Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = gas extinguishing agent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4200 KiB  
Article
Molecular Dynamics Simulations of the Short-Chain Fluorocarbon Surfactant PFHXA and the Anionic Surfactant SDS at the Air/Water Interface
by Jinqing Jiao, Tao Li, Guangwen Zhang, Jing Xiong, Xuqing Lang, Xiaolong Quan, Yiwei Cheng and Yuechang Wei
Molecules 2024, 29(7), 1606; https://doi.org/10.3390/molecules29071606 - 3 Apr 2024
Cited by 4 | Viewed by 1149
Abstract
The research and development of alternatives to long-chain fluorocarbon surfactants are desperately needed because they are extremely toxic, difficult to break down, seriously harm the environment, and limit the use of conventional aqueous film-forming foam fire extinguishing agents. In this study, mixed surfactant [...] Read more.
The research and development of alternatives to long-chain fluorocarbon surfactants are desperately needed because they are extremely toxic, difficult to break down, seriously harm the environment, and limit the use of conventional aqueous film-forming foam fire extinguishing agents. In this study, mixed surfactant systems containing the short-chain fluorocarbon surfactant perfluorohexanoic acid (PFHXA) and the hydrocarbon surfactant sodium dodecyl sulfate (SDS) were investigated by molecular dynamics simulation to investigate the microscopic properties at the air/water interface at different molar ratios. Some representative parameters, such as surface tension, degree of order, density distribution, radial distribution function, number of hydrogen bonds, and solvent-accessible surface area, were calculated. Molecular dynamics simulations show that compared with a single type of surfactant, mixtures of surfactants provide superior performance in improving the interfacial properties of the gas–liquid interface. A dense monolayer film is formed by the strong synergistic impact of the two surfactants. Compared to the pure SDS system, the addition of PFHXA caused SDS to be more vertically oriented at the air/water interface with a reduced tilt angle, and a more ordered structure of the mixed surfactants was observed. Hydrogen bonding between SDS headgroups and water molecules is enhanced with the increasing PFHXA. The surface activity is arranged in the following order: PFHXA/SDS = 1:1 > PFHXA/SDS = 3:1 > PFHXA/SDS = 1:3. These results indicate that a degree of synergistic relationship exists between PFHXA and SDS at the air/water interface. Full article
(This article belongs to the Special Issue Advances in Computational and Theoretical Chemistry)
Show Figures

Figure 1

14 pages, 3080 KiB  
Article
Assessment of Run-Off Waters Resulting from Lithium-Ion Battery Fire-Fighting Operations
by Arnaud Bordes, Arnaud Papin, Guy Marlair, Théo Claude, Ahmad El-Masri, Thierry Durussel, Jean-Pierre Bertrand, Benjamin Truchot and Amandine Lecocq
Batteries 2024, 10(4), 118; https://doi.org/10.3390/batteries10040118 - 31 Mar 2024
Viewed by 5616
Abstract
As the use of Li-ion batteries is spreading, incidents in large energy storage systems (stationary storage containers, etc.) or in large-scale cell and battery storages (warehouses, recyclers, etc.), often leading to fire, are occurring on a regular basis. Water remains one of the [...] Read more.
As the use of Li-ion batteries is spreading, incidents in large energy storage systems (stationary storage containers, etc.) or in large-scale cell and battery storages (warehouses, recyclers, etc.), often leading to fire, are occurring on a regular basis. Water remains one of the most efficient fire extinguishing agents for tackling such battery incidents, and large quantities are usually necessary. Since batteries contain various potentially harmful components (metals and their oxides or salts, solvents, etc.) and thermal-runaway-induced battery incidents are accompanied by complex and potentially multistage fume emissions (containing both gas and particles), the potential impact of fire run-off waters on the environment should be considered and assessed carefully. The tests presented in this paper focus on analyzing the composition of run-off waters used to spray NMC Li-ion modules under thermal runaway. It highlights that waters used for firefighting are susceptible to containing many metals, including Ni, Mn, Co, Li and Al, mixed with other carbonaceous species (soot, tarballs) and sometimes undecomposed solvents used in the electrolyte. Extrapolation of pollutant concentrations compared with PNEC values showed that, for large-scale incidents, run-off water could be potentially hazardous to the environment. Full article
(This article belongs to the Special Issue Thermal Safety of Lithium Ion Batteries)
Show Figures

Graphical abstract

23 pages, 17803 KiB  
Article
Numerical Study of the Effect of Primary Nozzle Geometry on Supersonic Gas-Solid Jet of Bypass Injected Dry Powder Fire Extinguishing Device
by Lite Zhang, Yang Feng, Sifan Wu and Huixia Jia
Fire 2024, 7(2), 45; https://doi.org/10.3390/fire7020045 - 31 Jan 2024
Cited by 2 | Viewed by 1620
Abstract
A two-way coupled model between polydisperse particle phases with compressible gases and a density-based coupling implicit solution method, combining the third-order MUSCL with QUICK spatial discretization scheme and the second-order temporal discretization scheme, are constructed based on the discrete-phase model (DPM) and the [...] Read more.
A two-way coupled model between polydisperse particle phases with compressible gases and a density-based coupling implicit solution method, combining the third-order MUSCL with QUICK spatial discretization scheme and the second-order temporal discretization scheme, are constructed based on the discrete-phase model (DPM) and the stochastic wander model (DRWM) in the Eulerian–Lagrangian framework in conjunction with a unitary particulate source (PSIC) approach and the SST k-ω turbulence model. The accuracy of the numerical prediction method is verified using previous supersonic nozzle gas-solid two-phase flow experiments. Numerical simulation of a two-phase jet of dry powder extinguishing agent gas with pilot-type supersonic nozzle was performed to analyze the influence of geometrical parameters, such as the length ratio rL and the area ratio rA of the main nozzle on the two-phase flow field, as well as on the jet performance indexes, such as the particle mean velocity vp,a, velocity inhomogeneity Φvp, particle dispersion Ψp, particle mean acceleration ap,a, etc. By analyzing the parameters, we indicate the requirements for the combination of jet performance metrics for different flame types such as penetrating, spreading, and dispersing. Full article
(This article belongs to the Special Issue Jet Fuel Combustion)
Show Figures

Figure 1

15 pages, 6167 KiB  
Article
Experimental Study on the Isolation Effect of an Active Flame-Proof Device on a Gas Explosion in an Underground Coal Mine
by Zichao Huang, Rongjun Si, Guangcai Wen, Songling Jin and Shaoqian Xue
Fire 2023, 6(12), 468; https://doi.org/10.3390/fire6120468 - 13 Dec 2023
Cited by 3 | Viewed by 1611
Abstract
Passive explosion-isolation facilities in underground coal mines, such as explosion-proof water troughs and bags, face challenges aligned with current trends in intelligent and unmanned technologies, due to restricted applicability and structural features. Grounded in the propagation laws and disaster mechanisms of gas explosions, [...] Read more.
Passive explosion-isolation facilities in underground coal mines, such as explosion-proof water troughs and bags, face challenges aligned with current trends in intelligent and unmanned technologies, due to restricted applicability and structural features. Grounded in the propagation laws and disaster mechanisms of gas explosions, the device in this paper enables accurate identification of explosion flames and pressure information. Utilizing a high-speed processor for rapid logical processing enables judgments within 1 ms. Graded activation of the operating mechanism is enabled by the device. The tunnel flame-proof device’s flame-extinguishing agent has a continuous action time of 6075 ms. Experiments on the active flame-proof effect of a 100 m3 gas explosion were conducted using a cross-sectional 7.2 m2 large-tunnel test system. With a dosage of 5.6 kg/m2, the powder flame-extinguishing agent completely extinguished the explosion flame within a 20 m range behind the explosion isolator. Numerical calculations unveiled the gas-phase chemical suppression mechanism of the powder flame-extinguishing agent NH4H2PO4 in suppressing methane explosions. Building upon these findings, application technology for active flame-proofing was developed, offering technical support for intelligent prevention and control of gas explosions in underground coal mines. Full article
Show Figures

Figure 1

19 pages, 11142 KiB  
Article
Composition of the Gas-Air Mixture in the Containment and Suppression of Forest Fires with Promising Extinguishing Agents
by Svetlana Kropotova, Vadim Dorokhov, Aleksandr Sviridenko and Pavel Strizhak
Forests 2023, 14(4), 786; https://doi.org/10.3390/f14040786 - 11 Apr 2023
Cited by 2 | Viewed by 1585
Abstract
This paper presents experimental research findings on the gas composition of pyrolysis and combustion products of typical forest fuels (leaves, needles, twigs, a mixture of these, and timber). These experiments were performed for the combustion and application of a fire extinguishing agent to [...] Read more.
This paper presents experimental research findings on the gas composition of pyrolysis and combustion products of typical forest fuels (leaves, needles, twigs, a mixture of these, and timber). These experiments were performed for the combustion and application of a fire extinguishing agent to a pyrolyzing material. Water, a bischofite solution, a bentonite slurry, and a foaming agent solution were utilized. Two gas analysis systems were used, as follows: an industrial one based on CO2, CO, H2, CH4, and O2 sensors and a scientific one (a gas analyzer with H2, CH4, H2S, SO2, CO, and CO2 sensors). Fires were extinguished by using two common techniques, as follows: continuous liquid supply and cycling spraying. The comparative efficiency of applying a group of fire extinguishing agents to forest fires was estimated, taking account of liquid consumption, suppression time, and environmental pollution. A method was proposed for calculating the relative efficiency factors of fire extinguishing agents when containing and suppressing forest fires, allowing for the consumed time, resources, and anthropogenic emissions. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

35 pages, 4489 KiB  
Review
Early Warning Method and Fire Extinguishing Technology of Lithium-Ion Battery Thermal Runaway: A Review
by Kuo Wang, Dongxu Ouyang, Xinming Qian, Shuai Yuan, Chongye Chang, Jianqi Zhang and Yifan Liu
Energies 2023, 16(7), 2960; https://doi.org/10.3390/en16072960 - 23 Mar 2023
Cited by 21 | Viewed by 6604
Abstract
Lithium-ion batteries (LIBs) are widely used in electrochemical energy storage and in other fields. However, LIBs are prone to thermal runaway (TR) under abusive conditions, which may lead to fires and even explosion accidents. Given the severity of TR hazards for LIBs, early [...] Read more.
Lithium-ion batteries (LIBs) are widely used in electrochemical energy storage and in other fields. However, LIBs are prone to thermal runaway (TR) under abusive conditions, which may lead to fires and even explosion accidents. Given the severity of TR hazards for LIBs, early warning and fire extinguishing technologies for battery TR are comprehensively reviewed in this paper. First, the TR reaction mechanism and hazards of LIBs are discussed. Second, the TR early warning and monitoring methods of LIBs are summarized in five aspects consisting of acoustic, heat, force, electricity, and gas. In addition, to reduce the fire and explosion hazards caused by the TR of LIBs, the highly efficient extinguishing agents for LIBs are summarized. Finally, the early warning technology and fire extinguishing agent are proposed, which provides a reference for the hazard prevention and control of energy storage systems. Full article
(This article belongs to the Special Issue Development of New Energy Materials/Devices and Their Safety)
Show Figures

Figure 1

20 pages, 8386 KiB  
Article
Synthesis and Characteristics of a pH-Sensitive Sol-Gel Transition Colloid for Coal Fire Extinguishing
by Yiru Wang, Qinglin Zheng, Hetao Su, Zijun Huang and Gengyu Wang
Gels 2023, 9(1), 69; https://doi.org/10.3390/gels9010069 - 14 Jan 2023
Cited by 4 | Viewed by 1856
Abstract
Coal fires, most of which are triggered by the spontaneous combustion of coal, cause a huge waste of resources and release poisonous and harmful substances into the environment, seriously threatening the safety of industrial production. Gel flame retardant plays a core role in [...] Read more.
Coal fires, most of which are triggered by the spontaneous combustion of coal, cause a huge waste of resources and release poisonous and harmful substances into the environment, seriously threatening the safety of industrial production. Gel flame retardant plays a core role in coal fire prevention and extinguishing. Most gel flame retardants used in coal fires possess good sealing and oxygen isolation properties, but it is difficult for them to flow deep into fire areas due to their low fluidity. Some fire extinguishing agents with good fluidity lack leak-blocking performance. In order to simultaneously improve the fluidity, leakage sealing, and oxygen isolation effects of coal fire extinguishing colloids, a novel, pH-sensitive, sol-gel transition colloid was prepared using low methoxyl pectin (LMP), calcium bentonite (Ca-Bt), sodium bentonite (Na-Bt), and water as the main components. When the initial sol-state colloid absorbed acid gas products from coal combustion, the pH value decreased and a large amount of Ca2+ in Ca-Bt precipitated, thus immediately growing calcium bridges with LMP molecules that formed a three-dimensional network structure for gelation. The optimum ratio of the new colloid was determined through X-ray diffraction, tube inversion, shock shear-temperature scanning, and genetic algorithm. By testing the fire extinguishing performance of the colloid, the findings proved that the product had good oxygen isolation performance, strong adhesion ability, high thermal stability, and strong inhibition effects on coal combustion. Full article
Show Figures

Graphical abstract

23 pages, 6573 KiB  
Article
Pool Fire Suppression Using CO2 Hydrate
by Olga Gaidukova, Sergey Misyura, Igor Donskoy, Vladimir Morozov and Roman Volkov
Energies 2022, 15(24), 9585; https://doi.org/10.3390/en15249585 - 16 Dec 2022
Cited by 12 | Viewed by 2204
Abstract
This paper presents experimental findings on heat and mass transfer, phase transitions, and chemical reactions during the interaction of CO2 hydrate in powder granules and tablets with burning liquid fuels and oil. The experiments involved CO2 hydrate tablets and spheres made [...] Read more.
This paper presents experimental findings on heat and mass transfer, phase transitions, and chemical reactions during the interaction of CO2 hydrate in powder granules and tablets with burning liquid fuels and oil. The experiments involved CO2 hydrate tablets and spheres made of pressed granules. The fire containment and suppression times were established experimentally. Using the gas analysis data, we studied the effects of the mitigation of anthropogenic emissions from the combustion of liquids and their suppression by gas hydrates. We also compared the performance of water aerosol, foaming agent emulsion, snow, ice, and CO2 hydrate samples as laboratory-scale fire suppressants. The paper further describes the numerical modeling of the CO2 hydrate dissociation during liquid fuel combustion. The rapid carbon dioxide release is shown to prevent the oxidizer from the combustion zone. The suppression of a flame using powder with a granule size of 3 mm requires 20-times less carbon dioxide hydrate than in the case of pressed tablets. Effective conditions are identified for using CO2 hydrates to extinguish fires involving flammable liquids and most common fuels. Full article
Show Figures

Graphical abstract

32 pages, 8084 KiB  
Article
Compartment Fire Behavior at the Stages of Detection, Containment and Suppression Using Water Mist
by Geniy Kuznetsov, Roman Volkov, Aleksandr Sviridenko and Alena Zhdanova
Fire 2022, 5(5), 155; https://doi.org/10.3390/fire5050155 - 30 Sep 2022
Cited by 4 | Viewed by 2463
Abstract
This paper presents experimental research findings regarding the characteristics of fire safety equipment activation before and after a water-based fire suppression system is triggered. A group of typical indoor combustible materials (wood, linoleum, cardboard, paper) were used to construct Class A model fires [...] Read more.
This paper presents experimental research findings regarding the characteristics of fire safety equipment activation before and after a water-based fire suppression system is triggered. A group of typical indoor combustible materials (wood, linoleum, cardboard, paper) were used to construct Class A model fires in the experiments. The three most frequent fire causes were reproduced: the careless handling of fire (open flame), the unsafe operation of heating equipment and electrical short circuits. To identify the fire behavior, an automated system including fire (heat, smoke, flame) detectors, contact and non-contact temperature measurement instruments, a gas analysis system and video recording equipment was employed. Following the experiments, the most efficient (in terms of detection speed and reliability) combinations of technical equipment that are necessary and sufficient to identify all the combustion stages of substances and materials were determined. The efficient consumption of a fire-extinguishing agent was found to be possible when fire development stages were controlled. Guidelines on creating automated fire prevention systems in buildings were provided. These have the potential to significantly speed up compartment fire suppression. Full article
(This article belongs to the Special Issue Compartment Fire and Safety)
Show Figures

Figure 1

14 pages, 3530 KiB  
Article
Experimental and Numerical Investigation of Extinguishing Effectiveness of Inert-Gas Agents in a Leaky Enclosure
by Xiaoqin Hu and Arjen Kraaijeveld
Energies 2022, 15(12), 4323; https://doi.org/10.3390/en15124323 - 13 Jun 2022
Cited by 2 | Viewed by 1365
Abstract
Gas-fire-suppression systems are currently applied to some specific buildings in Norway, as sprinkler systems may not provide sufficient protection in some cases. The application of inert-gas-fire-suppression systems for hazard class 6 buildings needs further intensive validation by experimental and numerical study. Due to [...] Read more.
Gas-fire-suppression systems are currently applied to some specific buildings in Norway, as sprinkler systems may not provide sufficient protection in some cases. The application of inert-gas-fire-suppression systems for hazard class 6 buildings needs further intensive validation by experimental and numerical study. Due to the presence of cracks and ventilation systems, it becomes doubtful whether inert-gas agents can extinguish a deep-seated fire located in a leaky enclosure. In this study, tests and numerical simulations were both conducted to investigate the extinguishing effectiveness of inert-gas agents for a closet fire in a leaky apartment. The results show that the location of cracks plays a nonnegligible role in determining the oxygen level in the leaky apartment. The tests and simulations demonstrated that the gas-fire-suppression system successfully extinguished the closet fire even if the activation of the gas-fire-suppression system was postponed or the path available for the inert-gas agent to reach the fire source was narrowed. However, the sprinkler system failed to achieve this. The experimental data also demonstrated that the calculation method proposed in our previous work can be used to estimate the oxygen level in a leaky enclosure. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

25 pages, 37268 KiB  
Article
Numerical Study on Effects of Geometric Parameters on the Release Characteristics of Straight Sudden Expansion Gas Extinguishing Nozzles
by Quanwei Li, Xiaohua He, Yongbing Chen, Jiang Lin, Yi Zhang, Ruiyu Chen and Xia Zhou
Symmetry 2021, 13(12), 2440; https://doi.org/10.3390/sym13122440 - 17 Dec 2021
Cited by 5 | Viewed by 2159
Abstract
In order to guide the optimization design of the nozzle of the aircraft-fixed gas fire extinguishing system, we studied the influence of nozzle geometric parameters including outlet–inlet area ratio, length–diameter aspect ratio, and wall roughness on the distribution of pressure and velocity in [...] Read more.
In order to guide the optimization design of the nozzle of the aircraft-fixed gas fire extinguishing system, we studied the influence of nozzle geometric parameters including outlet–inlet area ratio, length–diameter aspect ratio, and wall roughness on the distribution of pressure and velocity in the nozzle on the basis of CFD simulations. Although the structure of the nozzle is axisymmetric, the spatial distribution of the pressure and velocity during the flow and release of gas extinguishing agent is not completely symmetric. It was found that both of the outlet–inlet area ratio (δ) and the length–diameter aspect ratio (ξ) had a significant impact on the distribution characteristics of the pressure and axial velocity in the nozzle. With the increase of δ, the average pressure at the outlet cross-section of the nozzle decreased monotonically, while the average axial velocity at the outlet increased approximately linearly. When ξ2, the uniformity of the pressure and velocity distribution at the nozzle outlet was significantly improved. Moreover, with the increase of ξ, the average pressure and the average axial velocity of the outlet both showed a non-monotonic change trend, and the optimal value of ξ should be about 3.0. Compared with δ and ξ, the influence of the nozzle wall roughness (εN) on the flow and release characteristics of the extinguishing agent was weak. With the increase of εN, the average pressure of the nozzle outlet increased slightly, while the average axial velocity at the nozzle outlet decreased slightly. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

27 pages, 4984 KiB  
Article
Numerical Study on Effects of Pipeline Geometric Parameters on Release Characteristics of Gas Extinguishing Agent
by Quanwei Li, Zongyu Li, Ruiyu Chen, Zhaojun Zhang, Hui Ge, Xia Zhou and Renming Pan
Symmetry 2021, 13(10), 1766; https://doi.org/10.3390/sym13101766 - 23 Sep 2021
Cited by 5 | Viewed by 1787
Abstract
In order to guide the optimization design of the pipeline network of the aircraft-fixed gas fire extinguishing system and improve its fire extinguishing performance, FLUENT software was used to simulate the influence of pipeline parameters such as diameter, length, and roughness on the [...] Read more.
In order to guide the optimization design of the pipeline network of the aircraft-fixed gas fire extinguishing system and improve its fire extinguishing performance, FLUENT software was used to simulate the influence of pipeline parameters such as diameter, length, and roughness on the release characteristics of the fire extinguishing agent. It can be found that the extinguishing agent can be divided into liquid and vapor extinguishing agents in the fire extinguishing pipeline system during the release. The spatial distribution and proportion of the liquid and vapor extinguishing agents are asymmetric. Results show that the peak value of the pressure drop rate (dPmax) has a good quadratic function relationship with the pipeline diameter (D) and the functional relationship is dPmax=22.224+2.782D+0.089D2, which means that the peak value increased significantly with the increase in the pipeline diameter. Moreover, when the pipeline diameter is 25 mm, the average pressure drop rate of the vessel is about 35.02 MPa/s, which is 5.97 times the value of the average pressure drop rate when the pipeline diameter is 10 mm. With the increase in the pipeline diameter, the release time decreases significantly, the mass flow rate increases obviously, while the gasification ratio decreases rapidly at first and then increases slightly. The pipeline length also has a significant influence on the release characteristics of the extinguishing agent. With the increase in the pipeline length, the release time and the gasification ratio increase linearly, while the mass flow rate decreases linearly. Compared with the pipeline diameter and pipeline length, the influence of the pipeline roughness on the release characteristics of the extinguishing agent is weak. With the increase in the pipeline roughness, the release time and the gasification ratio of the extinguishing agent increases slowly, while the mass flow rate decreases slowly. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

22 pages, 7676 KiB  
Article
Numerical Study on Flow and Release Characteristics of Gas Extinguishing Agent under Different Filling Pressure and Amount Conditions
by Quanwei Li, Hui Ge, Renming Pan, Zhaojun Zhang and Ruiyu Chen
Processes 2021, 9(9), 1683; https://doi.org/10.3390/pr9091683 - 20 Sep 2021
Cited by 5 | Viewed by 2399
Abstract
The fire-extinguishing system is an indispensable fire-protection facility on the aircraft. In order to guide weight reduction of the aircraft’s fixed gas fire-extinguishing system by improving its release efficiency, so as to improve fuel economy and reduce carbon emissions, the influence of filling [...] Read more.
The fire-extinguishing system is an indispensable fire-protection facility on the aircraft. In order to guide weight reduction of the aircraft’s fixed gas fire-extinguishing system by improving its release efficiency, so as to improve fuel economy and reduce carbon emissions, the influence of filling pressures and filling amounts on the release efficiency of gas extinguishing agent along pipelines were studied based on numerical simulations. The release process of the fire-extinguishing system was analyzed. The effects of the filling pressure and filling amount of Halon 1301 agent on the release characteristics, such as release time, mass flow rate, and gasification ratio, were studied. Results show that the release process can be divided into three major phases, which are firstly the initial rapid filling of the pipeline, secondly the concentrated release of the liquid extinguishing agent, and thirdly the gas ejection along the pipeline. The second phase can also be subdivided into two stages: the outflow of the liquid extinguishing agent from the bottle, and the release of the residual liquid extinguishing agent along the pipeline. The release characteristics of the fire-extinguishing agent were obviously affected by the filling pressures and filling amounts. When the filling pressure was relatively low (2.832 MPa), increasing the filling pressure can significantly increase the mass flow rate, shorten the release time, and reduce the gasification ratio of the extinguishing agent during the release processes. Under the same filling pressure, with the increase of the filling amount of the extinguishing agent, the release times and the gasification ratio showed a linear increase trend, while the average mass flow rates showed a linear decrease trend. Full article
Show Figures

Figure 1

14 pages, 3274 KiB  
Article
Analysis of the Impact of Water Flow Rate on the Temperature Variability in a Closed Room during the Extinguishing of A-Group Fire Using a Hybrid Water Mist Suppression System
by Jerzy Gałaj, Norbert Tuśnio, Paweł Wolny and Tomasz Drzymała
Sustainability 2020, 12(20), 8700; https://doi.org/10.3390/su12208700 - 20 Oct 2020
Cited by 2 | Viewed by 2207
Abstract
The advantage of hybrid fire suppression systems is that they combine the advantages of both water mist and clean agent systems. Currently, this innovative technology is increasingly used in fixed firefighting systems. Available literature both in Polish and around the world describes this [...] Read more.
The advantage of hybrid fire suppression systems is that they combine the advantages of both water mist and clean agent systems. Currently, this innovative technology is increasingly used in fixed firefighting systems. Available literature both in Polish and around the world describes this issue in a fragmentary way. Extinguishing system tests were carried out at the Main School of Fire Service in Warsaw. The impact of water mist flow rate on the temperature variability in a closed room during the extinguishing of group A fires using a hybrid water mist system was analyzed. Four different flow rates 0.5, 1.0, 1.5 and 3.0 dm3/min were applied. The temperature variability of selected points of a closed test chamber during extinguishing process are presented. The extinguishing efficiency, taking into account extinguishing time, average speed of temperature drop and other parameters, was estimated on the basis of proposed original criterion. The results obtained showed that water flow rate has a significant impact on temperature variability and included the determination of optimal water flow rate at which the extinguishing efficiency is the highest. The conducted research proved that the hybrid system is more effective than classic mist and gas systems when extinguishing group A fires. Full article
(This article belongs to the Special Issue Green Technologies in Air Treatment)
Show Figures

Figure 1

15 pages, 1936 KiB  
Article
Numerical Investigation of the Required Quantity of Inert Gas Agents in Fire Suppression Systems
by Xiaoqin Hu, Arjen Kraaijeveld and Torgrim Log
Energies 2020, 13(10), 2536; https://doi.org/10.3390/en13102536 - 16 May 2020
Cited by 7 | Viewed by 3256
Abstract
Inert gas agents have the potential to be widely used in fire suppression systems due to health and safety concerns associated with active chemicals. To suppress fire while minimizing hypoxic effects in an occupied area, the discharge quantity of inert gas agents should [...] Read more.
Inert gas agents have the potential to be widely used in fire suppression systems due to health and safety concerns associated with active chemicals. To suppress fire while minimizing hypoxic effects in an occupied area, the discharge quantity of inert gas agents should be carefully designed to dilute the oxygen concentration to a specific threshold level. In this study, the general expressions between oxygen concentration, the discharge rate of inert gas agents, and the ventilation rate of the air-agent mixture are derived first. Then, explicit formulas to calculate the discharge/ventilation rate and the required quantity of inert gas agents are given if the discharge rate and ventilation rate both are constants. To investigate the dilution and fire extinguishing efficiencies of inert gas agents, two scenarios with a discharge of inert gas agents into an enclosure are modeled using the Fire Dynamic Simulator (FDS). The simulation results show that the average oxygen mass fraction approximately reaches the design level at the end of the discharge period. Variation in oxygen concentration along the enclosure height is analyzed. For the scenario with a fire source, oxygen mass fraction decreases fast as oxygen is consumed by the combustion process. Thus, the fire is extinguished a little earlier than the end of the discharge period. Full article
(This article belongs to the Special Issue Numerical Investigations of Combustion)
Show Figures

Graphical abstract

Back to TopTop