Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,246)

Search Parameters:
Keywords = epoxides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4000 KiB  
Article
Investigation of Adsorption and Young’s Modulus of Epoxy Resin–Sand Interfaces Using Molecular Dynamics Simulation
by Dejian Shen, Xueran Pi, Lili Cai, Xin Wang, Chunying Wu and Ruixin Liu
Appl. Sci. 2024, 14(22), 10383; https://doi.org/10.3390/app142210383 - 12 Nov 2024
Viewed by 264
Abstract
Epoxy resins exhibit outstanding curability, durability, and environmental compatibility, rendering them extensively utilized in the realm of engineering curing. Nevertheless, the current curing mechanism of epoxy-based resins in cohesion with sand remains inadequately elucidated, significantly impeding their applicability within the domain of soil [...] Read more.
Epoxy resins exhibit outstanding curability, durability, and environmental compatibility, rendering them extensively utilized in the realm of engineering curing. Nevertheless, the current curing mechanism of epoxy-based resins in cohesion with sand remains inadequately elucidated, significantly impeding their applicability within the domain of soil curing. This study employed molecular dynamics simulations to investigate the adsorption behavior of three distinct types of epoxy resins on the sand surface: diglycidyl ether of bisphenol-A epoxy resin (DGEBA), diglycidyl ether 4,4′-dihydroxy diphenyl sulfone (DGEDDS), and aliphatic epoxidation of olefin resin (AEOR). The objective was to gain insights into the interactions between the sand surface and the epoxy resin polymers. The results demonstrated that DGEDDS formed a higher number of hydrogen bonds on the sand surface, leading to stronger intermolecular interactions compared to the other two resins. Furthermore, the mechanical properties of the adsorbed models of the three epoxy resins with sand were found to be relatively similar. This similarity can be attributed to their comparable chemical structures. Finally, analysis of the radius of gyration for the adsorbed epoxy resins revealed that AEOR exhibited a rigid structure due to strong molecular interactions, while DGEDDS displayed a flexible structure owing to weaker interactions. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

12 pages, 1669 KiB  
Article
Dark Anaerobic Conditions Induce a Fast Induction of the Xanthophyll Cycle in Chlamydomonas reinhardtii When Exposed to High Light
by Cecilia Faraloni, Eleftherios Touloupakis and Giuseppe Torzillo
Microorganisms 2024, 12(11), 2264; https://doi.org/10.3390/microorganisms12112264 - 8 Nov 2024
Viewed by 527
Abstract
Background: Dark anaerobiosis promotes the acidification of the thylakoid lumen and a reduction in the plastoquinone (PQ) pool. The relationship between the reduction in the PQ pool in the dark and the induction of the xanthophyll cycle under high light stress was investigated [...] Read more.
Background: Dark anaerobiosis promotes the acidification of the thylakoid lumen and a reduction in the plastoquinone (PQ) pool. The relationship between the reduction in the PQ pool in the dark and the induction of the xanthophyll cycle under high light stress was investigated in Chlamydomonas reinhardtii. Methods: To achieve a comprehensive oxidative/reductive (aerobic/anaerobic conditions) state of the PQ pool, cultures were bubbled with air or nitrogen for 4 h. To induce the xanthophyll cycle, the cultures were then irradiated with 1200 µmolphotons m−2 s−1 white light for 1 h. Results: The anaerobic cultures exhibited a stronger induction of the xanthophyll cycle with a 3.4-fold higher de-epoxidation state than the aerobic cultures. Chlorophyll fluorescence measurements showed that this response was influenced by the previous redox state of the PQ pool, and that dark anaerobiosis triggers physiological responses, such as exposure to high light. Thus, the photosynthetic apparatus in anaerobic cultures was already alerted, at the moment of high light exposure, to give an appropriate response to the stress with a stronger induction of the xanthophyll cycle than in aerobic cultures. Conclusions: Our results provide new information on the importance of the redox signaling pathway and highlight the importance of the reductive conditions of the PQ pool in regulating the physiological responses of photosynthetic organisms to stress. Full article
Show Figures

Figure 1

15 pages, 4206 KiB  
Article
Reinforcement of Epoxidized Natural Rubber with High Antimicrobial Resistance Using Water Hyacinth Fibers and Chlorhexidine Gluconate
by Thidarat Kanthiya, Pornchai Rachtanapun, Siwarote Boonrasri, Thorsak Kittikorn, Thanongsak Chaiyaso, Patnarin Worajittiphon, Nuttapol Tanadchangsaeng, Sarinthip Thanakkasaranee, Noppol Leksawasdi, Yuthana Phimolsiripol, Warintorn Ruksiriwanich and Kittisak Jantanasakulwong
Polymers 2024, 16(21), 3089; https://doi.org/10.3390/polym16213089 - 31 Oct 2024
Viewed by 561
Abstract
In this study, epoxidized natural rubber (ENR) was mixed using a two-roller mixer. Water hyacinth fiber (WHF) acted as a reinforcing agent in the preparation of the rubber composite at 10 phr (ENRC/WHF). Chlorhexidine gluconate (CHG) was added at different concentrations (1, 5, [...] Read more.
In this study, epoxidized natural rubber (ENR) was mixed using a two-roller mixer. Water hyacinth fiber (WHF) acted as a reinforcing agent in the preparation of the rubber composite at 10 phr (ENRC/WHF). Chlorhexidine gluconate (CHG) was added at different concentrations (1, 5, 10, and 20 phr) as an antimicrobial and coupling agent. The tensile strength increased with a CHG content of 1 phr (4.59 MPa). The ENRC/WHF/CHG20 blend offered high hardness (38) and good morphology owing to the reduction in cavities and fiber pull-out from the rubber matrix. The swelling of the sample blends in oil and toluene decreased as the CHG content increased. Reactions of –NH2/epoxy groups and –NH2/–OH groups occurred during the preparation of the ENRC/WHF/CHG blend. The FTIR spectroscopy peak at 1730 cm−1 confirmed the reaction between the −NH2 groups of CHG and epoxy groups of ENR. The ENRC/WHF/CHG blend at 10 phr and 20 phr exhibited zones of inhibition against three bacterial species (Staphylococcus aureus, Escherichia coli, and Bacillus cereus). CHG simultaneously acted as a crosslinking agent between ENR and WHF and as an antimicrobial additive for the blends. CHG also improved the tensile strength, hardness, swelling, and antimicrobial properties of ENR composites. Full article
(This article belongs to the Special Issue Mechanical and Structural Behavior for Polymer Composites)
Show Figures

Figure 1

25 pages, 10520 KiB  
Article
Waste-Cooking-Oil-Derived Polyols to Produce New Sustainable Rigid Polyurethane Foams
by Miriam Cappello, Sara Filippi, Damiano Rossi, Patrizia Cinelli, Irene Anguillesi, Caterina Camodeca, Elisabetta Orlandini, Giovanni Polacco and Maurizia Seggiani
Sustainability 2024, 16(21), 9456; https://doi.org/10.3390/su16219456 - 31 Oct 2024
Viewed by 900
Abstract
Polyurethanes (PUs) are one of the most versatile polymeric materials, making them suitable for a wide range of applications. Currently, petroleum is still the main source of polyols and isocyanates, the two primary feedstocks used in the PU industry. However, due to future [...] Read more.
Polyurethanes (PUs) are one of the most versatile polymeric materials, making them suitable for a wide range of applications. Currently, petroleum is still the main source of polyols and isocyanates, the two primary feedstocks used in the PU industry. However, due to future petroleum price uncertainties and the need for eco-friendly alternatives, recent efforts have focused on replacing petrol-based polyols and isocyanates with counterparts derived from renewable resources. In this study, waste cooking oil was used as feedstock to obtain polyols (POs) for new sustainable polyurethane foams (PUFs). POs with various hydroxyl numbers were synthesized through epoxidation followed by oxirane ring opening with diethylene glycol. By adjusting reagent amounts (acetic acid and H2O2), epoxidized oils (EOs) with different epoxidation degrees (50–90%) and, consequently, POs with different OH numbers (200–300 mg KOH/g) were obtained. Sustainable PUFs with high bio-based content were produced by mixing the bio-based POs with a commercial partially bio-based aliphatic isocyanate and using water as the blowing agent in the presence of a gelling catalyst and additives. Various water (4, 8, 15 php) and gelling catalyst (0, 1, 2 php) amounts were tested to assess their effect on foam properties. PUFs were also prepared using EOs instead of POs to investigate the potential use of EOs directly in PUF production. Characterization included morphological, chemical, physical, thermal, and mechanical analyses. The rigid PUFs exhibited high density (150–300 kg/m³) and stability up to 200 °C. The combined use of bio-based polyols with partially bio-based isocyanate and water enabled PUFs with a bio-based content of up to 77 wt.%. EOs demonstrated potential in PUF production by bypassing the second synthesis step, enhancing sustainability, and significantly reducing energy and costs; however, PUF formulations with EOs require optimization due to lower epoxy ring reactivity. Full article
(This article belongs to the Special Issue Recycling Materials for the Circular Economy—2nd Edition)
Show Figures

Figure 1

12 pages, 2745 KiB  
Article
The Flammability and Thermal Stability of Filling Epoxy Foam Plastics for Construction Purposes
by Svetlana Samchenko, Maxim Ushkov, Vladimir Erofeev, Valentin Ushkov and Irina Stepina
Materials 2024, 17(21), 5268; https://doi.org/10.3390/ma17215268 - 29 Oct 2024
Viewed by 464
Abstract
An effective type of polymer heat-insulating material (foams) based on reactive oligomers is casting epoxy foams with high technological and operational parameters. However, polyepoxide foams are highly flammable, which significantly restrains their application in the construction industry. The aim of this work was [...] Read more.
An effective type of polymer heat-insulating material (foams) based on reactive oligomers is casting epoxy foams with high technological and operational parameters. However, polyepoxide foams are highly flammable, which significantly restrains their application in the construction industry. The aim of this work was to develop effective methods for reducing the flammability of filling epoxy foams. In order to achieve the objective, the following objectives were addressed: determining the influence of the chemical nature and content of additive and reactive bromine- and phosphorus-containing compounds on the thermal stability, flammability and operational properties of filling epoxy foams, and the development of polyepoxy foams of reduced flammability with high-quality physical and mechanical characteristics. When estimating the flammability of epoxy foams, we used both state-approved methods and the methods described in scientific and technical literature. The thermal properties of epoxy foams were studied with the help of multimodular thermoanalytical complex DuPont-9900. The data on the influence of the apparent density of foams and oxygen concentration in the oxidant flow on the flame propagation speed on the horizontal surface of polyepoxy foams are presented. It was revealed that the chemical nature of amine hardeners does not affect the thermal stability and flammability of epoxy foams. It was established that phosphate plasticizers are ineffective flame retardants of foamed epoxy resin, and the chemical structure of additive organobromic flame retardants insignificantly affects their efficiency. It was shown that microencapsulated flame retardants are inferior in flame retardant efficiency to additive flame retardants. It was found that effective flame retardants for casting polyepoxy foams are phosphorus-containing oligoether methacrylate and epoxidized waste from the production of tetrabromodiphenylpropane. The results of this research will form the basis for the production of an experimental industrial batch of samples of pouring epoxy foams of reduced flammability. Full article
(This article belongs to the Special Issue Thermal Stability and Fire Performance of Polymeric Materials)
Show Figures

Figure 1

18 pages, 4521 KiB  
Article
Bio-Based Epoxy-Phthalonitrile Resin: Preparation, Characterization, and Properties
by Yanqin Du, Ruojin Wang, Qingxu Meng, Xiaoa Zhang and Riwei Xu
Molecules 2024, 29(21), 5019; https://doi.org/10.3390/molecules29215019 - 24 Oct 2024
Viewed by 565
Abstract
Preparation of high-performance thermosetting resins via bio-based resources is important for the development of a sustainable world. In this work, we proposed the introduction of cyanide structure groups into the molecular structure of epoxy resins to give them excellent heat resistance. A eugenol-based [...] Read more.
Preparation of high-performance thermosetting resins via bio-based resources is important for the development of a sustainable world. In this work, we proposed the introduction of cyanide structure groups into the molecular structure of epoxy resins to give them excellent heat resistance. A eugenol-based epoxy-phthalonitrile (EEPN) resin was synthesized by a two-step process using the bio-based renewable resource of eugenol, and a series of EEPN/Epoxide resin (E51) blend resins with different EEPN contents were prepared. The structure of the EEPN monomer was characterized and confirmed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and elemental analysis. The thermal stability and dynamic mechanical properties of the cured resins were investigated by thermogravimetric analysis and dynamic mechanical thermal analysis. The experimental results showed that EEPN had excellent heat resistance; the char yield at 800 °C was 67.9 wt%, which was much higher than that of E51 at 26.3 wt%; and the heat resistance of the blended resins was significantly improved with the increase in the EEPN content. Full article
Show Figures

Figure 1

13 pages, 4771 KiB  
Article
Study on the Performances of Toughening UV-LED-Cured Epoxy Electronic Encapsulants
by Xiaolong Dai and Jianbo Li
Coatings 2024, 14(11), 1347; https://doi.org/10.3390/coatings14111347 - 23 Oct 2024
Viewed by 589
Abstract
This study aims to investigate the effects of three toughening agents—core–shell rubber particles (CSR), nano-silica particles (NSPs), and epoxidized polybutadiene (EPB)—on the performance of UV-LED-cured epoxy electronic encapsulants. By systematically comparing the curing behavior, thermomechanical properties, and impact resistance of different toughening agents [...] Read more.
This study aims to investigate the effects of three toughening agents—core–shell rubber particles (CSR), nano-silica particles (NSPs), and epoxidized polybutadiene (EPB)—on the performance of UV-LED-cured epoxy electronic encapsulants. By systematically comparing the curing behavior, thermomechanical properties, and impact resistance of different toughening agents in alicyclic epoxy resins, their potential applications in more environmentally friendly UV-cured electronic encapsulation are evaluated. The results show that NSP and CSR toughened samples have fast cured speed under 365 nm UV-LED light, but it affects the depth of curing under low energy conditions. They maintain high Tg, high modulus, and low thermal expansion coefficient (CTE), especially in the NSP-toughened sample. The EPB-toughened sample has good transparency for LED, but it has negative effects on Tg and CTE. This research provides essential theoretical and experimental data to support the development of high-performance UV-LED-cured epoxy encapsulation materials. Full article
Show Figures

Figure 1

18 pages, 2104 KiB  
Article
Integrating Epoxidation, High-Resolution Mass Spectrometry and Ultraviolet Spectroscopy to Unravel the Complex Profile of Boswellic Acids and Related Compounds in the Boswellia serrata Gum Resin Extract
by Andrea Castellaneta, Ilario Losito, Stefania Cometa, Francesco Busto, Elvira De Giglio and Tommaso R. I. Cataldi
Molecules 2024, 29(20), 4967; https://doi.org/10.3390/molecules29204967 - 21 Oct 2024
Viewed by 502
Abstract
The chemical characterization of natural products is often a complex task that demands powerful analytical techniques. Liquid chromatography with high-resolution tandem mass spectrometry (HRMS/MS) is often employed, yet it can face hard challenges when isomeric species are present, and reference standards are lacking. [...] Read more.
The chemical characterization of natural products is often a complex task that demands powerful analytical techniques. Liquid chromatography with high-resolution tandem mass spectrometry (HRMS/MS) is often employed, yet it can face hard challenges when isomeric species are present, and reference standards are lacking. In such cases, the confidence level in compound identification can be significantly improved by the collection of orthogonal information on target analytes. In this work, 23 key compounds in Boswellia serrata extract (BSE), 12 of which correspond to boswellic acids (BAs) and 11 to triterpenoidic acid isomers, were identified by combining RPLC followed by serial UV and ESI(-)-FTMS and FTMS/MS detections with the evaluation of the reactivity towards C=C bond epoxidation with meta-chloroperoxybenzoic acid (m-CPBA), proposed as a fast chemical tool to gather information about C=C bond steric hindrance, a key structural feature of BAs and related compounds. The interpretation of UV spectra acquired after chromatographic separation corroborated the identification of the substitution patterns of enonic and dienic residues in ketoboswellic and dehydroboswellic acids. Moreover, MS/MS based on higher-energy collision-induced dissociation (HCD) unveiled new fragmentation pathways, providing important structural details on target analytes. The integrated approach developed during this study might pave the way for a deeper understanding of the BSE bioactive properties. Moreover, it can be considered an example of a more general strategy for the analysis of complex mixtures of natural compounds including also isomeric species. Full article
Show Figures

Figure 1

16 pages, 1159 KiB  
Article
AI-Driven Insight into Polycarbonate Synthesis from CO2: Database Construction and Beyond
by Aritz D. Martinez, Adriana Navajas-Guerrero, Harbil Bediaga-Bañeres, Julia Sánchez-Bodón, Pablo Ortiz, Jose Luis Vilas-Vilela, Isabel Moreno-Benitez and Sergio Gil-Lopez
Polymers 2024, 16(20), 2936; https://doi.org/10.3390/polym16202936 - 19 Oct 2024
Viewed by 775
Abstract
Recent advancements in materials science have garnered significant attention within the research community. Over the past decade, substantial efforts have been directed towards the exploration of innovative methodologies for developing new materials. These efforts encompass enhancements to existing products or processes and the [...] Read more.
Recent advancements in materials science have garnered significant attention within the research community. Over the past decade, substantial efforts have been directed towards the exploration of innovative methodologies for developing new materials. These efforts encompass enhancements to existing products or processes and the design of novel materials. Of particular significance is the synthesis of specific polymers through the copolymerization of epoxides with CO2. However, several uncertainties emerge in this chemical process, including challenges associated with successful polymerization and the properties of the resulting materials. These uncertainties render the design of new polymers a trial-and-error endeavor, often resulting in failed outcomes that entail significant financial, human resource, and time investments due to unsuccessful experimentation. Artificial Intelligence (AI) emerges as a promising technology to mitigate these drawbacks during the experimental phase. Nonetheless, the availability of high-quality data remains crucial, posing particular challenges in the context of polymeric materials, mainly because of the stochastic nature of polymers, which impedes their homogeneous representation, and the variation in their properties based on their processing. In this study, the first dataset linking the structure of the epoxy comonomer, the catalyst employed, and the experimental conditions of polymerization to the reaction’s success is described. A novel analytical pipeline based on ML to effectively exploit the constructed database is introduced. The initial results underscore the importance of addressing the dimensionality problem. The outcomes derived from the proposed analytical pipeline, which infer the molecular weight, polydispersity index, and conversion rate, demonstrate promising adjustment values for all target parameters. The best results are measured in terms of the (Determination Coefficient) R2 between real and predicted values for all three target magnitudes. The best proposed solution provides a R2 equal to 0.79, 0.86, and 0.93 for the molecular weight, polydispersity index, and conversion rate, respectively. The proposed analytical pipeline is automatized (including AutoML techniques for ML models hyperparameter tuning), allowing easy scalability as the database grows, laying the foundation for future research. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

15 pages, 5094 KiB  
Article
Effect of Star-like Polymer on Mechanical Properties of Novel Basalt Fibre-Reinforced Composite with Bio-Based Matrix
by Rochele Pinto, Tatjana Glaskova-Kuzmina, Kristina Zukiene, Gediminas Monastyreckis, Marie Novakova, Vladimir Spacek, Andrejs Kovalovs, Andrey Aniskevich and Daiva Zeleniakiene
Polymers 2024, 16(20), 2909; https://doi.org/10.3390/polym16202909 - 16 Oct 2024
Viewed by 635
Abstract
This study is aimed at developing a fibre-reinforced polymer composite with a high bio-based content and to investigate its mechanical properties. A novel basalt fibre-reinforced polymer (BFRP) composite with bio-based matrix modified with different contents of star-like n-butyl methacrylate (n-BMA) block [...] Read more.
This study is aimed at developing a fibre-reinforced polymer composite with a high bio-based content and to investigate its mechanical properties. A novel basalt fibre-reinforced polymer (BFRP) composite with bio-based matrix modified with different contents of star-like n-butyl methacrylate (n-BMA) block glycidyl methacrylate (GMA) copolymer has been developed. n-BMA blocks have flexible butyl units, while the epoxide group of GMA makes it miscible with the epoxy resin and is involved in the crosslinking network. The effect of the star-like polymer on the rheological behaviour of the epoxy was studied. The viscosity of the epoxy increased with increase in star-like polymer content. Tensile tests showed no noteworthy influence of star-like polymer on tensile properties. The addition of 0.5 wt.% star-like polymer increased the glass transition temperature by 8.2 °C. Mode-I interlaminar fracture toughness and low-velocity impact tests were performed on star-like polymer-modified BFRP laminates, where interfacial adhesion and impact energy capabilities were observed. Interlaminar fracture toughness improved by 45% and energy absorption capability increased threefold for BFRP laminates modified with 1 wt.% of star-like polymer when compared to unmodified BFRP laminates. This improvement could be attributed to the increase in ductility of the matrix on the addition of the star-like polymer, increasing resistance to impact and damage. Furthermore, scanning electron microscopy confirmed that with increase in star-like polymer content, the interfacial adhesion between the matrix and fibres improves. Full article
(This article belongs to the Special Issue Mechanical Properties of 3D Printed Polymer Composites)
Show Figures

Figure 1

14 pages, 1575 KiB  
Article
Navigational Signals for Insect and Slug Parasitic Nematodes: The Role of Ascorbate–Glutathione System and Volatiles Released by Insect-Damaged Sweet Pepper Roots
by Žiga Laznik, Mitja Križman, Jure Zekič, Mihaela Roškarič, Stanislav Trdan and Andreja Urbanek Krajnc
Insects 2024, 15(10), 805; https://doi.org/10.3390/insects15100805 - 15 Oct 2024
Viewed by 884
Abstract
This study of underground multitrophic communication, involving plant roots, insects, and parasitic nematodes, is an emerging field with significant implications for understanding plant–insect–nematode interactions. Our research investigated the impact of wireworm (Agriotes lineatus L. [Coleoptera: Elateridae]) infestations on the ascorbate–glutathione system in [...] Read more.
This study of underground multitrophic communication, involving plant roots, insects, and parasitic nematodes, is an emerging field with significant implications for understanding plant–insect–nematode interactions. Our research investigated the impact of wireworm (Agriotes lineatus L. [Coleoptera: Elateridae]) infestations on the ascorbate–glutathione system in sweet pepper (Capsicum annuum L.) plants in order to study the potential role in root-exudate-mediated nematode chemotaxis. We observed that an A. lineatus infestation led to a decrease in leaf ascorbate levels and an increase in root ascorbate, with corresponding increases in the glutathione content in both roots and leaves. Additionally, a pigment analysis revealed increased carotenoid and chlorophyll levels and a shift towards a de-epoxidized state in the xanthophyll cycle. These changes suggest an individual and integrated regulatory function of photosynthetic pigments accompanied with redox modifications of the ascorbate–glutathione system that enhance plant defense. We also noted changes in the root volatile organic compound (VOC). Limonene, methyl salicylate, and benzyl salicylate decreased, whereas hexanal, neoisopulegol, nonanal, phenylethyl alcohol, m-di-tert-butylbenzene, and trans-β-ionone increased in the roots of attacked plants compared to the control group. Most notably, the VOC hexanal and amino acid exudate cysteine were tested for the chemotaxis assay. Nematode responses to chemoattractants were found to be species-specific, influenced by environmental conditions such as temperature. This study highlights the complexity of nematode chemotaxis and suggests that VOC-based biological control strategies must consider nematode foraging strategies and environmental factors. Future research should further explore these dynamics to optimize nematode management in agricultural systems. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

14 pages, 4862 KiB  
Article
Improving Hydrolytic Activity and Enantioselectivity of Epoxide Hydrolase from Phanerochaete chrysosporium by Directed Evolution
by Huanhuan Shao, Pan Xu, Xiang Tao, Xinyi He, Chunyan Pu, Shaorong Liang, Yingxin Shi, Xiaoyan Wang, Hong Feng and Bin Yong
Molecules 2024, 29(20), 4864; https://doi.org/10.3390/molecules29204864 - 14 Oct 2024
Viewed by 588
Abstract
Epoxide hydrolases (EHs) catalyze the conversion of epoxides into vicinal diols. The epoxide hydrolase gene from P. chrysosporium was previously cloned and subjected to site-directed mutation to study its enzyme activity, but the results were unsatisfactory. This study used error prone PCR and [...] Read more.
Epoxide hydrolases (EHs) catalyze the conversion of epoxides into vicinal diols. The epoxide hydrolase gene from P. chrysosporium was previously cloned and subjected to site-directed mutation to study its enzyme activity, but the results were unsatisfactory. This study used error prone PCR and DNA shuffling to construct a PchEHA mutation library. We performed mutation-site combinations on PchEHA based on enzyme activity measurement results combined with directed evolution technology. More than 15,000 mutants were randomly selected for the preliminary screening of PchEHA enzyme activity alongside 38 mutant strains with increased enzyme activity or enantioselectivity. Protein expression and purification were conducted to determine the hydrolytic activity of PchEHA, and three mutants increased their activity by more than 95% compared with that of the wt. After multiple rounds of screening and site-specific mutagenesis, we found that F3 offers the best enzyme activity and enantioselectivity; furthermore, the molecular docking results confirmed this result. Overall, this study uncovered novel mutants with potential value as industrial biocatalysts. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

16 pages, 3836 KiB  
Article
Fabrication and Characterization of Biopolymers Using Polyvinyl Alcohol and Cardanol-Based Polyols
by Da Hae Lee, Yun Ha Song, Hee Ju Ahn, Jaekyoung Lee and Hee Chul Woo
Molecules 2024, 29(20), 4807; https://doi.org/10.3390/molecules29204807 - 11 Oct 2024
Viewed by 715
Abstract
Biodegradable polymers are getting attention as renewable alternatives to petroleum-based plastics due to their environmental benefits. However, improving their physical properties remains challenging. In this work, biodegradable biopolymers (PVA-PCD) were fabricated by chemically crosslinking petroleum-based polyvinyl alcohol (PVA) with biomass-derived cardanol-based polyols (PCD). [...] Read more.
Biodegradable polymers are getting attention as renewable alternatives to petroleum-based plastics due to their environmental benefits. However, improving their physical properties remains challenging. In this work, biodegradable biopolymers (PVA-PCD) were fabricated by chemically crosslinking petroleum-based polyvinyl alcohol (PVA) with biomass-derived cardanol-based polyols (PCD). Biopolymers were characterized using various techniques, including Fourier-transform infrared (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and swelling tests. Cardanol, the raw material, was converted into polyols via epoxidation followed by hydroxylation. FT-IR analysis confirmed that PVA-PCD biopolymers were crosslinked between the hydroxyl groups of PVA and PCD and the aldehydes of crosslinker glutaraldehyde (GLU), accompanied by the formation of acetal groups with ether bridges. XRD showed that the crystallinity of crosslinked polymers decreased, indicating that crosslinking occurs disorderly. TGA exhibited that GLU significantly improved the thermal stabilities of PVA and PCD-PVA polymers, as evidenced by increased decomposition temperatures. On the other hand, the effect of PVA/PCD ratios was minor on biopolymers’ thermal stabilities. Swelling tests revealed that increased crosslinking density decreased the swelling ratio, suggesting that PVA-PCD biopolymers become more hydrophobic with high brittleness, high strength, and low swelling capacity. In summary, this study demonstrates that PVA-PCD biopolymers fabricated from biomass-derived materials have potential for various applications, such as biodegradable materials and sustainable packaging. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Graphical abstract

12 pages, 6564 KiB  
Article
Tailoring Mesoporosity of Multi-Hydroxyls Hyper-Crosslinked Organic Polymers for Reinforced Ambient Chemical Fixation of CO2
by Zengjing Guo, Shuguang Ning, Shicheng Xu, Yongying Zhang, Yifan Dong and Hongjing Han
Catalysts 2024, 14(10), 707; https://doi.org/10.3390/catal14100707 - 10 Oct 2024
Viewed by 516
Abstract
Ambient condition-determined chemical CO2 fixation affords great promise for remitting the pressure of CO2 release. The construction of a microporous environment easily captures CO2 molecules around the reactive sites of the catalyst to reinforce the reaction process. Herein, multi-hydroxyl-containing hyper-crosslinked [...] Read more.
Ambient condition-determined chemical CO2 fixation affords great promise for remitting the pressure of CO2 release. The construction of a microporous environment easily captures CO2 molecules around the reactive sites of the catalyst to reinforce the reaction process. Herein, multi-hydroxyl-containing hyper-crosslinked organic polymers (HCPs-OH-n) are synthesized by the polymerization of 1,4-dichlorobenzyl (DCX) and m-trihydroxybenzene in the monosaccharide form in a Friedel–Crafts alkylation hypercrosslinking process (FCAHP). By tuning the DCX ratio in the FCAHP, the structural properties can be regulated to create a more microporous surface in the HCPs-OH-n; meanwhile, the formed multi-hydroxyl species in the microporous environment could induce the easy interaction between hydroxyls and epoxides by forming a hydrogen bond, which improves the activation of epoxides during the cycloaddition reaction to synthesize the cyclic carbonates at ambient conditions. The structural properties suggest that HCPs-OH-n possess a large surface area with appreciable microporous and mesoporous distribution. As expected, the HCPs-OH-3 bearing the most abundant mesoporosity affords the highest reactivity in the chemical CO2 fixation to cyclic carbonates and is endowed with rational recoverability. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

15 pages, 4728 KiB  
Article
Field Trial and Performance Evaluation of Soybean-Based Bio-Fog Seals for Asphalt Rejuvenation
by Ana Luiza Rodrigues, Caio Falcao, Maxwell Staver, Irvin Pinto, Andrew Becker, Michael Forrester, Austin Hohmann, Baker Kuehl, Nacu Hernandez, Ashley Buss, Eric Cochran and R. Christopher Williams
Appl. Sci. 2024, 14(20), 9168; https://doi.org/10.3390/app14209168 - 10 Oct 2024
Viewed by 739
Abstract
Cracked and deteriorated asphalt are common problems on our roads, leading to safety concerns and requiring significant resources for rehabilitation and reconstruction. This study investigates bio-fog seals, a promising eco-friendly solution utilizing bio-based rejuvenators. These treatments penetrate aged asphalt, restoring its flexibility and [...] Read more.
Cracked and deteriorated asphalt are common problems on our roads, leading to safety concerns and requiring significant resources for rehabilitation and reconstruction. This study investigates bio-fog seals, a promising eco-friendly solution utilizing bio-based rejuvenators. These treatments penetrate aged asphalt, restoring its flexibility and resistance to cracking. We assessed the effectiveness of two bio-fog seal formulations—one containing sub-epoxidized soybean oil (SESO) and the other combining SESO with a biopolymer (BioMag). Applied to real pavement sections, the research evaluated how these bio-seals impacted key performance factors, such as stiffness, permeability, and drying time, and safety factors, including skid resistance and pavement marking visibility. The results indicate the bio-seals did not compromise skid resistance and the reflectivity of the markings, eliminating the need for repainting stripes. Additionally, they successfully reduced pavement stiffness, making the asphalt more flexible and crack-resistant. Remarkably, with rapid setting times, under 30 min, these treatments minimize traffic disruption and do not require a blotter material. Overall, this research demonstrates the potential of bio-fog seals as a sustainable solution for extending pavement lifespan and lowering long-term maintenance costs. Full article
(This article belongs to the Special Issue Sustainability in Asphalt Pavement and Road Construction)
Show Figures

Figure 1

Back to TopTop