Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,628)

Search Parameters:
Keywords = ferrite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 40981 KiB  
Article
Effect of Laser Power on Weld Formability and Residual Stress of Unequal Thickness 410 Ferritic Stainless Steel/RCL540 Low-Carbon Alloy Steel
by Yubo Wang, Wei Liu, Wenbiao Gong, Yao Wang and Peng Lü
Materials 2024, 17(22), 5537; https://doi.org/10.3390/ma17225537 - 13 Nov 2024
Viewed by 232
Abstract
In this paper, the butt joint of unequal thickness 410 ferritic stainless steel and RCL540 low-carbon alloy steel sheets are realized by laser welding. The effects of different laser powers on weld formability, mechanical properties, and residual stress in the welding process are [...] Read more.
In this paper, the butt joint of unequal thickness 410 ferritic stainless steel and RCL540 low-carbon alloy steel sheets are realized by laser welding. The effects of different laser powers on weld formability, mechanical properties, and residual stress in the welding process are investigated. It is observed that with increasing laser power, the heat accumulates at the bottom of the molten pool and weld metal, causing the ratios of upper and lower melt widths to decrease. The tensile test results show that all specimens fractured in the weak zone of the base metal on the stainless steel side at 10 mm from the weld seam. The residual stress distributions of the specimens are calculated using ABAQUS 2022 software and compared with the measurements of the blind-hole method. It is found that the stainless steel side produces tensile stresses, with the power increase offset by compressive stresses in the base metal. When the laser power is 1200 W, the welded joint has the best weld formability and mechanical properties and the least residual stress. The upper and lower melt width ratio is 1.17, the maximum microhardness of the weld metal is 374.7 HV, the maximum test force and tensile strength are 5617.5 N and 468.12 MPa, respectively, and the minimum values of the transverse and longitudinal stresses are −45.8 MPa and −106.4 MPa, respectively. Full article
Show Figures

Graphical abstract

12 pages, 6747 KiB  
Article
Solution Strengthening and Short-Range Order in Cold-Drawn Pearlitic Steel Wires
by Gang Zhao, Jianyu Jiao, Yan Wu, Fengmei Bai, Hongwei Zhou, Jun Xue, Yixuan Zhu and Guangwen Zheng
Crystals 2024, 14(11), 977; https://doi.org/10.3390/cryst14110977 - 13 Nov 2024
Viewed by 190
Abstract
Pearlitic steel rods are subjected to cold-drawing processes to produce pearlitic steel wires with true strains ranging from 0.81 to 2.18. Tensile tests are utilized to attain mechanical properties of cold-drawn pearlitic steel wires. TEM and XRD investigations were performed on the microstructure [...] Read more.
Pearlitic steel rods are subjected to cold-drawing processes to produce pearlitic steel wires with true strains ranging from 0.81 to 2.18. Tensile tests are utilized to attain mechanical properties of cold-drawn pearlitic steel wires. TEM and XRD investigations were performed on the microstructure of the cold-drawn steel wires. With an increasing cold-drawn strain, both the interlamellar spacing and cementite lamellae thickness decrease, while the dislocation density significantly increases. The drawn wire has a tensile strength of 2170 MPa when the true stain reaches 2.18. Deformation-induced cementite dissolution occurs during cold-drawing progress, which releases many C atoms. The findings indicate that the supersaturation of C is heterogeneously distributed in the ferrite matrix. The ordered distribution of the released C in ferrite phases creates short-range order (SRO). SRO clusters and disordered Cottrell atmospheres contribute to solution strengthening, which, together with dislocation strengthening and interlamellar boundary strengthening, form an effective strengthening mechanism in cold-drawn pearlitic steel wires. Our work provides new insights into carbon redistribution and the mechanism of solution strengthening within ferrous phases. Full article
(This article belongs to the Special Issue Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

17 pages, 10158 KiB  
Article
High-Frequency Modeling and Analysis of Single-Layer NiZn Ferrite Inductors for EMI Filtering in Power Electronics Applications
by Yang Li, Zhaohui Zhang, Jinyun Yu, Zhiqiang Liu and Qiao Li
Energies 2024, 17(22), 5657; https://doi.org/10.3390/en17225657 - 12 Nov 2024
Viewed by 347
Abstract
In the high-frequency (HF) region, specifically within the 150 kHz to 30 MHz range for conducting electromagnetic interference (EMI) modeling, NiZn inductors exhibit enhanced efficiency due to their low core losses and stable permeability. Consequently, the accurate modeling of NiZn ferrite toroidal inductors [...] Read more.
In the high-frequency (HF) region, specifically within the 150 kHz to 30 MHz range for conducting electromagnetic interference (EMI) modeling, NiZn inductors exhibit enhanced efficiency due to their low core losses and stable permeability. Consequently, the accurate modeling of NiZn ferrite toroidal inductors is essential, given their widespread applications in the HF domain, with the aim of addressing existing knowledge gaps. Previous inductor models often relied on the perfect electric conductor (PEC) assumption, which simplifies the analysis but does not fully represent the electromagnetic behavior of the cores to which the PEC assumption cannot be applied. This study investigates the actual electromagnetic behavior of NiZn cores, treating them as dielectrics, which diverges from the traditional PEC-based models. Furthermore, this research fully considers the actual geometry of the inductors, proposing a comprehensive and precise analytical model for NiZn ferrite toroidal inductors. The impact of various winding methods on core capacitance is also explored. The paper provides a detailed explanation of the physical significance underlying the proposed model. A comparative analysis of both modeling methods is presented, and the efficacy of the suggested approach is validated through simulations and experimental results in several distinct scenarios. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

14 pages, 3525 KiB  
Article
Electrochemical Analysis on Intergranular Corrosion of Austenitic Stainless Steel Weld in Molten Nitrate Salt
by Noparat Kanjanaprayut, Thamrongsin Siripongsakul, Panya Wiman, Wannapha Issaard, Thanasak Nilsonthi and Piyorose Promdirek
Metals 2024, 14(11), 1284; https://doi.org/10.3390/met14111284 - 12 Nov 2024
Viewed by 297
Abstract
An investigation of intergranular corrosion (IGC) sensitization in molten nitrate salts of austenitic stainless steel welds of AISI 304, AISI 304H, and AISI321 produced by GTAW with ER 308L and ER 347 fillers was performed. The degree of sensitization (DOS) to IGC was [...] Read more.
An investigation of intergranular corrosion (IGC) sensitization in molten nitrate salts of austenitic stainless steel welds of AISI 304, AISI 304H, and AISI321 produced by GTAW with ER 308L and ER 347 fillers was performed. The degree of sensitization (DOS) to IGC was assessed using a double loop electrochemical potentiokinetic reactivation and pitting potential. It was found that DOS levels in weld zones were quite low, not exceeding 15%, while those in HAZs were up to 60% after exposure at 600 °C for 300 h. The low DOS levels were due to low carbide precipitation. However, another cause of DOS was the delta-ferrite to sigma transformation in weld zones. Linear sweep voltammetry was used to quantify the sigma phase. Full article
Show Figures

Figure 1

18 pages, 3941 KiB  
Article
Synergistic Effects of BaTiO3 and MFe2O4 (M = Mn, Ni, Cu, Zn, and Co) Nanoparticles as Artificial Pinning Centers on the Performance of YBa2Cu3Oy Superconductor
by Amjad S. Dair, Yassine Slimani, Essia Hannachi, Faten Ben Azzouz and Munirah A. Almessiere
Nanomaterials 2024, 14(22), 1810; https://doi.org/10.3390/nano14221810 - 12 Nov 2024
Viewed by 303
Abstract
Large-scale superconductor applications necessitate a superconducting matrix with pinning sites (PSs) that immobilize vortices at elevated temperatures and magnetic fields. While previous works focused on the single addition of nanoparticles, the simultaneous inclusion of different nanoparticles into a superconducting matrix can be an [...] Read more.
Large-scale superconductor applications necessitate a superconducting matrix with pinning sites (PSs) that immobilize vortices at elevated temperatures and magnetic fields. While previous works focused on the single addition of nanoparticles, the simultaneous inclusion of different nanoparticles into a superconducting matrix can be an effective way to achieve an improved flux pinning capacity. The purpose of this study is to explore the influence of mixed-nanoparticle pinning, with the co-addition of non-magnetic (BaTiO3; BT) and various types of magnetic spinel ferrite (MFe2O4, abbreviated as MFO, where M = Mn, Co, Cu, Zn, and Ni) nanoparticles, on the superconductivity and flux pinning performances of the high-temperature superconductor YBa2Cu3Oy (YBCO). An analysis of X-Ray diffraction (XRD) data of BT–MFe2O4-co-added YBCO samples showed the formation of an orthorhombic structure with Pmmm symmetry. According to electrical resistivity measurements, the emergence of the superconducting state below Tcoffset (zero-resistivity temperature) was proven for all samples. The highest Tcoffset value was recorded for the Y-BT-MnFO sample, while the minimum value was obtained for the Y-BT-ZnFO sample. Direct current (DC) magnetization results showed good magnetic flux pinning performance for all the co-added samples compared to the pristine sample but with some discrepancies. At 77 K, the values of the self-critical current density (self-Jcm) and maximum pinning force (Fpmax) for the Y-BT-MnFO sample were found to be eight times higher and seventeen times greater than those for the pristine sample, respectively. The results acquired suggested that mixing the BT phase with an appropriate type of spinel ferrite nanoparticles can be a practical solution to the problem of degradation of the critical current density of the YBCO material. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

39 pages, 8550 KiB  
Review
Enhancement of Magnetic Shielding Based on Low-Noise Materials, Magnetization Control, and Active Compensation: A Review
by Yijin Liu, Jianzhi Yang, Fuzhi Cao, Xu Zhang and Shiqiang Zheng
Materials 2024, 17(22), 5469; https://doi.org/10.3390/ma17225469 - 8 Nov 2024
Viewed by 756
Abstract
Magnetic-shielding technologies play a crucial role in the field of ultra-sensitive physical measurement, medical imaging, quantum sensing, etc. With the increasing demand for the accuracy of magnetic measurement, the performance requirements of magnetic-shielding devices are also higher, such as the extremely weak magnetic [...] Read more.
Magnetic-shielding technologies play a crucial role in the field of ultra-sensitive physical measurement, medical imaging, quantum sensing, etc. With the increasing demand for the accuracy of magnetic measurement, the performance requirements of magnetic-shielding devices are also higher, such as the extremely weak magnetic field, gradient, and low-frequency noise. However, the conventional method to improve the shielding performance by adding layers of materials is restricted by complex construction and inherent materials noise. This paper provides a comprehensive review about the enhancement of magnetic shielding in three aspects, including low-noise materials, magnetization control, and active compensation. The generation theorem and theoretical calculation of materials magnetic noise is summarized first, focusing on the development of spinel ferrites, amorphous, and nanocrystalline. Next, the principles and applications of two magnetization control methods, degaussing and magnetic shaking, are introduced. In the review of the active magnetic compensation system, the forward and inverse design methods of coil and the calculation method of the coupling effect under the ferromagnetic boundary of magnetic shield are explained in detail, and their applications, especially in magnetocardiography (MCG) and magnetoencephalogram (MEG), are also mainly described. In conclusion, the unresolved challenges of different enhancement methods in materials preparation, optimization of practical implementation, and future applications are proposed, which provide comprehensive and instructive references for corresponding research. Full article
Show Figures

Figure 1

15 pages, 5623 KiB  
Article
Reverse-Bent Modular Coil Structure with Enhanced Output Stability in DWPT for Arbitrary Linear Transport Systems
by Jia Li, Chong Zhu, Junyi Ji, Jianquan Ma and Xi Zhang
Sensors 2024, 24(22), 7171; https://doi.org/10.3390/s24227171 - 8 Nov 2024
Viewed by 311
Abstract
Dynamic wireless power transfer (DWPT) systems with segmented transmitters suffer from output pulsations during the moving process. Although numerous coil structures have been developed to mitigate this fluctuation, the parameter design process is complicated and restricted by specific working conditions (e.g., air gaps). [...] Read more.
Dynamic wireless power transfer (DWPT) systems with segmented transmitters suffer from output pulsations during the moving process. Although numerous coil structures have been developed to mitigate this fluctuation, the parameter design process is complicated and restricted by specific working conditions (e.g., air gaps). To solve these problems, a novel reverse-bent modular transmitter structure is proposed for DWPT in industrial automatic application scenarios such as linear transport systems. Considering the heterogeneous current density distribution in the adjacent region between two coils which causes a drop in magnetic field, the proposed coil structure attempts to eliminate the effects of the adjacent region by bending the terminal parts of each coil reversely to the ferrite layer for shielding. Compared to traditional planar couplers, this structure array can generate a uniform magnetic field over various air gaps. A 100 W laboratory prototype was built to verify the feasibility of the proposed system. The experimental results show that the proposed system achieved a constant output voltage, and the output pulsation was within ±2.3% in the dynamic powering process. The average efficiency was about 88.29%, with a 200 mm transfer distance. When the air gap varied from 20 mm to 30 mm, the system could still retain constant voltage output characteristics. Full article
(This article belongs to the Topic Advanced Wireless Charging Technology)
Show Figures

Figure 1

15 pages, 4252 KiB  
Article
Analysis and Design of a Recyclable Inductive Power Transfer System for Sustainable Multi-Stage Rocket Microgrid with Multi-Constant Voltage Output Characteristics—Theoretical Considerations
by Peng Gu, Shibo Wang and Bowen Zhou
Sustainability 2024, 16(22), 9640; https://doi.org/10.3390/su16229640 - 5 Nov 2024
Viewed by 531
Abstract
After a traditional one-time rocket is launched, most of its parts will fall into the atmosphere and burn or fall into the ocean. The parts cannot be recycled, so the cost is relatively high. Multi-stage rockets can be recovered after launch, which greatly [...] Read more.
After a traditional one-time rocket is launched, most of its parts will fall into the atmosphere and burn or fall into the ocean. The parts cannot be recycled, so the cost is relatively high. Multi-stage rockets can be recovered after launch, which greatly reduces the cost of space launches. Moreover, recycling rockets can reduce the generation of waste and reduce pollution and damage to the environment. With the reduction in rocket launch costs and technological advances, space exploration and development can be carried out more frequently and economically. It provides technical support for the sustainable use of space resources. It not only promotes the sustainable development of the aerospace field but also has a positive impact on global environmental protection, resource utilization, and economic development. In order to adapt to the stage-by-stage separation structure of the rocket, this paper proposes a new multi-stage rocket inductive power transfer (IPT) system to power the rocket microgrid. The planar coil structure is used to form wireless power transfer between each stage of the rocket, reducing the volume of the magnetic coupling structure. The volume of the circuit topology structure is reduced by introducing an auxiliary coil. An equivalent three-stage S/T topology is proposed, and the constant voltage output characteristics of multiple loads are analyzed. A multi-stage coil structure is proposed to supply power to multiple loads simultaneously. In order to eliminate undesired magnetic coupling between coils, ferrite cores are added between coils for effective electromagnetic shielding. The parameters of the magnetic coupling structure are optimized based on the finite element method (FEM). A prototype of the proposed IPT system is built to simulate a multi-stage rocket. A series of experiments are conducted to verify the advantages of the proposed IPT system, and the three-stage rocket system efficiency reached 88.5%. This project is theoretical. Its verification was performed only in the laboratory conditions. Full article
(This article belongs to the Special Issue Recent Advances in Smart Grids for a Sustainable Energy System)
Show Figures

Figure 1

10 pages, 1939 KiB  
Article
First Principles Study of Bismuth Vacancy Formation in (111)-Strained BiFeO3
by Lu Xia, Thomas Tybell and Sverre M. Selbach
Materials 2024, 17(22), 5397; https://doi.org/10.3390/ma17225397 - 5 Nov 2024
Viewed by 309
Abstract
Epitaxial strain is known to significantly influence the structural and functional properties of oxide thin films. However, its impact on point defect concentration has been less explored. Due to the challenges in experimentally measuring thin-film stoichiometry, computational studies become crucial. In this work, [...] Read more.
Epitaxial strain is known to significantly influence the structural and functional properties of oxide thin films. However, its impact on point defect concentration has been less explored. Due to the challenges in experimentally measuring thin-film stoichiometry, computational studies become crucial. In this work, we use first-principles calculations based on density functional theory to investigate the formation and stability of Bi vacancies and Bi-O vacancy pairs in BiFeO3 (BFO) under (111) epitaxial strain. Our results demonstrate that compressive strain (−4%) decreases the formation enthalpy of Bi vacancies by 0.88 eV, whereas tensile strain (4%) increases it by 0.39 eV. Out-of-plane (OP) Bi-O vacancy pairs exhibit enhanced stability under both compressive and tensile strain, with formation enthalpy reductions of 1.49 eV and 1.05 eV, respectively. In contrast, in-plane (IP) vacancy pairs are stabilized under compressive strain but are insensitive to tensile strain. Finally, we discuss how these findings influence Bi stoichiometry during thin-film growth and the role of local strain fields in the formation of conducting domain walls. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

24 pages, 10317 KiB  
Article
Magnetic CuFe2O4 Nanoparticles Immobilized on Modified Rice Husk-Derived Zeolite for Chlorogenic Acid Adsorption
by Tainara Ramos Neves, Letícia Ferreira Lacerda Schildt, Maria Luiza Lopes Sierra e Silva, Vannyla Viktória Viana Vasconcelos, Corrado Di Conzo, Francesco Mura, Marco Rossi, Gaspare Varvaro, Maryam Abdolrahimi, Simone Quaranta, Sandra Aparecida Duarte Ferreira and Elaine Cristina Paris
Magnetochemistry 2024, 10(11), 87; https://doi.org/10.3390/magnetochemistry10110087 - 4 Nov 2024
Viewed by 796
Abstract
Adsorption has emerged as a promising method for removing polyphenols in water remediation. This work explores chlorogenic acid (CGA) adsorption on zeolite-based magnetic nanocomposites synthesized from rice husk waste. In particular, enhanced adsorbing materials were attained using a hydrothermal zeolite precursor (Z18) synthesized [...] Read more.
Adsorption has emerged as a promising method for removing polyphenols in water remediation. This work explores chlorogenic acid (CGA) adsorption on zeolite-based magnetic nanocomposites synthesized from rice husk waste. In particular, enhanced adsorbing materials were attained using a hydrothermal zeolite precursor (Z18) synthesized from rice husk and possessing a remarkable specific surface area (217.69 m2 g−1). A composite material was prepared by immobilizing magnetic copper ferrite on Z18 (Z18:CuFe2O4) to recover the zeolite adsorbent. In addition, Z18 was modified (Z18 M) with a mixture of 3-aminopropyltriethoxysilane (APTES) and trimethylchlorosilane (TMCS) to improve the affinity towards organic compounds in the final nanocomposite system (Z18 M:CuFe2O4). While the unmodified composite demonstrated inconsequential CGA removal rates, Z18 M:CuFe2O4 could adsorb 89.35% of CGA within the first hour of operation. Z18 M:CuFe2O4 showed no toxicity for seed germination and achieved a mass recovery of 85% (due to a saturation magnetization of 4.1 emu g−1) when an external magnetic field was applied. These results suggest that adsorbing magnetic nanocomposites are amenable to CGA polyphenol removal from wastewater. Furthermore, the reuse, revalorization, and conversion into value-added materials of agro-industrial waste may allow the opportunity to implement sustainability and work towards a circular economy. Full article
(This article belongs to the Special Issue Applications of Magnetic Materials in Water Treatment)
Show Figures

Figure 1

14 pages, 9428 KiB  
Article
Effect of Interlayer Temperature on Microstructure and Properties of High-Strength Low-Alloy Steel Manufactured Using Submerged-Arc Additive Manufacturing (SAAM)
by Meijuan Hu, Qiang Chi, Lingkang Ji, Weiwei Li, Shuai Yan and Fangjie Cheng
Materials 2024, 17(21), 5376; https://doi.org/10.3390/ma17215376 - 3 Nov 2024
Viewed by 786
Abstract
Controlled interlayer temperature has a profound impact on both the microstructure and mechanical properties of the deposited components. In this study, thin-walled structures made of high-strength low-alloy steel were fabricated using the submerged-arc additive manufacturing process. The effects of varying temperature on the [...] Read more.
Controlled interlayer temperature has a profound impact on both the microstructure and mechanical properties of the deposited components. In this study, thin-walled structures made of high-strength low-alloy steel were fabricated using the submerged-arc additive manufacturing process. The effects of varying temperature on the microstructure and mechanical properties of the components were studied. The results showed that the cooling rate within T8/5 decreased as the interlayer temperature increased, which caused the microstructure to transition from a fine-grained structure dominated by bainitic ferrite and granular bainite to a coarse-grained structure dominated by polygonal ferrite. The measurement of mechanical properties showed that due to the influence of the fine-grained structure, the components with low interlayer temperatures exhibit excellent hardness, high strength, and outstanding ductility and toughness. Furthermore, a faster cooling rate disrupts the stability of carbon diffusion, resulting in the development of increased quantities of residual austenitic films within the components with controlled low interlayer temperatures. This augmentation in residual austenite films strengthens the components’ ductility and toughness, enabling the deposited components to exhibit exceptional impact toughness in low-temperature environments. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

12 pages, 6244 KiB  
Article
Effects of Nitrogen on Microstructure and Properties of SDSS 2507 Weld Joints by Gas Focusing Plasma Arc Welding
by Tianqing Li, Kai Wang and Yucheng Lei
Materials 2024, 17(21), 5375; https://doi.org/10.3390/ma17215375 - 3 Nov 2024
Viewed by 545
Abstract
Regulating the phase ratio between austenite and ferrite in welded joints is crucial for welding super duplex stainless steel. Nitrogen plays a significant role in maintaining an optimal phase ratio. In this study, the focusing gas channel of gas-focused plasma arc welding was [...] Read more.
Regulating the phase ratio between austenite and ferrite in welded joints is crucial for welding super duplex stainless steel. Nitrogen plays a significant role in maintaining an optimal phase ratio. In this study, the focusing gas channel of gas-focused plasma arc welding was utilized to introduce nitrogen into the arc plasma, which was then transferred to the weld pool. Experiments with and without nitrogen addition were designed and conducted to examine the effects of nitrogen on the microstructure and properties of SDSS 2507 weld joints. The results show that nitrogen addition increased the austenite content in the weld metal from 22.2% to 40.2%. Nitrogen also altered the microstructure of the austenite, changing it from thin grain boundary austenite and small intragranular austenite to a large volume of coarse, side-plate Widmanstätten austenite. The ferrite in the weld metal exhibited a preferred orientation during growth, while the austenite showed a disordered orientation. Additionally, the maximum texture intensity of the ferrite decreased with nitrogen addition. Nitrogen addition led to an increase in the microhardness of the austenite in the weld metal, attributed to the solid solution strengthening effect of nitrogen and increased dislocation tangling, while it decreased the microhardness of the ferrite. This study enhances the welding theory of 2507 super duplex stainless steel and guides the practical application of gas-focused plasma arc welding for 2507 super duplex stainless steel. Full article
(This article belongs to the Special Issue Advances in Welding Process and Materials (2nd Edition))
Show Figures

Figure 1

13 pages, 4888 KiB  
Article
A Revisit to Effervescence-Assisted Microextraction of Non-Polar Organic Compounds Using Hydrophobic Magnetic Nanoparticles—Application to the Determination of UV Filters in Natural Waters
by Efthymia Toti, Vasiliki Gouma, Vasiliki I. Karagianni and Dimosthenis L. Giokas
Separations 2024, 11(11), 315; https://doi.org/10.3390/separations11110315 - 1 Nov 2024
Viewed by 564
Abstract
In this work, we revisited the method of effervescence-assisted microextraction, aiming to assess the effects of the process of effervescence on the extraction efficiency of organic compounds. We used a magnetic nano-sorbent material composed of stearic acid-coated cobalt-ferrite magnetic nanoparticles as an adsorbent [...] Read more.
In this work, we revisited the method of effervescence-assisted microextraction, aiming to assess the effects of the process of effervescence on the extraction efficiency of organic compounds. We used a magnetic nano-sorbent material composed of stearic acid-coated cobalt-ferrite magnetic nanoparticles as an adsorbent and dispersed it in water using 12 combinations of acid and base mixtures at two different mass ratios. The solution pH, the ionic strength, and the duration of effervescence were calculated and correlated to the extraction efficiency of nonpolar UV filters from aqueous samples as model organic compounds. Our findings provide a general perspective into the influence of the process of effervescence on extraction efficiency. Based on these findings, we developed and optimized a new analytical method for extracting UV filters from water samples using HPLC-UV as a detector. Under the optimum experimental conditions (0.2 g fumaric acid/0.1 g Na2CO3, 50 mg of magnetic nanoparticles and methanol as an elution solvent assisted by vortex agitation for 5 min) the method was found to afford good linearity in the calibration curves expanding by two orders of magnitude, satisfactory reproducibility and repeatability (1.8–11.1%), and high recoveries (78.4–127.1%). This research provides a new perspective on the influence of the process of effervescence on the extraction efficiency of nonpolar organic compounds and introduces a new method for extracting UV filters from aqueous media. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Graphical abstract

19 pages, 14846 KiB  
Article
The Effect of Heating Rate on the Microstructure Evolution and Hardness of Heterogeneous Manganese Steel
by Wubin Ren, Peiyu Zhao, Menghu Wang, Shuai Tong, Xiaokai Liang, Xinjun Sun and Huibin Wu
Materials 2024, 17(21), 5321; https://doi.org/10.3390/ma17215321 - 31 Oct 2024
Viewed by 349
Abstract
The use of a rapid heating method to achieve heterogeneity of Mn in medium-manganese steel and improve its comprehensive performance has been widely studied and these techniques have been widely applied. However, the heating rate (from α to γ) has not received sufficient [...] Read more.
The use of a rapid heating method to achieve heterogeneity of Mn in medium-manganese steel and improve its comprehensive performance has been widely studied and these techniques have been widely applied. However, the heating rate (from α to γ) has not received sufficient attention with respect to its microstructure-evolution mechanism. In this study, the effect of heating rate on the microstructure evolution and hardness of heterogeneous medium-manganese steel was investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and DICTRA simulation. The results showed that the Mn distribution was heterogeneous in the initial microstructure of pearlite due to strong partitioning of Mn between ferrite and cementite. At low heating rates (<10 °C/s), the heterogeneity of Mn distribution was diminished to some extent due to the long-distance diffusion of Mn in high-temperature austenite. Contrastingly, at high heating rates, the initial heterogeneity of the Mn element could be largely preserved due to insufficient diffusion of Mn, which resulted in more ghost pearlite (GP: pearlite-like microstructure with film martensite/RA). Moreover, the high heating rate not only refines the prior austenite grain but also increases the total RA content, which is mainly composed of additional film RA. As the heating rate increases, the hardness gradually increases from 628.1 HV to 663.3 HV, due to grain refinement and increased dislocation density. Dynamic simulations have also demonstrated a strong correlation between this interesting microstructure and the non-equilibrium diffusion of Mn. Full article
Show Figures

Figure 1

14 pages, 5324 KiB  
Article
Microwave Absorption and Magnetic Properties of M-Type Hexagonal Ferrite Ba0.95Ca0.05Fe12−xCoxO19 (0 ≤ X ≤ 0.4) at 1–18 GHz
by Juan Li, Hao Yao, Yuting Huang and Hongxia Wang
Materials 2024, 17(21), 5327; https://doi.org/10.3390/ma17215327 - 31 Oct 2024
Viewed by 461
Abstract
In order to improve the microwave-absorption performance of barium ferrite and broaden its microwave-absorption band, BaFe12O19, Ba0.95Ca0.05Fe12O19, and Ba0.95Ca0.05Fe12−xCoxO19 (x = 0.1, [...] Read more.
In order to improve the microwave-absorption performance of barium ferrite and broaden its microwave-absorption band, BaFe12O19, Ba0.95Ca0.05Fe12O19, and Ba0.95Ca0.05Fe12−xCoxO19 (x = 0.1, 0.2, 0.3 and 0.4, respectively) hexaferrites were synthesized by the solid-state reaction method, and the influence of Co ion substitution on the phase composition, microstructure, magnetic properties, and microwave-absorption ability of the ferrites in this system was studied. Introducing minor Co ions (x < 0.2) facilitated sintering and grain growth. At x ≥ 0.2, XRD revealed the emergence of the Co2X phase alongside the BaM phase. Increasing Co ion concentration and the secondary X-phase led to slight reductions in saturation magnetization (69 to 63.5 emu/g) and substantial decline in coercivity (2107.02 to 111.21 Oe), attributed to grain size growth and Co2X’s soft magnetic nature. Notably, Co2X incorporation significantly enhanced the microwave absorption and provided a tunable absorption band from the Ku to the C band. For a sample with a thickness of 2.0 mm and a doping level of x = 0.2, a minimum reflection loss of −59.5 dB was achieved at 8.92 GHz, with an effective absorption bandwidth of 3.31 GHz (7.07–10.38 GHz). The simple preparation method and good performance make Ba0.95Ca0.05Fe12−xCoxO19 (x = 0.1, 0.2, 0.3 and 0.4, respectively) hexaferrites promising microwave-absorbing materials. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

Back to TopTop