Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = galactic magnetic field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1034 KiB  
Review
X-ray Polarization of Blazars and Radio Galaxies Measured by the Imaging X-ray Polarimetry Explorer
by Alan P. Marscher, Laura Di Gesu, Svetlana G. Jorstad, Dawoon E. Kim, Ioannis Liodakis, Riccardo Middei and Fabrizio Tavecchio
Galaxies 2024, 12(4), 50; https://doi.org/10.3390/galaxies12040050 - 22 Aug 2024
Viewed by 657
Abstract
X-ray polarization, which now can be measured by the Imaging X-ray Polarimetry Explorer (IXPE), is a new probe of jets in the supermassive black hole systems of active galactic nuclei (AGNs). Here, we summarize IXPE observations of radio-loud AGNs that have been published [...] Read more.
X-ray polarization, which now can be measured by the Imaging X-ray Polarimetry Explorer (IXPE), is a new probe of jets in the supermassive black hole systems of active galactic nuclei (AGNs). Here, we summarize IXPE observations of radio-loud AGNs that have been published thus far. Blazars with synchrotron spectral energy distributions (SEDs) that peak at X-ray energies are routinely detected. The degree of X-ray polarization is considerably higher than at longer wavelengths. This is readily explained by energy stratification of the emission regions when electrons lose energy via radiation as they propagate away from the sites of particle acceleration as predicted in shock models. However, the 2–8 keV polarization electric vector is not always aligned with the jet direction as one would expect unless the shock is oblique. Magnetic reconnection may provide an alternative explanation. The rotation of the polarization vector in Mrk421 suggests the presence of a helical magnetic field in the jet. In blazars with lower-frequency peaks and the radio galaxy Centaurus A, the non-detection of X-ray polarization by IXPE constrains the X-ray emission mechanism. Full article
Show Figures

Figure 1

11 pages, 2922 KiB  
Article
The Algorithm of the Two Neutron Monitors for the Analysis of the Rigidity Spectrum Variations of Galactic Cosmic Ray Intensity Flux in Solar Cycle 24
by Krzysztof Iskra, Marek Siluszyk and Witold Wozniak
Universe 2024, 10(8), 311; https://doi.org/10.3390/universe10080311 - 30 Jul 2024
Viewed by 550
Abstract
The method of the two neutron monitors was used to analyze the parameters of the rigidity spectrum variations (RSV) of galactic cosmic ray intensity (GCR) flux in solar cycle 24 based on the data from the global network of neutron monitors. This method [...] Read more.
The method of the two neutron monitors was used to analyze the parameters of the rigidity spectrum variations (RSV) of galactic cosmic ray intensity (GCR) flux in solar cycle 24 based on the data from the global network of neutron monitors. This method is an alternative to the least squares method when there are few monitors working stably in a given period, and their use in the least squares method is impossible. Analyses of the changes in exponent γ in the RSV of GCR flux from 2009 to 2019 were studied. The soft RSV (γ = 1.2–1.3) of the GCR flux around the maximum epoch and the hard RSV (γ = 0.6–0.9) around the minimum epoch of solar activity (SA) is the general feature of GCR modulation in the GeV energy scale (5, 50), to which neutron monitors were found to correspond. Therefore, various values of the RSV γ in the considered period show that during the decrease and increase period of SA, the essential changes in the large-scale structure of the heliospheric magnetic field (HMF) fluctuations/turbulence take place. The exponent γ of the RSV of the GCR flux can be considered a significant parameter to investigate the long-period changes in the GCR flux. Full article
Show Figures

Figure 1

26 pages, 2267 KiB  
Article
Reconstruction of Fermi and eROSITA Bubbles from Magnetized Jet Eruption with Simulations
by Che-Jui Chang and Jean-Fu Kiang
Universe 2024, 10(7), 279; https://doi.org/10.3390/universe10070279 - 27 Jun 2024
Viewed by 880
Abstract
The Fermi bubbles and the eROSITA bubbles around the Milky Way Galaxy are speculated to be the aftermaths of past jet eruptions from a supermassive black hole in the galactic center. In this work, a 2.5D axisymmetric relativistic magnetohydrodynamic (RMHD) model is applied [...] Read more.
The Fermi bubbles and the eROSITA bubbles around the Milky Way Galaxy are speculated to be the aftermaths of past jet eruptions from a supermassive black hole in the galactic center. In this work, a 2.5D axisymmetric relativistic magnetohydrodynamic (RMHD) model is applied to simulate a jet eruption from our galactic center and to reconstruct the observed Fermi bubbles and eROSITA bubbles. High-energy non-thermal electrons are excited around forward shock and discontinuity transition regions in the simulated plasma distributions. The γ-ray and X-ray emissions from these electrons manifest patterns on the skymap that match the observed Fermi bubbles and eROSITA bubbles, respectively, in shape, size and radiation intensity. The influence of the background magnetic field, initial mass distribution in the Galaxy, and the jet parameters on the plasma distributions and hence these bubbles is analyzed. Subtle effects on the evolution of plasma distributions attributed to the adoption of a galactic disk model versus a spiral-arm model are also studied. Full article
(This article belongs to the Special Issue Black Holes and Relativistic Jets)
Show Figures

Figure 1

11 pages, 3803 KiB  
Article
Wave-Particle Interactions in Astrophysical Plasmas
by Héctor Pérez-De-Tejada
Galaxies 2024, 12(3), 28; https://doi.org/10.3390/galaxies12030028 - 6 Jun 2024
Viewed by 527
Abstract
Dissipation processes derived from the kinetic theory of gases (shear viscosity and heat conduction) are employed to examine the solar wind that interacts with planetary ionospheres. The purpose of this study is to estimate the mean free path of wave-particle interactions that produce [...] Read more.
Dissipation processes derived from the kinetic theory of gases (shear viscosity and heat conduction) are employed to examine the solar wind that interacts with planetary ionospheres. The purpose of this study is to estimate the mean free path of wave-particle interactions that produce a continuum response in the plasma behavior. Wave-particle interactions are necessary to support the fluid dynamic interpretation that accounts for the interpretation of various features measured in a solar wind–planet ionosphere region; namely, (i) the transport of solar wind momentum to an upper ionosphere in the presence of a velocity shear, and (ii) plasma heating produced by momentum transport. From measurements conducted in the solar wind interaction with the Venus ionosphere, it is possible to estimate that in general terms, the mean free path of wave-particle interactions reaches λH ≥ 1000 km values that are comparable to the gyration radius of the solar wind particles in their Larmor motion within the local solar wind magnetic field. Similar values are also applicable to conditions measured by the Mars ionosphere and in cometary plasma wakes. Considerations are made in regard to the stochastic trajectories of the plasma particles that have been implied from the measurements made in planetary environments. At the same time, it is as possible that the same phenomenon is applicable to the interaction of stellar winds with the ionosphere of exoplanets, and also in regions where streaming ionized gases reach objects that are subject to rotational motion in other astrophysical problems (galactic flow–plasma interactions, black holes, etc.). Full article
Show Figures

Figure 1

16 pages, 1306 KiB  
Review
Investigating the Properties of the Relativistic Jet and Hot Corona in AGN with X-ray Polarimetry
by Dawoon E. Kim, Laura Di Gesu, Frédéric Marin, Alan P. Marscher, Giorgio Matt, Paolo Soffitta, Francesco Tombesi, Enrico Costa and Immacolata Donnarumma
Galaxies 2024, 12(3), 20; https://doi.org/10.3390/galaxies12030020 - 23 Apr 2024
Viewed by 1115
Abstract
X-ray polarimetry has been suggested as a prominent tool for investigating the geometrical and physical properties of the emissions from active galactic nuclei (AGN). The successful launch of the Imaging X-ray Polarimetry Explorer (IXPE) on 9 December 2021 has expanded the previously restricted [...] Read more.
X-ray polarimetry has been suggested as a prominent tool for investigating the geometrical and physical properties of the emissions from active galactic nuclei (AGN). The successful launch of the Imaging X-ray Polarimetry Explorer (IXPE) on 9 December 2021 has expanded the previously restricted scope of polarimetry into the X-ray domain, enabling X-ray polarimetric studies of AGN. Over a span of two years, IXPE has observed various AGN populations, including blazars and radio-quiet AGN. In this paper, we summarize the remarkable discoveries achieved thanks to the opening of the new window of X-ray polarimetry of AGN through IXPE observations. We will delve into two primary areas of interest: first, the magnetic field geometry and particle acceleration mechanisms in the jets of radio-loud AGN, such as blazars, where the relativistic acceleration process dominates the spectral energy distribution; and second, the geometry of the hot corona in radio-quiet AGN. Thus far, the IXPE results from blazars favor the energy-stratified shock acceleration model, and they provide evidence of helical magnetic fields inside the jet. Concerning the corona geometry, the IXPE results are consistent with a disk-originated slab-like or wedge-like shape, as could result from Comptonization around the accretion disk. Full article
(This article belongs to the Special Issue Multi-Phase Fueling and Feedback Processes in Jetted AGN)
Show Figures

Figure 1

30 pages, 701 KiB  
Review
Dynamics of Fluids in the Cavity of a Rotating Body: A Review of Analytical Solutions
by Anatoly A. Gurchenkov and Ivan A. Matveev
Physics 2024, 6(1), 426-455; https://doi.org/10.3390/physics6010029 - 19 Mar 2024
Viewed by 1283
Abstract
Since the middle of the 20th century, an understanding of the diversity of the natural magnetohydrodynamic phenomena surrounding us has begun to emerge. Magnetohydrodynamic nature manifests itself in such seemingly heterogeneous processes as the flow of water in the world’s oceans, the movements [...] Read more.
Since the middle of the 20th century, an understanding of the diversity of the natural magnetohydrodynamic phenomena surrounding us has begun to emerge. Magnetohydrodynamic nature manifests itself in such seemingly heterogeneous processes as the flow of water in the world’s oceans, the movements of Earth’s liquid core, the dynamics of the solar magnetosphere and galactic electromagnetic fields. Their close relationship and multifaceted influence on human life are becoming more and more clearly revealed. The study of these phenomena requires the development of theory both fundamental and analytical, unifying a wide range of phenomena, and specialized areas that describe specific processes. The theory of translational fluid motion is well developed, but for most natural phenomena, this condition leads to a rather limited model. The fluid motion in the cavity of a rotating body such that the Coriolis forces are significant has been studied much less. A distinctive feature of the problems under consideration is their significant nonlinearity, (i.e., the absence of a linear approximation that allows one to obtain nontrivial useful results). From this point of view, the studies presented here were selected. This review presents studies on the movements of ideal and viscous fluids without taking into account electromagnetic phenomena (non-conducting, non-magnetic fluid) and while taking them into account (conducting fluid). Much attention is payed to the macroscopic movements of sea water (conducting liquid) located in Earth’s magnetic field, which spawns electric currents and, as a result, an induced magnetic field. Exploring the processes of generating magnetic fields in the moving turbulent flows of conducting fluid in the frame of dynamic systems with distributed parameters allows better understanding of the origin of cosmic magnetic fields (those of planets, stars, and galaxies). Various approaches are presented for rotational and librational movements. In particular, an analytical solution of three-dimensional unsteady magnetohydrodynamic equations for problems in a plane-parallel configuration is presented. Full article
(This article belongs to the Section Classical Physics)
Show Figures

Figure 1

11 pages, 809 KiB  
Article
Eigenvalue Problem Describing Magnetorotational Instability in Outer Regions of Galaxies
by Evgeny Mikhailov and Tatiana Khasaeva
Mathematics 2024, 12(5), 760; https://doi.org/10.3390/math12050760 - 4 Mar 2024
Viewed by 967
Abstract
The existence of magnetic fields in spiral galaxies is beyond doubt and is confirmed by both observational data and theoretical models. Their generation occurs due to the dynamo mechanism action associated with the properties of turbulence. Most studies consider magnetic fields at moderate [...] Read more.
The existence of magnetic fields in spiral galaxies is beyond doubt and is confirmed by both observational data and theoretical models. Their generation occurs due to the dynamo mechanism action associated with the properties of turbulence. Most studies consider magnetic fields at moderate distances to the center of the disk, since the dynamo number is small in the marginal regions, and the field growth should be suppressed. At the same time, the computational results demonstrate the possibility of magnetic field penetration into the marginal regions of galaxies. In addition to the action of the dynamo, magnetorotational instability (MRI) can serve as one of the mechanisms of the field occurrence. This research is devoted to the investigation of MRI impact on galactic magnetic field generation and solving the occurring eigenvalue problems. The problems are formulated assuming that the perturbations may possibly increase. In the present work, we consider the eigenvalue problem, picturing the main field characteristics in the case of MRI occurrence, where the eigenvalues are firmly connected with the average vertical scale of the galaxy, to find out whether MRI takes place in the outer regions of the galaxy. The eigenvalue problem cannot be solved exactly; thus, it is solved using the methods of the perturbation theory for self-adjoint operators, where the eigenvalues are found using the series with elements including parameters characterizing the properties of the interstellar medium. We obtain linear and, as this is not enough, quadratic approximations and compare them with the numerical results. It is shown that they give a proper precision. We have compared the approximation results with those from numerical calculations and they were relatively close for the biggest eigenvalue. Full article
(This article belongs to the Special Issue Mathematical Analysis and Its Application in Astrophysics)
Show Figures

Figure 1

13 pages, 3745 KiB  
Article
Cosmic Ray Anisotropy and Spectra as Probes for Nearby Sources
by Aifeng Li, Wei Liu and Yiqing Guo
Symmetry 2024, 16(2), 236; https://doi.org/10.3390/sym16020236 - 15 Feb 2024
Viewed by 1031
Abstract
Cosmic ray (CR) spectra and anisotropy are closely related to the distribution of CR sources, making them valuable probes for studying nearby sources. There are 12 nearby sources located within 1 kpc of the solar system, and which ones are the optimal candidates? [...] Read more.
Cosmic ray (CR) spectra and anisotropy are closely related to the distribution of CR sources, making them valuable probes for studying nearby sources. There are 12 nearby sources located within 1 kpc of the solar system, and which ones are the optimal candidates? In this work, we have selected the Geminga, Monogem, Vela, Loop I, and Cygnus SNR sources as the focus of our research, aiming to identify the optimal candidate by investigating their contribution to the energy spectra and anisotropy using the Spatially Dependent Propagation (SDP) model. Additionally, the anisotropic diffusion effect of the local regular magnetic field (LRMF) on CR particles is also considered in the SDP model. Our previous work only provided 1D anisotropy along the right ascension; this current work will further present 2D anisotropy maps along the right ascension and declination. When the injection power of different nearby sources is roughly equal, the results show that the Geminga, Momogem, and Loop I SNR sources contribute significantly to the nuclear energy spectra. Under the isotropic diffusion without considering the LRMF, the 2D anisotropy maps indicate that the phase points to the nearby source below 100 TeV. We further adjust the injection power of the Monogem SNR source in accordance with the spin-down energy of the Geminga and Monogem pulsars, and find that the contribution of the corrected Monogem SNR can be disregarded. Because the Loop I SNR source is located in the direction of the Galactic Center (GC), it cannot contribute to the excess of CRs in the anti-GC direction. Under anisotorpic diffusion with the consideration of the LRMF, the 2D anisotropy maps show that only the Geminga SNR can match the anisotropy measurement, while the other sources cannot. Finally, we conclude that the Geminga SNR source is the optimal nearby source. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

16 pages, 12132 KiB  
Article
A Lightweight Method for Detecting and Correcting Errors in Low-Frequency Measurements for In-Orbit Demonstrators
by María-Ángeles Cifredo-Chacón, José-María Guerrero-Rodríguez and Ignacio Mateos
Sensors 2024, 24(4), 1065; https://doi.org/10.3390/s24041065 - 6 Feb 2024
Viewed by 916
Abstract
In the pursuit of enhancing the technological maturity of innovative magnetic sensing techniques, opportunities presented by in-orbit platforms (IOD/IOV experiments) provide a means to evaluate their in-flight capabilities. The Magnetic Experiments for the Laser Interferometer Space Antenna (MELISA) represent a set of in-flight [...] Read more.
In the pursuit of enhancing the technological maturity of innovative magnetic sensing techniques, opportunities presented by in-orbit platforms (IOD/IOV experiments) provide a means to evaluate their in-flight capabilities. The Magnetic Experiments for the Laser Interferometer Space Antenna (MELISA) represent a set of in-flight demonstrators designed to characterize the low-frequency noise performance of a magnetic measurement system within a challenging space environment. In Low Earth Orbit (LEO) satellites, electronic circuits are exposed to high levels of radiation coming from energetic particles trapped by the Earth’s magnetic field, solar flares, and galactic cosmic rays. A significant effect is the accidental bit-flipping in memory registers. This work presents an analysis of memory data redundancy resources using auxiliary second flash memory and exposes recovery options to retain critical data utilizing a duplicated data structure. A new and lightweight technique, CCM (Cross-Checking and Mirroring), is proposed to verify the proper performance of these techniques. Four alternative algorithms included in the original version of the MELISA software (Version v0.0) are presented. All the versions have been validated and evaluated according to various merit indicators. The evaluations showed similar performances for the proposed techniques, and they are valid for situations in which the flash memory suffers from more than one bit-flip. The overhead due to the introduction of additional instructions to the main code is negligible, even in the target experiment based on an 8-bit microcontroller. Full article
(This article belongs to the Special Issue Sensors for Space Applications)
Show Figures

Figure 1

24 pages, 930 KiB  
Review
The Galactic Population of Pulsar Wind Nebulae and the Contribution of Its Unresolved Component to the Diffuse High-Energy Gamma-ray Emission
by Giulia Pagliaroli, Saqib Hussain, Vittoria Vecchiotti and Francesco Lorenzo Villante
Universe 2023, 9(9), 381; https://doi.org/10.3390/universe9090381 - 24 Aug 2023
Viewed by 884
Abstract
In this work, we provide a phenomenological description of the population of galactic TeV pulsar wind nebulae (PWNe) based on suitable assumptions for their space and luminosity distribution. We constrain the general features of this population by assuming that it accounts for the [...] Read more.
In this work, we provide a phenomenological description of the population of galactic TeV pulsar wind nebulae (PWNe) based on suitable assumptions for their space and luminosity distribution. We constrain the general features of this population by assuming that it accounts for the majority of bright sources observed by H.E.S.S. Namely, we determine the maximal luminosity and fading time of PWNe (or, equivalently, the initial period and magnetic field of the pulsar powering the observed emission) by performing a statistical analysis of bright sources in the H.E.S.S. galactic plane survey. This allows us to estimate the total luminosity and flux produced by galactic TeV PWNe. We also evaluate the cumulative emission from PWNe that cannot be resolved by H.E.S.S., showing that this contribution can be as large as ∼40% of the total flux from resolved sources. We argue that also in the GeV domain, a relevant fraction of this population cannot be resolved by Fermi-LAT, providing a non-negligible contribution to the large-scale diffuse emission in the inner galaxy. This additional component could naturally account for a large part of the spectral index variation observed by Fermi-LAT, weakening the evidence of cosmic ray spectral hardening in the inner galaxy. Finally, the same result is obtained for PeV energy, for which the sum of the diffuse component, due to unresolved PWNe, and the truly diffuse emission well saturates the recent Tibet AS-γ data, without the need to introduce a progressive hardening of the cosmic-ray spectrum toward the galactic centre. Full article
(This article belongs to the Section Solar and Stellar Physics)
Show Figures

Figure 1

15 pages, 2632 KiB  
Article
Detection of a Peculiar Drift in the Nuclear Radio Jet of the TeV Blazar Markarian 501
by Silke Britzen, Gopal Krishna, Emma Kun, Héctor Olivares, Ilya Pashchenko, Frédéric Jaron, Josefa Becerra González and David Paneque
Universe 2023, 9(3), 115; https://doi.org/10.3390/universe9030115 - 23 Feb 2023
Cited by 3 | Viewed by 1304
Abstract
Mrk 501 is one of the most prominent TeV-emitting blazars and belongs to the class of high synchrotron peaked (HSP) blazars. The Doppler factors derived from the jet kinematics are much too low to provide sufficient beaming for the detected high-energy emission (the [...] Read more.
Mrk 501 is one of the most prominent TeV-emitting blazars and belongs to the class of high synchrotron peaked (HSP) blazars. The Doppler factors derived from the jet kinematics are much too low to provide sufficient beaming for the detected high-energy emission (the so-called Lorentz factor crisis). This BL Lac object is also a prime example of a misaligned AGN with an approximately 90 difference in orientation between the inner parsec-scale jet and the kpc-scale jet structure. We have performed a detailed analysis of the pc-scale jet kinematics, based on 23 years of VLBA observations (at 15 GHz) and find, in addition to robustly consolidating the already claimed stationary jet features and a hinted absence of component ejections, a significant drift of the outer nuclear jet. The two outermost jet features move with somewhat higher but still subluminal speeds. Albeit, they move orthogonally to the inner jet, which itself does not partake in the drifting motion. The effect of this intriguing kinematics is that the jet appears strongly curved at first (1995) but then appears to straighten out (2018). To our knowledge, this is the first time that the orthogonal swing of just the outer part of a nuclear jet has been observed. We discuss the possible physical nature of this turning maneuver. In addition, we report evidence for jet emission, which most likely originates in a spine–sheath structure. Full article
(This article belongs to the Special Issue Black Holes and Relativistic Jets)
Show Figures

Figure 1

14 pages, 2414 KiB  
Article
Demonstration of Ultrawideband Polarimetry Using VLBI Exploration of Radio Astrometry (VERA)
by Yoshiaki Hagiwara, Kazuhiro Hada, Mieko Takamura, Tomoaki Oyama, Aya Yamauchi and Syunsaku Suzuki
Galaxies 2022, 10(6), 114; https://doi.org/10.3390/galaxies10060114 - 8 Dec 2022
Cited by 5 | Viewed by 1576
Abstract
We report on recent technical developments in the front- and back-ends for the four 20 m radio telescopes of the Japanese Very-Long-Baseline Interferometry (VLBI) project, VLBI Exploration of Radio Astrometry (VERA). We present a brief overview of a dual-circular polarization receiving and ultrawideband [...] Read more.
We report on recent technical developments in the front- and back-ends for the four 20 m radio telescopes of the Japanese Very-Long-Baseline Interferometry (VLBI) project, VLBI Exploration of Radio Astrometry (VERA). We present a brief overview of a dual-circular polarization receiving and ultrawideband (16 Giga bit s1) recording systems that were installed on each of the four telescopes operating at 22 and 43 GHz bands. The wider-band capability improves the sensitivity of VLBI observations for continuum emission, and the dual-polarization capability enables the study of magnetic fields in relativistic jets ejected from supermassive black holes in active galactic nuclei and in sites of star formation and around evolved stars.We present the linear polarization intensity maps of extragalactic sources at 22 and 43 GHz obtained from the most recent test observations to show the state of the art of the VERA polarimetric observations. At the end of this article, given the realization of VLBI polarimetry with VERA, we describe the future prospects for scientific aims and further technical developments. Full article
(This article belongs to the Special Issue Challenges in Understanding Black Hole Powered Jets with VLBI)
Show Figures

Figure 1

6 pages, 786 KiB  
Communication
Influence of Extragalactic Magnetic Fields on Extragalactic Cascade Gamma-Ray Emission
by Anna Uryson
Universe 2022, 8(11), 569; https://doi.org/10.3390/universe8110569 - 29 Oct 2022
Viewed by 1047
Abstract
We discuss the influence of extragalactic magnetic fields on the intensity of gamma-ray emission produced in electromagnetic cascades from ultra-high energy cosmic rays propagating in extragalactic space. Both cosmic rays and cascade particles propagate mostly out of galaxies, galactic clusters, and large-scale structures, [...] Read more.
We discuss the influence of extragalactic magnetic fields on the intensity of gamma-ray emission produced in electromagnetic cascades from ultra-high energy cosmic rays propagating in extragalactic space. Both cosmic rays and cascade particles propagate mostly out of galaxies, galactic clusters, and large-scale structures, as their relative volume is small. Therefore, their magnetic fields weakly affect emission produced in cascades. Yet, estimates of this influence can be useful in searching for dark matter particles when components of extragalactic gamma-ray background should be known, including cascade gamma-ray emission. To study magnetic field influence on cascade emission, we calculated cosmic particle propagation in fields of ~10−6 and 10−12 G (the former is typical inside galaxies and clusters and the latter is common in voids and outside galaxies and clusters). The calculated spectra of cascade gamma-ray emissions are similar in the range of ~107–109 eV, so analyzing cascade emission in this range it is not necessary to specify models of an extragalactic magnetic field. Full article
(This article belongs to the Special Issue Elementary Particles in Astrophysics and Cosmology)
Show Figures

Figure 1

23 pages, 6794 KiB  
Review
Polarization Observations of AGN Jets: Past and Future
by Jongho Park and Juan Carlos Algaba
Galaxies 2022, 10(5), 102; https://doi.org/10.3390/galaxies10050102 - 20 Oct 2022
Cited by 6 | Viewed by 3299
Abstract
The magnetic field is believed to play a critical role in the bulk acceleration and propagation of jets produced in active galactic nuclei (AGN). Polarization observations of AGN jets provide valuable information about their magnetic fields. As a result of radiative transfer, jet [...] Read more.
The magnetic field is believed to play a critical role in the bulk acceleration and propagation of jets produced in active galactic nuclei (AGN). Polarization observations of AGN jets provide valuable information about their magnetic fields. As a result of radiative transfer, jet structure, and stratification, among other factors, it is not always straightforward to determine the magnetic field structures from observed polarization. We review these effects and their impact on polarization emission at a variety of wavelengths, including radio, optical, and ultraviolet wavelengths in this paper. It is also possible to study the magnetic field in the launching and acceleration regions of AGN jets by using very long baseline interferometry (VLBI), which occurs on a small physical scale. Due to the weak polarization of the jets in these regions, probing the magnetic field is generally difficult. However, recent VLBI observations have detected significant polarization and Faraday rotation in some nearby sources. We present the results of these observations as well as prospects for future observations. Additionally, we briefly discuss recently developed polarization calibration and imaging techniques for VLBI data, which enable more in-depth analysis of the magnetic field structure around supermassive black holes and in AGN jets. Full article
(This article belongs to the Special Issue Challenges in Understanding Black Hole Powered Jets with VLBI)
Show Figures

Figure 1

14 pages, 9748 KiB  
Article
X-ray Insight into High-Energy Processes in Extreme Galactic Nuclear Environment
by Q. Daniel Wang
Universe 2022, 8(10), 515; https://doi.org/10.3390/universe8100515 - 1 Oct 2022
Viewed by 2114
Abstract
Nuclear regions of galaxies apparently play a disproportionately large role in regulating their formation and evolution. How this regulation works, however, remains very uncertain. Here we review a few recent X-ray studies of our Galactic center and the inner bulge region of our [...] Read more.
Nuclear regions of galaxies apparently play a disproportionately large role in regulating their formation and evolution. How this regulation works, however, remains very uncertain. Here we review a few recent X-ray studies of our Galactic center and the inner bulge region of our major neighboring galaxy, M31, and focusing on addressing such questions as: Why are the majority of supermassive black holes (e.g., Sgr A*) so faint? What regulates the Galactic nuclear environment? Furthermore, what impact does a recent active galactic nucleus have on the ionization state of surrounding gas? These studies have provided new insight into how various relevant high-energy phenomena and processes interplay with extreme galactic nuclear environments and affect global galactic ecosystems. Full article
(This article belongs to the Special Issue Advances in Astrophysics and Cosmology – in Memory of Prof. Tan Lu)
Show Figures

Graphical abstract

Back to TopTop