybrid PV-Diesel dispatch strategies, specifically, to ensure uptime during the loss of grid supply and decrease fuel usage. The proposed centralized diesel-PV MG system achieves a diesel cost reduction of 21.55%, based on simulated results using actual campus load data from 2019. The approach improves electricity availability, supplying 100% of all campus demand, compared to 70% under a de-centralized approach. Full article
Show Figures

Figure 1

15 pages, 3162 KiB  
Article
Challenges of Phasing out Emergency Diesel Generators: The Case Study of Lacor Hospital’s Energy Community
by Alex Felice, Jacopo Barbieri, Ander Martinez Alonso, Maarten Messagie and Thierry Coosemans
Energies 2023, 16(3), 1369; https://doi.org/10.3390/en16031369 - 28 Jan 2023
Cited by 1 | Viewed by 2289
Abstract
Power outages of the electricity grid threaten the proper operation of critical infrastructure such as hospitals. To cope with this problem, emergency diesel generators (DGs) are often used to guarantee continuous and resilient electricity supply, resulting in increased costs and greenhouse gas (GHG) [...] Read more.
Power outages of the electricity grid threaten the proper operation of critical infrastructure such as hospitals. To cope with this problem, emergency diesel generators (DGs) are often used to guarantee continuous and resilient electricity supply, resulting in increased costs and greenhouse gas (GHG) emissions. Thus, this study aims to investigate the economic feasibility of both reducing and replacing emergency diesel generators with solar photovoltaic (PV) systems, battery energy storage systems (BESS) and demand-side management. A mixed-integer quadratically constrained program is used to find the optimal configuration in terms of capacities of new assets, as well as the optimal scheduling of both BESS and flexible loads, that minimises the levelised cost of energy (LCOE). The model is applied to an existing hospital and its surrounding community located in Gulu, Uganda. The results show that full replacement of the DGs will require an additional 500 kWp of PV and 1591 kWh of BESS. This new configuration will decrease LCOE by 26% compared to the actual situation, with a simple payback time of 6.2 years and a reduction of 74% in GHG emissions. Full article
(This article belongs to the Special Issue Energy Communities Implementation)
Show Figures

Figure 1

25 pages, 24954 KiB  
Article
Characterization of the Operation of a BESS with a Photovoltaic System as a Regular Source for the Auxiliary Systems of a High-Voltage Substation in Brazil
by Washington de Araujo Silva Júnior, Andrea Vasconcelos, Ayrlw Carvalho Arcanjo, Tatiane Costa, Rafaela Nascimento, Alex Pereira, Eduardo Jatobá, José Bione Filho, Elisabete Barreto, Roberto Dias and Manoel Marinho
Energies 2023, 16(2), 1012; https://doi.org/10.3390/en16021012 - 16 Jan 2023
Cited by 11 | Viewed by 3138
Abstract
Substation (SS) auxiliary systems (SAux) are facilities responsible for hosting the alternating (AC) and direct current (DC) busbar to serve the equipment and systems that perform the substation’s protection, control, and supervision. External and internal power supplies typically ensure the continuity of such [...] Read more.
Substation (SS) auxiliary systems (SAux) are facilities responsible for hosting the alternating (AC) and direct current (DC) busbar to serve the equipment and systems that perform the substation’s protection, control, and supervision. External and internal power supplies typically ensure the continuity of such a facility. The electricity support will be restricted to diesel emergency generators (DG) if the external power supply is unavailable due to a contingency. The DG present a slower response time and are susceptible to starting failures. Microgrids with Battery Energy Storage Systems (BESS) paired with photovoltaic systems (PV) are presented as an innovative and reliable solution for powering the SAux. In this article, tests were carried out on the microgrid of the Edson Mororó Moura Institute of Technology (ITEMM) in Brazil to support the use of microgrids BESS/PV in the SAux of a transmission SS of the São Francisco Hydroelectric Company (Chesf). Without an external power supply, BESS commands the action of islanded operation, maintaining both voltage and frequency requirements of the microgrid without load shedding. It was possible to observe all operations of the microgrid. The experimental results showed that the solution proposed in the paper implements a dependable self-dispatchable autonomous power supply. Full article
(This article belongs to the Special Issue Applications of Battery Energy Storage Systems (BESS))
Show Figures

Figure 1

14 pages, 6546 KiB  
Article
Feasibility and Techno-Economic Evaluation of Hybrid Photovoltaic System: A Rural Healthcare Center in Bangladesh
by Polash Ahmed, Md. Ferdous Rahman, A. K. M. Mahmudul Haque, Mustafa K. A. Mohammed, G. F. Ishraque Toki, Md. Hasan Ali, Abdul Kuddus, M. H. K. Rubel and M. Khalid Hossain
Sustainability 2023, 15(2), 1362; https://doi.org/10.3390/su15021362 - 11 Jan 2023
Cited by 10 | Viewed by 2014
Abstract
This study aimed to investigate a techno-economic evaluation of the photovoltaic system, along with a diesel generator as a backup supply, to ensure a continuous twenty-four hours power supply per day, no matter the status of the weather. Healthcare centers in Bangladesh play [...] Read more.
This study aimed to investigate a techno-economic evaluation of the photovoltaic system, along with a diesel generator as a backup supply, to ensure a continuous twenty-four hours power supply per day, no matter the status of the weather. Healthcare centers in Bangladesh play a vital role in the health issues of the residents of rural areas. In this regard, a healthcare center in Baliadangi—Lahiri Hat Rd, Baliadangi, Thakurgaon, Bangladesh, was selected to be electrically empowered. The simulation software Hybrid Optimisation Model for Electric Renewables (HOMER) and the HOMER Powering Health tool were used to analyze and optimize the renewable energy required by the healthcare center. It was found that the healthcare center required a 24.3 kW solar PV system with a net current cost of $28,705.2; the levelized cost of electricity (LCOE) was $0.02728 per kW-hours, where renewable energy would provide 98% of the system’s total power requirements. The generator would provide 1% and the grid would supply the remaining 1%. The load analysis revealed that the hybrid PV system might be superior to other power sources for providing electricity for both the normal function and the emergencies that arise in healthcare’s day-to-day life. The outcome of the study is expected to be beneficial for both government and other stakeholders in decision-making. Full article
(This article belongs to the Special Issue Solar Energy Utilization and Sustainable Development)
Show Figures

Figure 1

26 pages, 2362 KiB  
Article
Comparative Economic Analysis of Solar PV and Reused EV Batteries in the Residential Sector of Three Emerging Countries—The Philippines, Indonesia, and Vietnam
by Hong Eun Moon, Yoon Hee Ha and Kyung Nam Kim
Energies 2023, 16(1), 311; https://doi.org/10.3390/en16010311 - 27 Dec 2022
Cited by 9 | Viewed by 3540
Abstract
An emerging problem associated with the increased global demand for electric vehicles (EVs) is the post-use of lithium-ion batteries installed in them. Discarded batteries maintain 70–80% of their performance; thus, they are highly valuable recycling resources. Accordingly, technologies that complement the intermittency of [...] Read more.
An emerging problem associated with the increased global demand for electric vehicles (EVs) is the post-use of lithium-ion batteries installed in them. Discarded batteries maintain 70–80% of their performance; thus, they are highly valuable recycling resources. Accordingly, technologies that complement the intermittency of renewable energy by integrating discarded EV batteries into battery energy storage systems (BESSs) are receiving attention. Here, the economic feasibility of a residential solar photovoltaic (PV) + reused BESS (RBESS) integrated system in three emerging countries (Philippines, Indonesia, and Vietnam) was analyzed by comparing its performance with that of diesel power generation and central grid-supplied power. The proposed system had a higher economic feasibility than diesel power generation (55.9% lower LCOE) but a lower economic feasibility than the central grid-supplied power (282.7% higher LCOE) in all three countries. Additionally, we conducted a sensitivity analysis by incorporating the investment cost, government subsidy, and social cost of greenhouse gas emissions. In conclusion, the Philippines is the best country for grid parity with the integrated system, following Indonesia and Vietnam. This study examined both the economic and social benefits of the proposed system as a countermeasure to climate change and the virtuous resource cycle. Full article
Show Figures

Figure 1

Back to TopTop