Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (182)

Search Parameters:
Keywords = fire recognition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5733 KiB  
Article
Research on Low-Voltage Arc Fault Based on CNN–Transformer Parallel Neural Network with Threshold-Moving Optimization
by Xin Ning, Tianli Ding and Hongwei Zhu
Sensors 2024, 24(20), 6540; https://doi.org/10.3390/s24206540 - 10 Oct 2024
Viewed by 437
Abstract
Low-voltage arc fault detection can effectively prevent fires, electric shocks, and other accidents, reducing potential risks to human life and property. The research on arc fault circuit interrupters (AFCIs) is of great significance for both safety in production scenarios and daily living disaster [...] Read more.
Low-voltage arc fault detection can effectively prevent fires, electric shocks, and other accidents, reducing potential risks to human life and property. The research on arc fault circuit interrupters (AFCIs) is of great significance for both safety in production scenarios and daily living disaster prevention. Considering the diverse characteristics of loads between the normal operational state and the arc fault condition, a parallel neural network structure is proposed for arc fault recognition, which is based on a convolutional neural network (CNN) and a Transformer. The network uses convolutional layers and Transformer encoders to process the low-frequency current and high-frequency components, respectively. Then, it uses Softmax classification to perform supervised learning on the concatenated features. The method combines the advantages of both networks and effectively reduces the required depth and computational complexity. The experimental results show that the accuracy of this method can reach 99.74%, and with the threshold-moving method, the erroneous judgment rate can be lower. These results indicate that the parallel neural network can definitely detect arc faults and also improve recognition efficiency due to its lean structure. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

22 pages, 11728 KiB  
Article
Mcan-YOLO: An Improved Forest Fire and Smoke Detection Model Based on YOLOv7
by Hongying Liu, Jun Zhu, Yiqing Xu and Ling Xie
Forests 2024, 15(10), 1781; https://doi.org/10.3390/f15101781 - 10 Oct 2024
Viewed by 553
Abstract
Forest fires pose a significant threat to forest resources and wildlife. To balance accuracy and parameter efficiency in forest fire detection, this study proposes an improved model, Mcan-YOLO, based on YOLOv7. In the Neck section, the asymptotic feature pyramid network (AFPN) was employed [...] Read more.
Forest fires pose a significant threat to forest resources and wildlife. To balance accuracy and parameter efficiency in forest fire detection, this study proposes an improved model, Mcan-YOLO, based on YOLOv7. In the Neck section, the asymptotic feature pyramid network (AFPN) was employed to effectively capture multi-scale information, replacing the traditional module. Additionally, the content-aware reassembly of features (CARAFE) replaced the conventional upsampling method, further reducing the number of parameters. The normalization-based attention module (NAM) was integrated after the ELAN-T module to enhance the recognition of various fire smoke features, and the Mish activation function was used to optimize model convergence. A real fire smoke dataset was constructed using the mean structural similarity (MSSIM) algorithm for model training and validation. The experimental results showed that, compared to YOLOv7-tiny, Mcan-YOLO improved precision by 4.6%, recall by 6.5%, and mAP50 by 4.7%, while reducing the number of parameters by 5%. Compared with other mainstream algorithms, Mcan-YOLO achieved better precision with fewer parameters. Full article
(This article belongs to the Special Issue Artificial Intelligence and Machine Learning Applications in Forestry)
Show Figures

Figure 1

30 pages, 10186 KiB  
Article
An Improved Convolutional Neural Network for Pipe Leakage Identification Based on Acoustic Emission
by Weidong Xu, Jiwei Huang, Lianghui Sun, Yixin Yao, Fan Zhu, Yaoguo Xie and Meng Zhang
J. Mar. Sci. Eng. 2024, 12(10), 1720; https://doi.org/10.3390/jmse12101720 - 30 Sep 2024
Viewed by 794
Abstract
Oil and gas pipelines are the lifelines of the energy market, but due to long-term use and environmental factors, these pipelines are prone to corrosion and leaks. Offshore oil and gas pipeline leaks, in particular, can lead to severe consequences such as platform [...] Read more.
Oil and gas pipelines are the lifelines of the energy market, but due to long-term use and environmental factors, these pipelines are prone to corrosion and leaks. Offshore oil and gas pipeline leaks, in particular, can lead to severe consequences such as platform fires and explosions. Therefore, it is crucial to accurately and swiftly identify oil and gas leaks on offshore platforms. This is of significant importance for improving early warning systems, enhancing maintenance efficiency, and reducing economic losses. Currently, the efficiency of identifying leaks in offshore platform pipelines still needs improvement. To address this, the present study first established an experimental platform to simulate pipeline leaks in a marine environment. Laboratory leakage signal data were collected, and on-site noise data were gathered from the “Liwan 3-1” offshore oil and gas platform. By integrating leakage signals with on-site noise data, this study aimed to closely mimic real-world application scenarios. Subsequently, several neural network-based leakage identification methods were applied to the integrated dataset, including a probabilistic neural network (PNN) combined with time-domain feature extraction, a Backpropagation Neural Network (BPNN) optimized with simulated annealing and particle swarm optimization, and a Long Short-Term Memory Network (LSTM) combined with Mel-Frequency Cepstral Coefficients (MFCC). Corresponding models were constructed, and the effectiveness of leak detection was validated using test sets. Additionally, this paper proposes an improved convolutional neural network (CNN) leakage detection technology named SART-1DCNN. This technology optimizes the network architecture by introducing attention mechanisms, transformer modules, residual blocks, and combining them with Dropout and optimization algorithms, which significantly enhances data recognition accuracy. It achieves a high accuracy rate of 99.44% on the dataset. This work is capable of detecting pipeline leaks with high accuracy. Full article
(This article belongs to the Special Issue Structural Analysis and Failure Prevention in Offshore Engineering)
Show Figures

Figure 1

21 pages, 8291 KiB  
Article
An Explainable AI-Based Modified YOLOv8 Model for Efficient Fire Detection
by Md. Waliul Hasan, Shahria Shanto, Jannatun Nayeema, Rashik Rahman, Tanjina Helaly, Ziaur Rahman and Sk. Tanzir Mehedi
Mathematics 2024, 12(19), 3042; https://doi.org/10.3390/math12193042 - 28 Sep 2024
Viewed by 819
Abstract
Early fire detection is the key to saving lives and limiting property damage. Advanced technology can detect fires in high-risk zones with minimal human presence before they escalate beyond control. This study focuses on providing a more advanced model structure based on the [...] Read more.
Early fire detection is the key to saving lives and limiting property damage. Advanced technology can detect fires in high-risk zones with minimal human presence before they escalate beyond control. This study focuses on providing a more advanced model structure based on the YOLOv8 architecture to enhance early recognition of fire. Although YOLOv8 is excellent at real-time object detection, it can still be better adjusted to the nuances of fire detection. We achieved this advancement by incorporating an additional context-to-flow layer, enabling the YOLOv8 model to more effectively capture both local and global contextual information. The context-to-flow layer enhances the model’s ability to recognize complex patterns like smoke and flames, leading to more effective feature extraction. This extra layer helps the model better detect fires and smoke by improving its ability to focus on fine-grained details and minor variation, which is crucial in challenging environments with low visibility, dynamic fire behavior, and complex backgrounds. Our proposed model achieved a 2.9% greater precision rate, 4.7% more recall rate, and 4% more F1-score in comparison to the YOLOv8 default model. This study discovered that the architecture modification increases information flow and improves fire detection at all fire sizes, from tiny sparks to massive flames. We also included explainable AI strategies to explain the model’s decision-making, thus adding more transparency and improving trust in its predictions. Ultimately, this enhanced system demonstrates remarkable efficacy and accuracy, which allows additional improvements in autonomous fire detection systems. Full article
(This article belongs to the Section Mathematics and Computer Science)
Show Figures

Figure 1

21 pages, 5335 KiB  
Article
Deep Learning Approach for Wildland Fire Recognition Using RGB and Thermal Infrared Aerial Image
by Rafik Ghali and Moulay A. Akhloufi
Fire 2024, 7(10), 343; https://doi.org/10.3390/fire7100343 - 27 Sep 2024
Viewed by 663
Abstract
Wildfires cause severe consequences, including property loss, threats to human life, damage to natural resources, biodiversity, and economic impacts. Consequently, numerous wildland fire detection systems were developed over the years to identify fires at an early stage and prevent their damage to both [...] Read more.
Wildfires cause severe consequences, including property loss, threats to human life, damage to natural resources, biodiversity, and economic impacts. Consequently, numerous wildland fire detection systems were developed over the years to identify fires at an early stage and prevent their damage to both the environment and human lives. Recently, deep learning methods were employed for recognizing wildfires, showing interesting results. However, numerous challenges are still present, including background complexity and small wildfire and smoke areas. To address these challenging limitations, two deep learning models, namely CT-Fire and DC-Fire, were adopted to recognize wildfires using both visible and infrared aerial images. Infrared images detect temperature gradients, showing areas of high heat and indicating active flames. RGB images provide the visual context to identify smoke and forest fires. Using both visible and infrared images provides a diversified data for learning deep learning models. The diverse characteristics of wildfires and smoke enable these models to learn a complete visual representation of wildland fires and smoke scenarios. Testing results showed that CT-Fire and DC-Fire achieved higher performance compared to baseline wildfire recognition methods using a large dataset, which includes RGB and infrared aerial images. CT-Fire and DC-Fire also showed the reliability of deep learning models in identifying and recognizing patterns and features related to wildland smoke and fires and surpassing challenges, including background complexity, which can include vegetation, weather conditions, and diverse terrain, detecting small wildfire areas, and wildland fires and smoke variety in terms of size, intensity, and shape. CT-Fire and DC-Fire also reached faster processing speeds, enabling their use for early detection of smoke and forest fires in both night and day conditions. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Figure 1

23 pages, 4935 KiB  
Article
FireDA: A Domain Adaptation-Based Method for Forest Fire Recognition with Limited Labeled Scenarios
by Zhengjun Yan, Xing Zheng, Wei Li, Liming Wang, Peng Ding, Ling Zhang, Muyi Yin and Xiaowei Wang
Forests 2024, 15(10), 1684; https://doi.org/10.3390/f15101684 - 24 Sep 2024
Viewed by 645
Abstract
Vision-based forest fire detection systems have significantly advanced through Deep Learning (DL) applications. However, DL-based models typically require large-scale labeled datasets for effective training, where the quality of data annotation is crucial to their performance. To address challenges related to the quality and [...] Read more.
Vision-based forest fire detection systems have significantly advanced through Deep Learning (DL) applications. However, DL-based models typically require large-scale labeled datasets for effective training, where the quality of data annotation is crucial to their performance. To address challenges related to the quality and quantity of labeling, a domain adaptation-based approach called FireDA is proposed for forest fire recognition in scenarios with limited labels. Domain adaptation, a subfield of transfer learning, facilitates the transfer of knowledge from a labeled source domain to an unlabeled target domain. The construction of the source domain FBD is initiated, which includes three common fire scenarios: forest (F), brightness (B), and darkness (D), utilizing publicly available labeled data. Subsequently, a novel algorithm called Neighborhood Aggregation-based 2-Stage Domain Adaptation (NA2SDA) is proposed. This method integrates feature distribution alignment with target domain Proxy Classification Loss (PCL), leveraging a neighborhood aggregation mechanism and a memory bank designed for the unlabeled samples in the target domain. This mechanism calibrates the source classifier and generates more accurate pseudo-labels for the unlabeled sample. Consequently, based on these pseudo-labels, the Local Maximum Mean Discrepancy (LMMD) and the Proxy Classification Loss (PCL) are computed. To validate the efficacy of the proposed method, the publicly available forest fire dataset, FLAME, is employed as the target domain for constructing a transfer learning task. The results demonstrate that our method achieves performance comparable to the supervised Convolutional Neural Network (CNN)-based state-of-the-art (SOTA) method, without requiring access to labels from the FLAME training set. Therefore, our study presents a viable solution for forest fire recognition in scenarios with limited labeling and establishes a high-accuracy benchmark for future research. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

15 pages, 7669 KiB  
Article
Advanced Multi-Label Fire Scene Image Classification via BiFormer, Domain-Adversarial Network and GCN
by Yu Bai, Dan Wang, Qingliang Li, Taihui Liu and Yuheng Ji
Fire 2024, 7(9), 322; https://doi.org/10.3390/fire7090322 - 15 Sep 2024
Viewed by 672
Abstract
Detecting wildfires presents significant challenges due to the presence of various potential targets in fire imagery, such as smoke, vehicles, and people. To address these challenges, we propose a novel multi-label classification model based on BiFormer’s feature extraction method, which constructs sparse region-indexing [...] Read more.
Detecting wildfires presents significant challenges due to the presence of various potential targets in fire imagery, such as smoke, vehicles, and people. To address these challenges, we propose a novel multi-label classification model based on BiFormer’s feature extraction method, which constructs sparse region-indexing relations and performs feature extraction only in key regions, thereby facilitating more effective capture of flame characteristics. Additionally, we introduce a feature screening method based on a domain-adversarial neural network (DANN) to minimize misclassification by accurately determining feature domains. Furthermore, a feature discrimination method utilizing a Graph Convolutional Network (GCN) is proposed, enabling the model to capture label correlations more effectively and improve performance by constructing a label correlation matrix. This model enhances cross-domain generalization capability and improves recognition performance in fire scenarios. In the experimental phase, we developed a comprehensive dataset by integrating multiple fire-related public datasets, and conducted detailed comparison and ablation experiments. Results from the tenfold cross-validation demonstrate that the proposed model significantly improves recognition of multi-labeled images in fire scenarios. Compared with the baseline model, the mAP increased by 4.426%, CP by 4.14% and CF1 by 7.04%. Full article
Show Figures

Figure 1

18 pages, 24660 KiB  
Article
Fireground Recognition and Spatio-Temporal Scalability Research Based on ICESat-2/ATLAS Vertical Structure Parameters
by Guojun Cao, Xiaoyan Wei and Jiangxia Ye
Forests 2024, 15(9), 1597; https://doi.org/10.3390/f15091597 - 11 Sep 2024
Viewed by 487
Abstract
In the ecological context of global climate change, ensuring the stable carbon sequestration capacity of forest ecosystems, which is among the most important components of terrestrial ecosystems, is crucial. Forest fires are disasters that often burn vegetation and damage forest ecosystems. Accurate recognition [...] Read more.
In the ecological context of global climate change, ensuring the stable carbon sequestration capacity of forest ecosystems, which is among the most important components of terrestrial ecosystems, is crucial. Forest fires are disasters that often burn vegetation and damage forest ecosystems. Accurate recognition of firegrounds is essential to analyze global carbon emissions and carbon flux, as well as to discover the contribution of climate change to the succession of forest ecosystems. The common recognition of firegrounds relies on remote sensing data, such as optical data, which have difficulty describing the characteristics of vertical structural damage to post-fire vegetation, whereas airborne LiDAR is incapable of large-scale observations and has high costs. The new generation of satellite-based photon counting radar ICESat-2/ATLAS (Advanced Topographic Laser Altimeter System, ATLAS) data has the advantages of large-scale observations and low cost. The ATLAS data were used in this study to extract three significant parameters, namely general, canopy, and topographical parameters, to construct a recognition index system for firegrounds based on vertical structure parameters, such as the essential canopy, based on machine learning of the random forest (RF) and extreme gradient boosting (XGBoost) classifiers. Furthermore, the spatio-temporal parameters are more accurate, and widespread use scalability was explored. The results show that the canopy type contributed 79% and 69% of the RF and XGBoost classifiers, respectively, which indicates the feasibility of using ICESat-2/ATLAS vertical structure parameters to identify firegrounds. The overall accuracy of the XGBoost classifier was slightly greater than that of the RF classifier according to 10-fold cross-validation, and all the evaluation metrics were greater than 0.8 after the independent sample test under different spatial and temporal conditions, implying the potential of ICESat-2/ATLAS for accurate fireground recognition. This study demonstrates the feasibility of ATLAS vertical structure parameters in identifying firegrounds and provides a novel and effective way to recognize firegrounds based on different spatial–temporal vertical structure information. This research reveals the feasibility of accurately identifying fireground based on parameters of ATLAS vertical structure by systematic analysis and comparison. It is also of practical significance for economical and effective precise recognition of large-scale firegrounds and contributes guidance for forest ecological restoration. Full article
Show Figures

Figure 1

10 pages, 4693 KiB  
Article
Audio Signal-Stimulated Multilayered HfOx/TiOy Spiking Neuron Network for Neuromorphic Computing
by Shengbo Gao, Mingyuan Ma, Bin Liang, Yuan Du, Li Du and Kunji Chen
Nanomaterials 2024, 14(17), 1412; https://doi.org/10.3390/nano14171412 - 29 Aug 2024
Viewed by 588
Abstract
As the key hardware of a brain-like chip based on a spiking neuron network (SNN), memristor has attracted more attention due to its similarity with biological neurons and synapses to deal with the audio signal. However, designing stable artificial neurons and synapse devices [...] Read more.
As the key hardware of a brain-like chip based on a spiking neuron network (SNN), memristor has attracted more attention due to its similarity with biological neurons and synapses to deal with the audio signal. However, designing stable artificial neurons and synapse devices with a controllable switching pathway to form a hardware network is a challenge. For the first time, we report that artificial neurons and synapses based on multilayered HfOx/TiOy memristor crossbar arrays can be used for the SNN training of audio signals, which display the tunable threshold switching and memory switching characteristics. It is found that tunable volatile and nonvolatile switching from the multilayered HfOx/TiOy memristor is induced by the size-controlled atomic oxygen vacancy pathway, which depends on the atomic sublayer in the multilayered structure. The successful emulation of the biological neuron’s integrate-and-fire function can be achieved through the utilization of the tunable threshold switching characteristic. Based on the stable performance of the multilayered HfOx/TiOy neuron and synapse, we constructed a hardware SNN architecture for processing audio signals, which provides a base for the recognition of audio signals through the function of integration and firing. Our design of an atomic conductive pathway by using a multilayered TiOy/HfOx memristor supplies a new method for the construction of an artificial neuron and synapse in the same matrix, which can reduce the cost of integration in an AI chip. The implementation of synaptic functionalities by the hardware of SNNs paves the way for novel neuromorphic computing paradigms in the AI era. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

16 pages, 4363 KiB  
Article
A Study of Electric Bicycle Lithium Battery Charging Monitoring Using CNN and BiLSTM Networks Model with NILM Method
by Jiameng Liu, Chao Wang, Liangfeng Xu, Mengjiao Wang, Dongfang Hu, Weiya Jin and Yuebing Li
Electronics 2024, 13(16), 3316; https://doi.org/10.3390/electronics13163316 - 21 Aug 2024
Cited by 1 | Viewed by 626
Abstract
Electric bicycles offer convenient short-distance travel, but improper battery charging poses a fire risk, especially indoors, potentially causing significant accidents, property damage, and even threats to life. Recognizing the charging state of electric bicycle batteries is crucial for safety. This paper proposes a [...] Read more.
Electric bicycles offer convenient short-distance travel, but improper battery charging poses a fire risk, especially indoors, potentially causing significant accidents, property damage, and even threats to life. Recognizing the charging state of electric bicycle batteries is crucial for safety. This paper proposes a novel method to identify the charging process of lithium batteries in electric bicycles. Methods that do not require physical alterations to the equipment are used to acquire users’ electricity consumption data, with current signals preprocessed and input into a combined model integrating convolutional neural networks (CNN) and bidirectional long short-term memory (BiLSTM) networks. The proposed model captures complex patterns and features in the charging data, effectively identifying the charging characteristics of lithium batteries. Validation using NASA’s lithium battery dataset and real experimental data shows that the combined model achieves recognition accuracy of 96% and 97% on training data and 93% and 94% on validation data. Further validation under multiple device loads and comparison with other models indicate that the proposed method is highly accurate, outperforming traditional CNN and LSTM models by 4–9%. This research enhances the safety and regulation of electric bicycle battery charging and provides a reliable method for non-intrusive load identification in smart monitoring systems, contributing to improved safety measures and energy management in residential environments. Full article
(This article belongs to the Special Issue Energy Storage, Analysis and Battery Usage)
Show Figures

Figure 1

18 pages, 7239 KiB  
Article
A Lightweight Wildfire Detection Method for Transmission Line Perimeters
by Xiaolong Huang, Weicheng Xie, Qiwen Zhang, Yeshen Lan, Huiling Heng and Jiawei Xiong
Electronics 2024, 13(16), 3170; https://doi.org/10.3390/electronics13163170 - 11 Aug 2024
Viewed by 863
Abstract
Due to extreme weather conditions and complex geographical features, the environments around power lines in forest areas have a high risk of wildfires. Once a wildfire occurs, it causes severe damage to the forest ecosystem. Monitoring wildfires around power lines in forested regions [...] Read more.
Due to extreme weather conditions and complex geographical features, the environments around power lines in forest areas have a high risk of wildfires. Once a wildfire occurs, it causes severe damage to the forest ecosystem. Monitoring wildfires around power lines in forested regions through deep learning can reduce the harm of wildfires to natural environments. To address the challenges of wildfire detection around power lines in forested areas, such as interference from complex environments, difficulty detecting small target objects, and high model complexity, a lightweight wildfire detection model based on the improved YOLOv8 is proposed. Firstly, we enhanced the image-feature-extraction capability using a novel feature-extraction network, GS-HGNetV2, and replaced the conventional convolutions with a Ghost Convolution (GhostConv) to reduce the model parameters. Secondly, the use of the RepViTBlock to replace the original Bottleneck in C2f enhanced the model’s feature-fusion capability, thereby improving the recognition accuracy for small target objects. Lastly, we designed a Resource-friendly Convolutional Detection Head (RCD), which reduces the model complexity while maintaining accuracy by sharing the parameters. The model’s performance was validated using a dataset of 11,280 images created by merging a custom dataset with the D-Fire data for monitoring wildfires near power lines. In comparison to YOLOv8, our model saw an improvement of 3.1% in the recall rate and 1.1% in the average precision. Simultaneously, the number of parameters and computational complexity decreased by 54.86% and 39.16%, respectively. The model is more appropriate for deployment on edge devices with limited computational power. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

20 pages, 3442 KiB  
Article
Improving Fire Detection Accuracy through Enhanced Convolutional Neural Networks and Contour Techniques
by Abror Shavkatovich Buriboev, Khoshim Rakhmanov, Temur Soqiyev and Andrew Jaeyong Choi
Sensors 2024, 24(16), 5184; https://doi.org/10.3390/s24165184 - 11 Aug 2024
Cited by 3 | Viewed by 984
Abstract
In this study, a novel method combining contour analysis with deep CNN is applied for fire detection. The method was made for fire detection using two main algorithms: one which detects the color properties of the fires, and another which analyzes the shape [...] Read more.
In this study, a novel method combining contour analysis with deep CNN is applied for fire detection. The method was made for fire detection using two main algorithms: one which detects the color properties of the fires, and another which analyzes the shape through contour detection. To overcome the disadvantages of previous methods, we generate a new labeled dataset, which consists of small fire instances and complex scenarios. We elaborated the dataset by selecting regions of interest (ROI) for enhanced fictional small fires and complex environment traits extracted through color characteristics and contour analysis, to better train our model regarding those more intricate features. Results of the experiment showed that our improved CNN model outperformed other networks. The accuracy, precision, recall and F1 score were 99.4%, 99.3%, 99.4% and 99.5%, respectively. The performance of our new approach is enhanced in all metrics compared to the previous CNN model with an accuracy of 99.4%. In addition, our approach beats many other state-of-the-art methods as well: Dilated CNNs (98.1% accuracy), Faster R-CNN (97.8% accuracy) and ResNet (94.3%). This result suggests that the approach can be beneficial for a variety of safety and security applications ranging from home, business to industrial and outdoor settings. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

17 pages, 23072 KiB  
Article
Fire-Net: Rapid Recognition of Forest Fires in UAV Remote Sensing Imagery Using Embedded Devices
by Shouliang Li, Jiale Han, Fanghui Chen, Rudong Min, Sixue Yi and Zhen Yang
Remote Sens. 2024, 16(15), 2846; https://doi.org/10.3390/rs16152846 - 2 Aug 2024
Viewed by 736
Abstract
Forest fires pose a catastrophic threat to Earth’s ecology as well as threaten human beings. Timely and accurate monitoring of forest fires can significantly reduce potential casualties and property damage. Thus, to address the aforementioned problems, this paper proposed an unmanned aerial vehicle [...] Read more.
Forest fires pose a catastrophic threat to Earth’s ecology as well as threaten human beings. Timely and accurate monitoring of forest fires can significantly reduce potential casualties and property damage. Thus, to address the aforementioned problems, this paper proposed an unmanned aerial vehicle (UAV) based on a lightweight forest fire recognition model, Fire-Net, which has a multi-stage structure and incorporates cross-channel attention following the fifth stage. This is to enable the model’s ability to perceive features at various scales, particularly small-scale fire sources in wild forest scenes. Through training and testing on a real-world dataset, various lightweight convolutional neural networks were evaluated on embedded devices. The experimental outcomes indicate that Fire-Net attained an accuracy of 98.18%, a precision of 99.14%, and a recall of 98.01%, surpassing the current leading methods. Furthermore, the model showcases an average inference time of 10 milliseconds per image and operates at 86 frames per second (FPS) on embedded devices. Full article
Show Figures

Figure 1

22 pages, 937 KiB  
Article
Radar Emitter Recognition Based on Spiking Neural Networks
by Zhenghao Luo, Xingdong Wang, Shuo Yuan and Zhangmeng Liu
Remote Sens. 2024, 16(14), 2680; https://doi.org/10.3390/rs16142680 - 22 Jul 2024
Viewed by 747
Abstract
Efficient and effective radar emitter recognition is critical for electronic support measurement (ESM) systems. However, in complex electromagnetic environments, intercepted pulse trains generally contain substantial data noise, including spurious and missing pulses. Currently, radar emitter recognition methods utilizing traditional artificial neural networks (ANNs) [...] Read more.
Efficient and effective radar emitter recognition is critical for electronic support measurement (ESM) systems. However, in complex electromagnetic environments, intercepted pulse trains generally contain substantial data noise, including spurious and missing pulses. Currently, radar emitter recognition methods utilizing traditional artificial neural networks (ANNs) like CNNs and RNNs are susceptible to data noise and require intensive computations, posing challenges to meeting the performance demands of modern ESM systems. Spiking neural networks (SNNs) exhibit stronger representational capabilities compared to traditional ANNs due to the temporal dynamics of spiking neurons and richer information encoded in precise spike timing. Furthermore, SNNs achieve higher computational efficiency by performing event-driven sparse addition calculations. In this paper, a lightweight spiking neural network is proposed by combining direct coding, leaky integrate-and-fire (LIF) neurons, and surrogate gradients to recognize radar emitters. Additionally, an improved SNN for radar emitter recognition is proposed, leveraging the local timing structure of pulses to enhance adaptability to data noise. Simulation results demonstrate the superior performance of the proposed method over existing methods. Full article
(This article belongs to the Special Issue Technical Developments in Radar—Processing and Application)
Show Figures

Figure 1

22 pages, 10559 KiB  
Article
Development of an Algorithm for Assessing the Scope of Large Forest Fire Using VIIRS-Based Data and Machine Learning
by Min-Woo Son, Chang-Gyun Kim and Byung-Sik Kim
Remote Sens. 2024, 16(14), 2667; https://doi.org/10.3390/rs16142667 - 21 Jul 2024
Viewed by 1198
Abstract
Forest fires pose a multifaceted threat, encompassing human lives and property loss, forest resource destruction, and toxic gas release. This crucial disaster’s global occurrence and impact have risen in recent years, primarily driven by climate change. Hence, the scope and frequency of forest [...] Read more.
Forest fires pose a multifaceted threat, encompassing human lives and property loss, forest resource destruction, and toxic gas release. This crucial disaster’s global occurrence and impact have risen in recent years, primarily driven by climate change. Hence, the scope and frequency of forest fires must be collected to establish disaster prevention policies and conduct relevant research projects. However, some countries do not share details, including the location of forest fires, which can make research problematic when it is necessary to know the exact location or shape of a forest fire. This non-disclosure warrants remote surveys of forest fire sites using satellites, which sidestep national information disclosure policies. Meanwhile, original data from satellites have a great advantage in terms of data acquisition in that they are independent of national information disclosure policies, making them the most effective method that can be used for environmental monitoring and disaster monitoring. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-Orbiting Partnership (NPP) satellite has worldwide coverage at a daily temporal resolution and spatial resolution of 375 m. It is widely used for detecting hotspots worldwide, enabling the recognition of forest fires and affected areas. However, information collection on affected regions and durations based on raw data necessitates identifying and filtering hotspots caused by industrial activities. Therefore, this study used VIIRS hotspot data collected over long periods and the Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN) algorithm to develop ST-MASK, which masks said hotspots. By targeting the concentrated and fixed nature of these hotspots, ST-MASK is developed and used to distinguish forest fires from other hotspots, even in mountainous areas, and through an outlier detection algorithm, it generates identified forest fire areas, which will ultimately allow for the creation of a global forest fire watch system. Full article
Show Figures

Figure 1

Back to TopTop