Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (392)

Search Parameters:
Keywords = gas–liquid two-phase flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 10449 KiB  
Article
The Effect Characterization of Lens on LNAPL Migration Based on High-Density Resistivity Imaging Technique
by Guizhang Zhao, Jiale Cheng, Menghan Jia, Hongli Zhang, Hongliang Li and Hepeng Zhang
Appl. Sci. 2024, 14(22), 10389; https://doi.org/10.3390/app142210389 - 12 Nov 2024
Viewed by 315
Abstract
Light non-aqueous phase liquids (LNAPLs), which include various petroleum products, are a significant source of groundwater contamination globally. Once introduced into the subsurface, these contaminants tend to accumulate in the vadose zone, causing chronic soil and water pollution. The vadose zone often contains [...] Read more.
Light non-aqueous phase liquids (LNAPLs), which include various petroleum products, are a significant source of groundwater contamination globally. Once introduced into the subsurface, these contaminants tend to accumulate in the vadose zone, causing chronic soil and water pollution. The vadose zone often contains lens-shaped bodies with diverse properties that can significantly influence the migration and distribution of LNAPLs. Understanding the interaction between LNAPLs and these lens-shaped bodies is crucial for developing effective environmental management and remediation strategies. Prior research has primarily focused on LNAPL behavior in homogeneous media, with less emphasis on the impact of heterogeneous conditions introduced by lens-shaped bodies. To investigate the impact of lens-shaped structures on the migration of LNAPLs and to assess the specific effects of different types of lens-shaped structures on the distribution characteristics of LNAPL migration, this study simulates the LNAPL leakage process using an indoor two-dimensional sandbox. Three distinct test groups were conducted: one with no lens-shaped aquifer, one with a low-permeability lens, and one with a high-permeability lens. This study employs a combination of oil front curve mapping and high-density resistivity imaging techniques to systematically evaluate how the presence of lens-shaped structures affects the migration behavior, distribution patterns, and corresponding resistivity anomalies of LNAPLs. The results indicate that the migration rate and distribution characteristics of LNAPLs are influenced by the presence of a lens in the gas band of the envelope. The maximum vertical migration distances of the LNAPL are as follows: high-permeability lens (45 cm), no lens-shaped aquifer (40 cm), and low-permeability lens (35 cm). Horizontally, the maximum migration distances of the LNAPL to the upper part of the lens body decreases in the order of low-permeability lens, high-permeability lens, and no lens-shaped aquifer. The low-permeability lens impedes the vertical migration of the LNAPL, significantly affecting its migration path. It creates a flow around effect, hindering the downward migration of the LNAPL. In contrast, the high-permeability lens has a weaker retention effect and creates preferential flow paths, promoting the downward migration of the LNAPL. Under conditions with no lens-shaped aquifer and a high-permeability lens, the region of positive resistivity change rate is symmetrical around the axis where the injection point is located. Future research should explore the impact of various LNAPL types, lens geometries, and water table fluctuations on migration patterns. Incorporating numerical simulations could provide deeper insights into the mechanisms controlling LNAPL migration in heterogeneous subsurface environments. Full article
Show Figures

Figure 1

17 pages, 7252 KiB  
Article
The Degradation of Furfural from Petroleum Refinery Wastewater Employing a Packed Bubble Column Reactor Using O3 and a CuO Nanocatalyst
by Safiaa M. Mohammed, Ali Abdul Rahman Al Ezzi, Hasan Shakir Majdi and Khalid A. Sukkar
Reactions 2024, 5(4), 883-899; https://doi.org/10.3390/reactions5040047 - 11 Nov 2024
Viewed by 261
Abstract
Furfural is one of the main pollutant materials in petroleum refinery wastewater. This work used an ozonized bubble column reactor to remove furfural from wastewater. The reactor applied two shapes of packing materials and two dosages of CuO nanocatalyst (0.05 and 0.1 ppm) [...] Read more.
Furfural is one of the main pollutant materials in petroleum refinery wastewater. This work used an ozonized bubble column reactor to remove furfural from wastewater. The reactor applied two shapes of packing materials and two dosages of CuO nanocatalyst (0.05 and 0.1 ppm) to enhance the degradation process. The results indicated that adding 0.1 ppm of nanocatalyst provided an efficient rate of furfural degradation compared to that of 0.05 ppm. Also, the packing materials enhanced the furfural degradation significantly. As a result, the contact area between the gas and liquid phases increased, and a high furfural removal efficiency was achieved. It was found that the CuO nanocatalyst generated more (OH•) radicals. At a treatment time of 120 min and an ozone flow of 40 L/h, the furfural degradation recorded values of 80.66 and 78.6% at 10 and 20 ppm of initial concentration, respectively. At 60 ppm, the degradation efficiency did not exceed 74.16%. Furthermore, the kinetic study indicated that the first-order mechanism is more favorable than the second-order mechanism, representing the furfural degradation with a correlation factor of 0.9837. Finally, the furfural reaction can be achieved successfully in a shorter time and at low cost. Full article
Show Figures

Figure 1

13 pages, 5482 KiB  
Article
Simulation Analysis of the Annular Liquid Disturbance Induced by Gas Leakage from String Seals During Annular Pressure Relief
by Qiang Du, Ruikang Ke, Xiangwei Bai, Cheng Du, Zhaoqian Luo, Yao Huang, Lang Du, Senqi Pei and Dezhi Zeng
Modelling 2024, 5(4), 1674-1686; https://doi.org/10.3390/modelling5040087 - 8 Nov 2024
Viewed by 307
Abstract
Due to the failure of string seals, gas can leak and result in the abnormal annulus pressure in gas wells, so it is necessary to relieve the pressure in gas wells. In the process of pressure relief, the leaked gas enters the annulus, [...] Read more.
Due to the failure of string seals, gas can leak and result in the abnormal annulus pressure in gas wells, so it is necessary to relieve the pressure in gas wells. In the process of pressure relief, the leaked gas enters the annulus, causes a the great disturbance to the annulus flow field, and thus reduces the protection performance of the annular protection fluid in the string. In order to investigate the influence of gas leakage on the annular flow field, a VOF finite element model of the gas-liquid two-phase flow disturbed by gas leakage in a casing was established to simulate the transient flow field in the annular flow disturbed by gas leakage, and the influences of leakage pressure differences, leakage direction, and leakage time on annular flow field disturbance and wall shear force were analyzed. The analysis results showed that the larger leakage pressure difference corresponded to the faster diffusion rate of the leaked gas in the annulus, the faster the flushing rate of the leaked gas against the casing wall, and a larger shear force on the tubing wall was detrimental to the formation of the corrosion inhibitor film on the tubing wall and casing wall. Under the same conditions, the shear action on the outer wall of tubing in the leakage direction of 90° was stronger than that in the leakage directions of 135° and 45° and the diffusion range was also larger. With the increase in leakage time, leaked gas further moved upward in the annulus and the shear effect on the outer wall of tubing was gradually strengthened. The leaked acid gas flushed the outer wall of casing, thus increasing the peeling-off risk of the corrosion inhibitor film. The study results show that the disturbance law of gas leakage to annular protection fluid is clear, and it was suggested to reduce unnecessary pressure relief time in the annulus to ensure the safety and integrity of gas wells. Full article
(This article belongs to the Topic Oil and Gas Pipeline Network for Industrial Applications)
Show Figures

Figure 1

20 pages, 13589 KiB  
Article
A Sensitive Frequency Band Study for Distributed Acoustical Sensing Monitoring Based on the Coupled Simulation of Gas–Liquid Two-Phase Flow and Acoustic Processes
by Zhong Li, Yi Wu, Yanming Yang, Mengbo Li, Leixiang Sheng, Huan Guo, Jingang Jiao, Zhenbo Li and Weibo Sui
Photonics 2024, 11(11), 1049; https://doi.org/10.3390/photonics11111049 - 7 Nov 2024
Viewed by 458
Abstract
The sensitivity of gas and water phases to DAS acoustic frequency bands can be used to interpret the production profile of horizontal wells. DAS typically collects acoustic signals in the kilohertz range, presenting a key challenge in identifying the sensitive frequency bands of [...] Read more.
The sensitivity of gas and water phases to DAS acoustic frequency bands can be used to interpret the production profile of horizontal wells. DAS typically collects acoustic signals in the kilohertz range, presenting a key challenge in identifying the sensitive frequency bands of the gas and water phases in the production well for accurate interpretation. In this study, a gas–water two-phase flow–acoustic coupling model for a horizontal well is developed by integrating a gas–water separation flow model with a pipeline acoustic model. The model simulates the sound pressure level (SPL) and amplitude variations of acoustic waves under different flow patterns, spatial locations, and gas–water ratio schemes. The results demonstrate that within the same flow pattern, an increase in the gas–water ratio significantly elevates acoustic amplitude and SPL peaks within the 5–50 Hz frequency band. Analysis of oil field DAS data reveals that the amplitude response range for stages with a lower gas–water ratio falls within 5–10 Hz, whereas stages with a higher gas–water ratio exhibit an amplitude response range of 10–50 Hz. Full article
(This article belongs to the Special Issue Distributed Optical Fiber Sensing Technology)
Show Figures

Figure 1

13 pages, 3513 KiB  
Article
Performance Analysis of Air Gap Membrane Distillation Process Enhanced with Air Injection for Water Desalination
by Jonathan Ibarra-Bahena, Ulises Dehesa-Carrasco, Rogelio Servando Villalobos-Hernández, Sofía Garrido-Hoyos and Wilfrido Rivera
Membranes 2024, 14(11), 232; https://doi.org/10.3390/membranes14110232 - 6 Nov 2024
Viewed by 524
Abstract
Water scarcity is a global issue, and desalination is an alternative to providing fresh water. Renewable energies could be used in thermal desalination to produce freshwater from high saline concentration solutions. In this paper, the experimental performance of an air-injection-Air Gap Membrane Distillation [...] Read more.
Water scarcity is a global issue, and desalination is an alternative to providing fresh water. Renewable energies could be used in thermal desalination to produce freshwater from high saline concentration solutions. In this paper, the experimental performance of an air-injection-Air Gap Membrane Distillation (AGMD) module is presented. The effect of the operation parameters (saline solution temperature, air flow, and salt concentration) on the distilled water rate was evaluated. The air injection enhanced the distilled water rate by 22% at the highest air flow and a solution flow rate of 80 °C, compared to the conventional condition (without air injection) at a salt concentration of 100,000 ppm. Under the same operating conditions, the increase was 17% at a salt concentration of 70,000 ppm. The maximum distilled water rate was 14.10 L/m2·h at 80 °C and an airflow of 1.5 L/min with the highest salt concentration, while it was also 14.10 L/m2·h at the lower salt concentration was 14.10 L/m2·h. The distilled water quality also improved as the air flow increased, since a conductivity reduction of 66% was observed. With the described mathematical model, 94% of the calculated values fell within ±10% of the experimental data for both salt concentration conditions. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

24 pages, 6570 KiB  
Article
Experimental Investigation and Calculation of Convective Heat Transfer in Two-Component Gas–Liquid Flow Through Channels Packed with Metal Foams
by Roman Dyga and Małgorzata Płaczek
Energies 2024, 17(21), 5250; https://doi.org/10.3390/en17215250 - 22 Oct 2024
Viewed by 554
Abstract
This paper presents a study on heat transfer in two-phase mixtures (air–water and air–oil) flowing through heated horizontal channels filled with open-cell aluminum foams characterized by porosities of 92.9–94.3% and pore densities of 20, 30, and 40 PPI. The research included mass flux [...] Read more.
This paper presents a study on heat transfer in two-phase mixtures (air–water and air–oil) flowing through heated horizontal channels filled with open-cell aluminum foams characterized by porosities of 92.9–94.3% and pore densities of 20, 30, and 40 PPI. The research included mass flux densities ranging from 2.82 to 284.7 kg/(m2·s) and heat flux densities from 5.3 to 35.7 kW/m2. The analysis examined the effects of flow conditions, fluid properties, and foam geometry on the intensity of heat transfer from the heated walls of the channel to the fluid. Results indicate that the heat transfer coefficient in two-component non-boiling flow exceeds that of single-phase flow, primarily due to fluid properties and velocities, with minimal impact from flow structures or foam geometry. An assessment of existing methods for predicting heat transfer coefficients in gas–liquid and boiling flows revealed significant discrepancies—up to several hundred percent—between measured and predicted values. To address these issues, a novel computational method was developed to accurately predict heat transfer coefficients for two-component non-boiling flow through metal foams. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Graphical abstract

18 pages, 4698 KiB  
Article
Study on Atomization Mechanism of Oil Injection Lubrication for Rolling Bearing Based on Stratified Method
by Feng Wei, Hongbin Liu and Yongyan Liu
Lubricants 2024, 12(10), 357; https://doi.org/10.3390/lubricants12100357 - 18 Oct 2024
Viewed by 521
Abstract
The atomization mechanism of lubrication fluid in rolling bearings under high-speed airflow between the rings was investigated. A simulation model of gas–liquid two-phase flow in angular contact ball bearings was developed, and the jet lubrication process between the bearing rings was simulated using [...] Read more.
The atomization mechanism of lubrication fluid in rolling bearings under high-speed airflow between the rings was investigated. A simulation model of gas–liquid two-phase flow in angular contact ball bearings was developed, and the jet lubrication process between the bearing rings was simulated using FLUENT computational fluid dynamics software (Ansys 19.2). The complex motion boundary conditions of the rolling elements were addressed through a layered approach. We can obtain more accurate boundary layer flow field changes and statistics of the diameter of oil particles in lubricating oil atomization, which lays the foundation for analyzing the law of influence on lubricating oil atomization. The results show that as the number of boundary layer layers increases, the influence of the boundary layer flow field on the lubricating oil is more obvious. The oil particle size is excessively flat, and the concentration of large particles of oil appears to decrease. As the speed increases, the amount of oil in the cavity decreases, but the oil droplets are also fragmented, which intensifies the atomization and reduces the particle diameter. This reduces the Sauter Mean Diameter (SMD), which is not conducive to the lubrication of the bearing. Under different injection pressures, when the injection pressure is large, it is beneficial to the lubrication of the bearing. Full article
Show Figures

Figure 1

11 pages, 5542 KiB  
Article
Experimental and Numerical Study on the Characteristics of Bubble Motion in a Narrow Channel
by Borong Tang, Shenfei Wang, Fang Liu and Fenglei Niu
J. Nucl. Eng. 2024, 5(4), 445-455; https://doi.org/10.3390/jne5040028 - 15 Oct 2024
Viewed by 403
Abstract
Plate fuel elements, known for their compact structure and efficient cooling, are commonly used in the core of nuclear reactors. In these reactors, coolant channels are designed as rectangular narrow slits. Bubble behavior in narrow channels differs significantly from that in conventional channels. [...] Read more.
Plate fuel elements, known for their compact structure and efficient cooling, are commonly used in the core of nuclear reactors. In these reactors, coolant channels are designed as rectangular narrow slits. Bubble behavior in narrow channels differs significantly from that in conventional channels. This paper investigates the vertical rise of bubbles in narrow slit channels. A gas–liquid two-phase flow experimental rig was constructed using transparent acrylic boards. A high-speed camera captured the bubble formation process during gas injection, and code implemented in Matlab was used to process the images. Numerical simulations were conducted with CFD software under identical conditions and compared with the experimental results, showing a good agreement. The results show that the experimental and simulated bubble movement velocities are in good agreement. In the experiments of this paper, when the width of the narrow gap is below 3 mm, the sidewalls exert a pronounced influence on the dynamics of bubble rise, notably altering both the velocity profile and the trajectory of the bubbles’ ascent. As the gas injection flow rate gradually increases, the bubble rising speed and trajectory change from regular to oscillatory patterns. Full article
(This article belongs to the Special Issue Advances in Thermal Hydraulics of Nuclear Power Plants)
Show Figures

Figure 1

18 pages, 13604 KiB  
Article
Numerical Simulation of Gas Atomization and Powder Flowability for Metallic Additive Manufacturing
by Yonglong Du, Xin Liu, Songzhe Xu, Enxiang Fan, Lixiao Zhao, Chaoyue Chen and Zhongming Ren
Metals 2024, 14(10), 1124; https://doi.org/10.3390/met14101124 - 2 Oct 2024
Viewed by 663
Abstract
The quality of metal powder is essential in additive manufacturing (AM). The defects and mechanical properties of alloy parts manufactured through AM are significantly influenced by the particle size, sphericity, and flowability of the metal powder. Gas atomization (GA) technology is a widely [...] Read more.
The quality of metal powder is essential in additive manufacturing (AM). The defects and mechanical properties of alloy parts manufactured through AM are significantly influenced by the particle size, sphericity, and flowability of the metal powder. Gas atomization (GA) technology is a widely used method for producing metal powders due to its high efficiency and cost-effectiveness. In this work, a multi-phase numerical model is developed to compute the alloy liquid breaking in the GA process by capturing the gas–liquid interface using the Coupled Level Set and Volume-of-Fluid (CLSVOF) method and the realizable k-ε turbulence model. A GA experiment is carried out, and a statistical comparison between the particle-size distributions obtained from the simulation and GA experiment shows that the relative errors of the cumulative frequency for the particle sizes sampled in two regions of the GA chamber are 5.28% and 5.39%, respectively. The mechanism of powder formation is discussed based on the numerical results. In addition, a discrete element model (DEM) is developed to compute the powder flowability by simulating a Hall flow experiment using the particle-size distribution obtained from the GA experiment. The relative error of the time that finishes the Hall flow in the simulation and experiment is obtained to be 1.9%. Full article
Show Figures

Figure 1

19 pages, 9106 KiB  
Article
Modeling of Spray Combustion and Heat Transfer of MMH/N2O4 in a Small Rocket Engine Using Different Mechanisms
by Ting Zhao, Jianguo Xu and Yuanding Wang
Energies 2024, 17(19), 4781; https://doi.org/10.3390/en17194781 - 25 Sep 2024
Viewed by 639
Abstract
Although various hypergolic propellants like MMH/N2O4 (monomethylhydrazine/dinitrogen tetroxide) are widely used in small rocket engines, there remains a lack of in-depth study conducted on their chemical reactions and spray combustion behaviors. To fill this research gap, a simplified chemical kinetic [...] Read more.
Although various hypergolic propellants like MMH/N2O4 (monomethylhydrazine/dinitrogen tetroxide) are widely used in small rocket engines, there remains a lack of in-depth study conducted on their chemical reactions and spray combustion behaviors. To fill this research gap, a simplified chemical kinetic model that is suitable for three-dimensional simulation was proposed in this paper for MMH/N2O4. Then, numerical investigation was conducted using the Volume of Fluid (VOF) model to explore the transient injection and atomization of MMH/N2O4 impinging jets in a small bipropellant thruster. Also, the instantaneous formation and evolution of the fan-shaped liquid film were analyzed. With the spray distribution determined, the proposed kinetic model and two existing mechanisms were applied to simulate spray combustion and heat transfer within the thruster, respectively, under the Euler–Lagrange framework. According to the research results, the liquid film covered nearly the entire chamber wall with a sawtooth pattern, which protected against the high temperatures of the engine wall. Notably, the two existing mechanisms showed significant errors in predicting temperature changes around the wall due to the excessively simplified reaction pathways. In contrast, the proposed model enabled the accurate prediction of the chamber pressure, wall temperature, and thrust with an error of less than 10%. Given the high accuracy achieved by the proposed numerical method, it provides a valuable reference for the development of advanced space engines. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

13 pages, 14616 KiB  
Article
Impedance Spectroscopy Study of Charge Transfer in the Bulk and Across the Interface in Networked SnO2/Ga2O3 Core–Shell Nanobelts in Ambient Air
by Maciej Krawczyk, Ryszard Korbutowicz and Patrycja Suchorska-Woźniak
Sensors 2024, 24(19), 6173; https://doi.org/10.3390/s24196173 - 24 Sep 2024
Viewed by 660
Abstract
Metal oxide core–shell fibrous nanostructures are promising gas-sensitive materials for the detection of a wide variety of both reducing and oxidizing gases. In these structures, two dissimilar materials with different work functions are brought into contact to form a coaxial heterojunction. The influence [...] Read more.
Metal oxide core–shell fibrous nanostructures are promising gas-sensitive materials for the detection of a wide variety of both reducing and oxidizing gases. In these structures, two dissimilar materials with different work functions are brought into contact to form a coaxial heterojunction. The influence of the shell material on the transportation of the electric charge carriers along these structures is still not very well understood. This is due to homo-, hetero- and metal/semiconductor junctions, which make it difficult to investigate the electric charge transfer using direct current methods. However, in order to improve the gas-sensing properties of these complex structures, it is necessary to first establish a good understanding of the electric charge transfer in ambient air. In this article, we present an impedance spectroscopy study of networked SnO2/Ga2O3 core–shell nanobelts in ambient air. Tin dioxide nanobelts were grown directly on interdigitated gold electrodes, using the thermal sublimation method, via the vapor–liquid–solid (VLS) mechanism. Two forms of a gallium oxide shell of varying thickness were prepared via halide vapor-phase epitaxy (HVPE), and the impedance spectra were measured at 189–768 °C. The bulk resistance of the core–shell nanobelts was found to be reduced due to the formation of an electron accumulation layer in the SnO2 core. At temperatures above 530 °C, the thermal reduction of SnO2 and the associated decrease in its work function caused electrons to flow from the accumulation layer into the Ga2O3 shell, which resulted in an increase in bulk resistance. The junction resistance of said core–shell nanostructures was comparable to that of SnO2 nanobelts, as both structures are likely connected through existing SnO2/SnO2 homojunctions comprising thin amorphous layers. Full article
Show Figures

Figure 1

20 pages, 15144 KiB  
Article
Gas–Liquid Mixability Study in a Jet-Stirred Tank for Mineral Flotation
by Yehao Huang, Mingwei Gao, Baozhong Shang, Jia Yao, Weijun Peng, Xiangyu Song and Dan Mei
Appl. Sci. 2024, 14(19), 8600; https://doi.org/10.3390/app14198600 - 24 Sep 2024
Cited by 1 | Viewed by 566
Abstract
Micro- and nano-bubble jet stirring, as an emerging technology, shows great potential in complex mineral sorting. Flow field characteristics and structural parameters of the gas–liquid two-phase system can lead to uneven bubble distribution inside the reaction vessel. Gas–liquid mixing uniformity is crucial for [...] Read more.
Micro- and nano-bubble jet stirring, as an emerging technology, shows great potential in complex mineral sorting. Flow field characteristics and structural parameters of the gas–liquid two-phase system can lead to uneven bubble distribution inside the reaction vessel. Gas–liquid mixing uniformity is crucial for evaluating stirring effects, as increasing the contact area enhances reaction efficiency. To improve flotation process efficiency and resource recovery, further investigation into flow field characteristics and structural optimization is necessary. The internal flow field of the jet-stirred tank was analyzed using computational fluid dynamics (CFDs) with the Eulerian multiphase flow model and the Renormalization Group (RNG) k − ε turbulence model. Various operating (feeding and aerating volumes) and structural parameters (nozzle direction, height, inner diameter, and radius ratio) were simulated. Dimensionless variance is a statistical metric used to assess gas–liquid mixing uniformity. The results indicated bubbles accumulated in the middle of the vessel, leading to uneven mixing. Lower velocities resulted in low gas volume fractions, while excessively high velocities increased differences between the center and near-wall regions. Optimal mixing uniformity was achieved with a circumferential nozzle direction, 80 mm height, 5.0 mm inner diameter, and 0.55 radius ratio. Full article
Show Figures

Figure 1

19 pages, 5038 KiB  
Article
Characteristics and Leak Localization of Transient Flow in Gas-Containing Water Pipelines
by Qiaoling Zhang, Zhen Zhang, Biyun Huang, Ziyuan Yu, Xingqi Luo and Zhendong Yang
Water 2024, 16(17), 2459; https://doi.org/10.3390/w16172459 - 29 Aug 2024
Viewed by 658
Abstract
When water pipelines undergo scenarios such as valve closure or leakage, they often operate in a gas-liquid two-phase flow state, which can easily cause abnormal pressure fluctuations, exacerbating the destructiveness of water hammer and affecting the safe operation of the pipeline. To study [...] Read more.
When water pipelines undergo scenarios such as valve closure or leakage, they often operate in a gas-liquid two-phase flow state, which can easily cause abnormal pressure fluctuations, exacerbating the destructiveness of water hammer and affecting the safe operation of the pipeline. To study the problem of abnormal fluctuations in complex water pipelines, this paper establishes a transient flow model for gas-containing pipelines, considering unsteady friction, and solves it using the discrete gas cavity model (DGCM). It also studies the influence of factors such as valve closing time, initial flow rate, gas content rate, leakage location, and leakage amount on the end-of-valve pressure. Furthermore, it locates the leakage position using a genetic algorithm-backpropagation neural network (GA-BP neural network). The results show that increasing the valve closing time, increasing the gas content rate, decreasing the initial flow rate, and increasing the leakage amount all reduce the pressure peak inside the pipeline. The model constructed using the GA-BP neural network effectively predicts the leakage location with a mean absolute percentage error (MAPE) of 9.26%. The research results provide a reference for studies related to the safety protection of water conveyance projects. Full article
Show Figures

Figure 1

15 pages, 7776 KiB  
Article
Characteristics of Transient Flow in Rapidly Filled Closed Pipeline
by Kan Wang, You Fu and Jin Jiang
Water 2024, 16(17), 2377; https://doi.org/10.3390/w16172377 - 24 Aug 2024
Viewed by 627
Abstract
In this study, a one-dimensional mathematical model based on rigid theory is developed to evaluate the maximum water filling flow rate and filling time of closed pipeline water supply systems during rapid-filling processes. Polynomial fitting is utilized for prediction, and numerical simulation results [...] Read more.
In this study, a one-dimensional mathematical model based on rigid theory is developed to evaluate the maximum water filling flow rate and filling time of closed pipeline water supply systems during rapid-filling processes. Polynomial fitting is utilized for prediction, and numerical simulation results are analyzed to understand the variations in maximum water filling flow rate, filling time, and pressure with respect to opening valve time, air valve area, filling head, and segmented filling pipe length. The findings highlight the significant impact of the filling head on the maximum water filling flow rate, while the filling time is predominantly influenced by the gas discharge coefficient. Rapid changes occur only at the initial stage of rapid filling, reaching the maximum value with a very high acceleration (around t = 4 s). It is observed that pressure fluctuations in the gas–liquid two-phase flow inside the pipeline lead to velocity differences and periodic changes in gas pressure opposite to the filling head. When the gas discharge coefficient reaches approximately 0.3, pressure variation within the water supply system diminishes, and the time and flow rate required for pipeline filling become independent of the discharge coefficient. This study suggests the use of a segmented filling approach to ensure the effectiveness and stability of pipeline filling. Full article
(This article belongs to the Special Issue Hydraulics and Hydrodynamics in Fluid Machinery)
Show Figures

Figure 1

24 pages, 6311 KiB  
Article
Air-Lift Pumping System for Hybrid Mining of Rare-Earth Elements-Rich Mud and Polymetallic Nodules around Minamitorishima Island
by Yoshiyuki Shimizu, Masatoshi Sugihara, Koichiro Fujinaga, Kentaro Nakamura and Yasuhiro Kato
J. Mar. Sci. Eng. 2024, 12(9), 1470; https://doi.org/10.3390/jmse12091470 - 23 Aug 2024
Viewed by 625
Abstract
REE-rich mud under the seabed at a 5500–5700 m water depth around Minamitorishima island and polymetallic nodules buried in the deep seabed are very promising and attractive to explore and develop. REEs are critical to develop due to the recent paradigm shift to [...] Read more.
REE-rich mud under the seabed at a 5500–5700 m water depth around Minamitorishima island and polymetallic nodules buried in the deep seabed are very promising and attractive to explore and develop. REEs are critical to develop due to the recent paradigm shift to renewable energies based on green technologies. Numerical analysis using a one-dimensional drift–flux model for gas–liquid–solid three-phase flow and gas–liquid two-phase flow was conducted to examine the characteristics of an air-lift pumping system for mining these mineral resources. Empirical equations of REE-rich mud and the physical properties of polymetallic nodules around Minamitorishima island were utilized in the analysis. As a result, the characteristics, i.e., the performance of the system, were clarified in three cases: REE-rich mud, polymetallic nodules, and both. The time transient, i.e., the unsteady characteristics of the system, was also shown, such as the start-up and feeding slurry with REE-rich mud and polymetallic nodules. The findings from the unsteady characteristics will be useful in considering the operation of a real project or a commercial system in the future. Full article
(This article belongs to the Special Issue Deep-Sea Mining Technologies: Recent Developments and Challenges)
Show Figures

Figure 1

Back to TopTop