Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,863)

Search Parameters:
Keywords = gelatin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5230 KiB  
Article
Crosslinked Biodegradable Hybrid Hydrogels Based on Poly(ethylene glycol) and Gelatin for Drug Controlled Release
by Zhenzhen Zhao, Zihao Qin, Tianqing Zhao, Yuanyuan Li, Zhaosheng Hou, Hui Hu, Xiaofang Su and Yanan Gao
Molecules 2024, 29(20), 4952; https://doi.org/10.3390/molecules29204952 (registering DOI) - 19 Oct 2024
Abstract
A series of hybrid hydrogels of poly(ethylene glycol) (PEG) were synthesized using gelatin as a crosslinker and investigated for controlled delivery of the first-generation cephalosporin antibiotic, Cefazedone sodium (CFD). A commercially available 4-arm-PEG–OH was first modified to obtain four-arm-PEG–succinimidyl glutarate (4-arm-PEG–SG), which formed [...] Read more.
A series of hybrid hydrogels of poly(ethylene glycol) (PEG) were synthesized using gelatin as a crosslinker and investigated for controlled delivery of the first-generation cephalosporin antibiotic, Cefazedone sodium (CFD). A commercially available 4-arm-PEG–OH was first modified to obtain four-arm-PEG–succinimidyl glutarate (4-arm-PEG–SG), which formed the gelatin–PEG composite hydrogels (SnNm) through crosslinking with gelatin. To regulate the drug delivery, SnNm hydrogels with various solid contents and crosslinking degrees were prepared. The effect of solid contents and crosslinking degrees on the thermal, mechanical, swelling, degradation, and drug release properties of the hydrogels were intensively investigated. The results revealed that increasing the crosslinking degree and solid content of SnNm could not only enhance the thermal stability, swelling ratio (SR), and compression resistance capacity of SnNm but also prolong the degradation and drug release times. The release kinetics of the SnNm hydrogels were found to follow the first-order model, suggesting that the transport rate of CFD within the matrix of hydrogels is proportional to the concentration of the drug where it is located. Specifically, S1N1-III showed 90% mass loss after 60 h of degradation and a sustained release duration of 72 h. The cytotoxicity assay using the MTT method revealed that cell viability rates of S1N1 were higher than 95%, indicating excellent cytocompatibility. This study offers new insights and methodologies for the development of hydrogels as biomedical composite materials. Full article
(This article belongs to the Special Issue Recent Advances in Porous Materials)
Show Figures

Figure 1

16 pages, 811 KiB  
Article
Use of Mucilage from Opuntia ficus-indica in the Manufacture of Probiotic Cream Cheese
by Pamela Dutra Rodrigues, Isabela de Andrade Arruda Fernandes, Annecler Rech de Marins, Andresa Carla Feihrmann and Raquel Guttierres Gomes
Processes 2024, 12(10), 2289; https://doi.org/10.3390/pr12102289 (registering DOI) - 18 Oct 2024
Abstract
Cream cheese is a type of fresh cheese with a thin consistency with great potential for adding probiotics. However, artificial thickeners have been used in its production, decreasing consumer satisfaction. This study suggests natural mucilage, specifically from the Cactaceae Opuntia ficus-indica, as [...] Read more.
Cream cheese is a type of fresh cheese with a thin consistency with great potential for adding probiotics. However, artificial thickeners have been used in its production, decreasing consumer satisfaction. This study suggests natural mucilage, specifically from the Cactaceae Opuntia ficus-indica, as a replacement for artificial thickeners due to its thick gelatinous properties. This study evaluated different cream cheese formulations by adding varying concentrations of Opuntia ficus-indica mucilage and the probiotic Lactobacillus acidophilus (L. acidophilus). Four formulations were created: formulation C (control, without mucilage), F1 (containing 1 mL/kg mucilage), F2 (2 mL/kg), and F3 (3 mL/kg mucilage). The physicochemical characteristics (pH, 4.90–5.57; 0.15–0.20% acidity; 1.78–2.42% protein; 29.98–30.88% fat; 38.27–41.63% moisture; and 1.25–1.63% ash) and microbiological analysis met the quality standards required by Brazilian legislation, and the cream cheese showed probiotic potential, with L. acidophilus counts above 108 CFU/mL within four weeks of storage. Regarding sensory evaluation, the texture received one of the highest scores (7.89), followed by aroma (7.11). Therefore, the Cactaceae mucilage has proven to be a viable alternative to replace artificial thickeners in cream cheese, making it an excellent option for probiotic supplementation. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

12 pages, 6738 KiB  
Article
The Utilization of Central Composite Design for the Production of Hydrogel Blends for 3D Printing
by Thalita Fonseca Araujo and Luciano Paulino Silva
Coatings 2024, 14(10), 1324; https://doi.org/10.3390/coatings14101324 - 16 Oct 2024
Abstract
Central composite design (CCD) is a statistical experimental design technique that utilizes a combination of factorial and axial points to study the effects of multiple variables on a response. This study focused on optimizing hydrogel formulations for 3D printing using CCD. Three biopolymers [...] Read more.
Central composite design (CCD) is a statistical experimental design technique that utilizes a combination of factorial and axial points to study the effects of multiple variables on a response. This study focused on optimizing hydrogel formulations for 3D printing using CCD. Three biopolymers were selected: sodium alginate (SA), gelatin (GEL), and carboxymethyl cellulose (CMC). The maximum and minimum concentrations of each polymer were established using a Google Scholar search, and CCD was employed to generate various combinations for hydrogel preparation. The hydrogels were characterized in accordance with their swelling degree (SD) in phosphate-buffered saline (PBS) and Dulbecco’s Modified Eagle Medium (DMEM), as well as their printability in 2D and 3D assays. The formulation consisting of 7.5% SA, 7.5% GEL, and 2.5% CMC exhibited the best swelling properties and exceptional printability, surpassing all other tested formulations. This study highlights the effectiveness of design of experiment methodologies in accelerating the development of optimized hydrogel formulations for various applications in 3D printing and suggests avenues for future research to explore their performance in specific biological contexts. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

30 pages, 3680 KiB  
Review
Formation and Applications of Typical Basic Protein-Based Heteroprotein Complex Coacervations
by Yufeng Xie, Qingchen Liu, Yubo Ge, Yongqi Liu and Rui Yang
Foods 2024, 13(20), 3281; https://doi.org/10.3390/foods13203281 - 16 Oct 2024
Abstract
Lactoferrin, lysozyme, and gelatin are three common basic proteins known for their ability to interact with acidic proteins (lactoglobulin, ovalbumin, casein, etc.) and form various supramolecular structures. Their basic nature makes them highly promising for interaction with other acidic proteins to form heteroprotein [...] Read more.
Lactoferrin, lysozyme, and gelatin are three common basic proteins known for their ability to interact with acidic proteins (lactoglobulin, ovalbumin, casein, etc.) and form various supramolecular structures. Their basic nature makes them highly promising for interaction with other acidic proteins to form heteroprotein complex coacervation (HPCC) with a wide range of applications. This review extensively examines the structure, properties, and preparation methods of these basic proteins and delves into the internal and external factors influencing the formation of HPCC, including pH, ionic strength, mixing ratio, total protein concentration, temperature, and inherent protein properties. The applications of different HPCCs based on these three basic proteins are discussed, including the encapsulation of bioactive molecules, emulsion stabilization, protein separation and extraction, nanogel formation, and the development of formulas for infants. Furthermore, the challenges and issues that are encountered in the formation of heteroprotein complexes are addressed and summarized, shedding light on the complexities and considerations involved in utilizing HPCC technology in practical applications. By harnessing the basic proteins to interact with other proteins and to form complex coacervates, new opportunities arise for the development of functional food products with enhanced nutritional profiles and functional attributes. Full article
Show Figures

Figure 1

18 pages, 7715 KiB  
Article
Pristine Photopolymerizable Gelatin Hydrogels: A Low-Cost and Easily Modifiable Platform for Biomedical Applications
by Maria Pérez-Araluce, Alessandro Cianciosi, Olalla Iglesias-García, Tomasz Jüngst, Carmen Sanmartín, Íñigo Navarro-Blasco, Felipe Prósper, Daniel Plano and Manuel M. Mazo
Antioxidants 2024, 13(10), 1238; https://doi.org/10.3390/antiox13101238 - 15 Oct 2024
Abstract
The study addresses the challenge of temperature sensitivity in pristine gelatin hydrogels, widely used in biomedical applications due to their biocompatibility, low cost, and cell adhesion properties. Traditional gelatin hydrogels dissolve at physiological temperatures, limiting their utility. Here, we introduce a novel method [...] Read more.
The study addresses the challenge of temperature sensitivity in pristine gelatin hydrogels, widely used in biomedical applications due to their biocompatibility, low cost, and cell adhesion properties. Traditional gelatin hydrogels dissolve at physiological temperatures, limiting their utility. Here, we introduce a novel method for creating stable hydrogels at 37 °C using pristine gelatin through photopolymerization without requiring chemical modifications. This approach enhances consistency and simplifies production and functionalization of the gelatin with bioactive molecules. The stabilization mechanism involves the partial retention of the triple-helix structure of gelatin below 25 °C, which provides specific crosslinking sites. Upon activation by visible light, ruthenium (Ru) acts as a photosensitizer that generates sulphate radicals from sodium persulphate (SPS), inducing covalent bonding between tyrosine residues and “locking” the triple-helix conformation. The primary focus of this work is the characterization of the mechanical properties, swelling ratio, and biocompatibility of the photopolymerized gelatin hydrogels. Notably, these hydrogels supported better cell viability and elongation in normal human dermal fibroblasts (NHDFs) compared to GelMA, and similar performance was observed for human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). As a proof of concept for functionalization, gelatin was modified with selenous acid (GelSe), which demonstrated antioxidant and antimicrobial capacities, particularly against E. coli and S. aureus. These results suggest that pristine gelatin hydrogels, enhanced through this new photopolymerization method and functionalized with bioactive molecules, hold potential for advancing regenerative medicine and tissue engineering by providing robust, biocompatible scaffolds for cell culture and therapeutic applications. Full article
(This article belongs to the Special Issue Applications and Health Benefits of Novel Antioxidant Biomaterials)
Show Figures

Graphical abstract

20 pages, 4245 KiB  
Article
An Easy-to-Handle Route for Bicomponent Porous Tubes Fabrication as Nerve Guide Conduits
by Teresa Russo, Stefania Scialla, Marietta D’Albore, Iriczalli Cruz-Maya, Roberto De Santis and Vincenzo Guarino
Polymers 2024, 16(20), 2893; https://doi.org/10.3390/polym16202893 (registering DOI) - 14 Oct 2024
Abstract
Over the past two decades, the development of nerve guide conduits (NGCs) has gained much attention due to the impellent need to find innovative strategies to take care of damaged or degenerated peripheral nerves in clinical surgery. In this view, significant effort has [...] Read more.
Over the past two decades, the development of nerve guide conduits (NGCs) has gained much attention due to the impellent need to find innovative strategies to take care of damaged or degenerated peripheral nerves in clinical surgery. In this view, significant effort has been spent on the development of high-performance NGCs by different materials and manufacturing approaches. Herein, a highly versatile and easy-to-handle route to process 3D porous tubes made of chitosan and gelatin to be used as a nerve guide conduit were investigated. This allowed us to fabricate highly porous substrates with a porosity that ranged from 94.07 ± 1.04% to 97.23 ± 1.15% and average pore sizes—estimated via X-ray computed tomography (XCT) reconstruction and image analysis—of hundreds of microns and an irregular shape with an aspect ratio that ranged from 0.70 ± 0.19 to 0.80 ± 0.15 as a function of the chitosan/gelatin ratio. More interestingly, the addition of gelatin allowed us to modulate the mechanical properties, which gradually reduced the stiffness—max strength from 0.634 ± 0.015 MPa to 0.367 ± 0.021 MPa—and scaffold toughness—from 46.2 kJ/m3 to 14.0 kJ/m3—as the gelatin content increased. All these data fall into the typical ranges of the morphological and mechanical parameters of currently commercialized NGC products. Preliminary in vitro studies proved the ability of 3D porous tubes to support neuroblastoma cell (SH-SY5Y) adhesion and proliferation. In perspective, the proposed approach could also be easily implemented with the integration of other processing techniques (e.g., electrospinning) for the design of innovative bi-layered systems with an improved cell interface and molecular transport abilities. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials II)
Show Figures

Figure 1

16 pages, 3311 KiB  
Article
Formulation-Property Effects in Novel Injectable and Resilient Natural Polymer-Based Hydrogels for Soft Tissue Regeneration
by Daniella Goder Orbach, Ilana Roitman, Geffen Coster Kimhi and Meital Zilberman
Polymers 2024, 16(20), 2879; https://doi.org/10.3390/polym16202879 - 12 Oct 2024
Abstract
The development of injectable hydrogels for soft tissue regeneration has gained significant attention due to their minimally invasive application and ability to conform precisely to the shape of irregular tissue cavities. This study presents a novel injectable porous scaffold based on natural polymers [...] Read more.
The development of injectable hydrogels for soft tissue regeneration has gained significant attention due to their minimally invasive application and ability to conform precisely to the shape of irregular tissue cavities. This study presents a novel injectable porous scaffold based on natural polymers that undergoes in situ crosslinking, forming a highly resilient hydrogel with tailorable mechanical and physical properties to meet the specific demands of soft tissue repair. By adjusting the formulation, we achieved a range of stiffness values that closely mimic the mechanical characteristics of native tissues while maintaining very high resilience (>90%). The effects of gelatin, alginate, and crosslinker concentrations, as well as porosity, on the hydrogel’s properties were elucidated. The main results indicated a compression modulus range of 2.7–89 kPa, which fits all soft tissues, and gelation times ranging from 5 to 30 s, which enable the scaffold to be successfully used in various operations. An increase in gelatin and crosslinker concentrations results in a higher modulus and lower gelation time, i.e., a stiffer hydrogel that is created in a shorter time. In vitro cell viability tests on human fibroblasts were performed and indicated high biocompatibility. Our findings demonstrate that these injectable hydrogel scaffolds offer a promising solution for enhancing soft tissue repair and regeneration, providing a customizable and resilient framework that is expected to support tissue integration and healing with minimal surgical intervention. Full article
(This article belongs to the Special Issue Biomedical Applications of Intelligent Hydrogel 2nd Edition)
Show Figures

Figure 1

22 pages, 7308 KiB  
Article
Dual-Self-Crosslinking Effect of Alginate-Di-Aldehyde with Natural and Synthetic Co-Polymers as Injectable In Situ-Forming Biodegradable Hydrogel
by Bushra Begum, Trideva Sastri Koduru, Syeda Noor Madni, Noor Fathima Anjum, Shanmuganathan Seetharaman, Balamuralidhara Veeranna and Vishal Kumar Gupta
Gels 2024, 10(10), 649; https://doi.org/10.3390/gels10100649 - 11 Oct 2024
Abstract
Injectable, in situ-forming hydrogels, both biocompatible and biodegradable, have garnered significant attention in tissue engineering due to their potential for creating adaptable scaffolds. The adaptability of these hydrogels, made from natural proteins and polysaccharides, opens up a world of possibilities. In this study, [...] Read more.
Injectable, in situ-forming hydrogels, both biocompatible and biodegradable, have garnered significant attention in tissue engineering due to their potential for creating adaptable scaffolds. The adaptability of these hydrogels, made from natural proteins and polysaccharides, opens up a world of possibilities. In this study, sodium alginate was used to synthesize alginate di-aldehyde (ADA) through periodate oxidation, resulting in a lower molecular weight and reduced viscosity, with different degrees of oxidation (54% and 70%). The dual-crosslinking mechanism produced an injectable in situ hydrogel. Initially, physical crosslinking occurred between ADA and borax via borax complexation, followed by chemical crosslinking with gelatin through a Schiff’s base reaction, which takes place between the amino groups of gelatin and the aldehyde groups of ADA, without requiring an external crosslinking agent. The formation of Schiff’s base was confirmed by Fourier-transform infrared (FT-IR) spectroscopy. At the same time, the aldehyde groups in ADA were characterized using FT-IR, proton nuclear magnetic resonance (¹H NMR), and gel permeation chromatography (GPC), which determined its molecular weight. Furthermore, borax complexation was validated through boron-11 nuclear magnetic resonance (¹¹B NMR). The hydrogel formulation containing 70% ADA, polyethylene glycol (PEG), and 9% gelatin exhibited a decreased gelation time at physiological temperature, attributed to the increased gelatin content and higher degree of oxidation. Rheological analysis mirrored these findings, showing a correlation with gelation time. The swelling capacity was also enhanced due to the increased oxidation degree of PEG and the system’s elevated gelatin content and hydrophilicity. The hydrogel demonstrated an average pore size of 40–60 µm and a compressive strength of 376.80 kPa. The lower molecular weight and varied pH conditions influenced its degradation behavior. Notably, the hydrogel’s syringeability was deemed sufficient for practical applications, further enhancing its potential in tissue engineering. Given these properties, the 70% ADA/gelatin/PEG hydrogel is a promising candidate and a potential game-changer for injectable, self-crosslinking applications in tissue engineering. Its potential to revolutionize the field is inspiring and should motivate further exploration. Full article
Show Figures

Figure 1

37 pages, 16800 KiB  
Review
An Overview of Microorganisms Immobilized in a Gel Structure for the Production of Precursors, Antibiotics, and Valuable Products
by Dmitriy Berillo, Turganova Malika, Baiken B. Baimakhanova, Amankeldi K. Sadanov, Vladimir E. Berezin, Lyudmila P. Trenozhnikova, Gul B. Baimakhanova, Alma A. Amangeldi and Bakhytzhan Kerimzhanova
Gels 2024, 10(10), 646; https://doi.org/10.3390/gels10100646 - 10 Oct 2024
Abstract
Using free microorganisms for industrial processes has some limitations, such as the extensive consumption of substrates for growth, significant sensitivity to the microenvironment, and the necessity of separation from the product and, therefore, the cyclic process. It is widely acknowledged that confining or [...] Read more.
Using free microorganisms for industrial processes has some limitations, such as the extensive consumption of substrates for growth, significant sensitivity to the microenvironment, and the necessity of separation from the product and, therefore, the cyclic process. It is widely acknowledged that confining or immobilizing cells in a matrix or support structure enhances enzyme stability, facilitates recycling, enhances rheological resilience, lowers bioprocess costs, and serves as a fundamental prerequisite for large-scale applications. This report summarizes the various cell immobilization methods, including several synthetic (polyvinylalcohol, polyethylenimine, polyacrylates, and Eudragit) and natural (gelatin, chitosan, alginate, cellulose, agar–agar, carboxymethylcellulose, and other polysaccharides) polymeric materials in the form of thin films, hydrogels, and cryogels. Advancements in the production of well-known antibiotics like penicillin and cephalosporin by various strains were discussed. Additionally, we highlighted cutting-edge research related to strain producers of peptide-based antibiotics (polymyxin B, Subtilin, Tyrothricin, varigomycin, gramicidin S, friulimicin, and bacteriocin), glusoseamines, and polyene derivatives. Crosslinking agents, especially covalent linkers, significantly affect the activity and stability of biocatalysts (penicillin G acylase, penicillinase, deacetoxycephalosporinase, L-asparaginase, β-glucosidase, Xylanase, and urease). The molecular weight of polymers is an important parameter influencing oxygen and nutrient diffusion, the kinetics of hydrogel formation, rigidity, rheology, elastic moduli, and other mechanical properties crucial for long-term utilization. A comparison of stability and enzymatic activity between immobilized enzymes and their free native counterparts was explored. The discussion was not limited to recent advancements in the biopharmaceutical field, such as microorganism or enzyme immobilization, but also extended to methods used in sensor and biosensor applications. In this study, we present data on the advantages of cell and enzyme immobilization over microorganism (bacteria and fungi) suspension states to produce various bioproducts and metabolites—such as antibiotics, enzymes, and precursors—and determine the efficiency of immobilization processes and the optimal conditions and process parameters to maximize the yield of the target products. Full article
(This article belongs to the Special Issue Gel Film and Its Wide Range of Applications)
Show Figures

Figure 1

11 pages, 22701 KiB  
Article
Biodegradation Studies of Biobased Mulch Films Reinforced with Cellulose from Waste Mango
by Miguel Angel Lorenzo Santiago, J. Rodolfo Rendón Villalobos, Silvia Maribel Contreras Ramos, Glenda Pacheco Vargas and Edgar García Hernández
Recycling 2024, 9(5), 96; https://doi.org/10.3390/recycling9050096 - 10 Oct 2024
Abstract
Excessive use of plastic mulches has triggered a series of environmental problems, primarily due to the large volumes generated and their low or non-existent degradability. For this reason, materials with similar characteristics to synthetic mulches but with a biodegradable character were sought. In [...] Read more.
Excessive use of plastic mulches has triggered a series of environmental problems, primarily due to the large volumes generated and their low or non-existent degradability. For this reason, materials with similar characteristics to synthetic mulches but with a biodegradable character were sought. In this work, mulch films were produced from gelatin/glycerol/cellulose (GelC) and chitosan/glycerol/cellulose (ChiC). Their biodegradation time in soil and photographic analysis using scanning electron microscopy (SEM) were determined. The GelC sample presented a weight loss of 80% at 25 days, compared to 58% for the ChiC sample in the same exposure time. However, the latter was the only sample that could be evaluated up to 70 days, during which it presented its greatest weight loss (97%). The SEM results for both mulch films showed some color changes after 30 days; complete fracturing, growth of mycelium on the surface, and the presence of pores were observed. FTIR spectra revealed a decrease in hydroxyl groups, amides, and carbonyl bands as the number of degradation days increased. Obtaining polymers from waste materials, such as mango, represents an important task to obtain cellulose that can both reinforce and provide biodegradable properties to biobased materials, which can be degraded by microorganisms present in the soil. Full article
(This article belongs to the Special Issue Resource Recovery from Waste Biomass)
Show Figures

Figure 1

15 pages, 2605 KiB  
Review
Gel-Based Suspension Medium Used in 3D Bioprinting for Constructing Tissue/Organ Analogs
by Yang Luo, Rong Xu, Zeming Hu, Renhao Ni, Tong Zhu, Hua Zhang and Yabin Zhu
Gels 2024, 10(10), 644; https://doi.org/10.3390/gels10100644 - 10 Oct 2024
Abstract
Constructing tissue/organ analogs with natural structures and cell types in vitro offers a valuable strategy for the in situ repair of damaged tissues/organs. Three-dimensional (3D) bioprinting is a flexible method for fabricating these analogs. However, extrusion-based 3D bioprinting faces the challenge of balancing [...] Read more.
Constructing tissue/organ analogs with natural structures and cell types in vitro offers a valuable strategy for the in situ repair of damaged tissues/organs. Three-dimensional (3D) bioprinting is a flexible method for fabricating these analogs. However, extrusion-based 3D bioprinting faces the challenge of balancing the use of soft bioinks with the need for high-fidelity geometric shapes. To address these challenges, recent advancements have introduced various suspension mediums based on gelatin, agarose, and gellan gum microgels. The emergence of these gel-based suspension mediums has significantly advanced the fabrication of tissue/organ constructs using 3D bioprinting. They effectively stabilize and support soft bioinks, enabling the formation of complex spatial geometries. Moreover, they provide a stable, cell-friendly environment that maximizes cell viability during the printing process. This minireview will summarize the properties, preparation methods, and potential applications of gel-based suspension mediums in constructing tissue/organ analogs, while also addressing current challenges and providing an outlook on the future of 3D bioprinting. Full article
(This article belongs to the Special Issue 3D Printing of Gel-Based Materials)
Show Figures

Figure 1

17 pages, 1529 KiB  
Article
Exploring the Bioactive Potential of Taraxacum officinale F.H. Wigg Aerial Parts on MDA Breast Cancer Cells: Insights into Phytochemical Composition, Antioxidant Efficacy, and Gelatinase Inhibition within 3D Cellular Models
by Valentina Laghezza Masci, Elisa Ovidi, William Tomassi, Daniela De Vita and Stefania Garzoli
Plants 2024, 13(19), 2829; https://doi.org/10.3390/plants13192829 - 9 Oct 2024
Abstract
In this work, aerial parts of Taraxacum officinale F.H. Wigg. produced in Umbria, Italy, were chemically investigated by solid-phase microextraction/gas chromatography–mass spectrometry (SPME/GC-MS) to describe their volatile profile. The results obtained showed the preponderant presence of monoterpenes, with limonene and 1,8-cineole as the [...] Read more.
In this work, aerial parts of Taraxacum officinale F.H. Wigg. produced in Umbria, Italy, were chemically investigated by solid-phase microextraction/gas chromatography–mass spectrometry (SPME/GC-MS) to describe their volatile profile. The results obtained showed the preponderant presence of monoterpenes, with limonene and 1,8-cineole as the main components. Further analyses by GC/MS after derivatization reaction were performed to characterize the non-volatile fraction highlighting the presence of fatty acids and di- and triterpenic compounds. T. officinale methanol and dichloromethane extracts, first analyzed by HRGC/MS, were investigated to evaluate the antioxidant activity, cytotoxicity, and antiproliferative properties of MDA cells on the breast cancer cell line and MCF 10A normal epithelial cells as well as the antioxidant activity by colorimetric assays. The impact on matrix metalloproteinases MMP-9 and MMP-2 was also explored in 3D cell systems to investigate the extracts’ efficacy in reducing cell invasiveness. The extracts tested showed no cytotoxic activity with EC50 > 250 µg/mL on both cell lines. The DPPH assay revealed higher antioxidant activity in the MeOH extract compared with the DCM extract, while the FRAP assay showed a contrasting result, with the DCM extract exhibiting slightly greater antioxidant capacity. After treatment for 24 h with a non-cytotoxic concentration of 500 µg/mL of the tested extracts, gelatin zymography and Western blot analyses demonstrated that both MeOH and DCM extracts influenced the expression of MMP-9 and MMP-2 in MDA cells within the 3D cell model, leading to a significant decrease in the levels of these gelatinases, which are crucial markers of tumor invasiveness. Full article
Show Figures

Figure 1

14 pages, 3964 KiB  
Article
Influence of Polymer Film Thickness on Drug Release from Fluidized Bed Coated Pellets and Intended Process and Product Control
by Marcel Langner, Florian Priese and Bertram Wolf
Pharmaceutics 2024, 16(10), 1307; https://doi.org/10.3390/pharmaceutics16101307 - 8 Oct 2024
Abstract
Background/Objectives: Coated drug pellets enjoy widespread use in hard gelatine capsules. In heterogeneous pellets, the drug substance is layered onto core pellets. Coatings are often applied to generate a retarded release or an enteric coating. Methods: In the present study, the thickness of [...] Read more.
Background/Objectives: Coated drug pellets enjoy widespread use in hard gelatine capsules. In heterogeneous pellets, the drug substance is layered onto core pellets. Coatings are often applied to generate a retarded release or an enteric coating. Methods: In the present study, the thickness of a polymer coating layer on drug pellets was correlated to the drug release kinetics. Results: The question should be answered whether it is possible to stop the coating process when a layer thickness referring to an intended drug release is achieved. Inert pellets were first coated with sodium benzoate and second with different amounts of water insoluble polyacrylate in a fluidized bed apparatus equipped with a Wurster inlet. The whole process was controlled in-line and at-line with process analytical technology by the measurement of the particle size and the layer thickness. The in-vitro sodium benzoate release was investigated, and the data were linearized by different standard models and compared with the polyacrylate layer thickness. With increasing polyacrylate layer thickness the release rate diminishes. The superposition of several processes influencing the release results in release profiles corresponding approximately to first order kinetics. The coating layer thickness corresponds to a determined drug release profile. Conclusions: The manufacturing of coated drug pellets with intended drug release is possible by coating process control and layer thickness measurement. Preliminary investigations are necessary for different formulations. Full article
(This article belongs to the Special Issue Impact of Raw Material Properties on Solid Dosage Form Processes)
Show Figures

Figure 1

27 pages, 2140 KiB  
Review
Applications of Plant Essential Oils in Pest Control and Their Encapsulation for Controlled Release: A Review
by Rocío Ayllón-Gutiérrez, Laura Díaz-Rubio, Myriam Montaño-Soto, María del Pilar Haro-Vázquez and Iván Córdova-Guerrero
Agriculture 2024, 14(10), 1766; https://doi.org/10.3390/agriculture14101766 - 6 Oct 2024
Abstract
Essential oils (EOs) are volatile products derived from the secondary metabolism of plants with antioxidant, antimicrobial, and pesticidal properties. They have traditionally been used in medicine, cosmetics, and food additives. In agriculture, EOs stand out as natural alternatives for pest control, as they [...] Read more.
Essential oils (EOs) are volatile products derived from the secondary metabolism of plants with antioxidant, antimicrobial, and pesticidal properties. They have traditionally been used in medicine, cosmetics, and food additives. In agriculture, EOs stand out as natural alternatives for pest control, as they show biocidal, repellent, and antifeedant effects. However, they are highly volatile compounds and susceptible to oxidation, which has limited their use as pesticides. This has led to exploring micro- and nano-scale encapsulation to protect these compounds, improving their stability and allowing for a controlled release. Various encapsulation techniques exist, such as emulsification, ionic gelation, and complex coacervation. Nanoemulsions are useful in the food industry, while ionic gelation and complex coacervation offer high encapsulation efficiency. Materials such as chitosan, gelatin-gum-Arabic, and cyclodextrins are promising for agricultural applications, providing stability and the controlled release of EOs. Encapsulation technology is still under development but offers sustainable alternatives to conventional agrochemicals. This article reviews the potential of EOs in pest management and encapsulation techniques that enhance their efficacy. Full article
(This article belongs to the Special Issue Preparation, Function and Application of Agrochemicals)
Show Figures

Figure 1

19 pages, 4854 KiB  
Article
Improvement of Mechanical Properties of 3D Bioprinted Structures through Cellular Overgrowth
by Adrianna Wierzbicka, Mateusz Bartniak, Jacek Grabarczyk, Nikola Biernacka, Mateusz Aftyka, Tomasz Wójcik and Dorota Bociaga
Appl. Sci. 2024, 14(19), 8977; https://doi.org/10.3390/app14198977 - 5 Oct 2024
Abstract
The common use of hydrogel materials in 3D bioprinting techniques is dictated by the unique properties of hydrogel bioinks, among which some of the most important in terms of sustaining vital cell functions in vitro in 3D cultures are the ability to retain [...] Read more.
The common use of hydrogel materials in 3D bioprinting techniques is dictated by the unique properties of hydrogel bioinks, among which some of the most important in terms of sustaining vital cell functions in vitro in 3D cultures are the ability to retain large amounts of liquid and the ability to modify rigidity and mechanical properties to reproduce the structure of the natural extracellular matrix. Due to their high biocompatibility, non-immunogenicity, and the possibility of optimizing rheological properties and bioactivity at the same time, one of the most commonly used hydrogel bioink compositions are polymer solutions based on sodium alginate and gelatin. In 3D bioprinting techniques, it is necessary for hydrogel printouts to feature an appropriate geometry to ensure proper metabolic activity of the cells contained inside the printouts. The desired solution is to obtain a thin-walled printout geometry, ensuring uniform nutrient availability and gas exchange during cultivation. Within this study’s framework, tubular bioprinted structures were developed based on sodium alginate and gelatin, containing cells of the immortalized fibroblast line NIH/3T3 in their structure. Directly after the 3D printing process, such structures are characterized by extremely low mechanical strength. The purpose of this study was to perform a comparative analysis of the viability and spreading ability of the biological material contained in the printouts during their incubation for a period of 8 weeks while monitoring the effect of cellular growth on changes in the mechanical properties of the tubular structures. The observations demonstrated that the cells contained in the 3D printouts reach the ability to grow and spread in the polymer matrix after 4 weeks of cultivation, leading to obtaining a homogeneous, interconnected cell network inside the hydrogel after 6 weeks of incubation. Analysis of the mechanical properties of the printouts indicates that with the increasing time of cultivation of the structures, the degree of their overgrowth by the biological material contained inside, and the progressive degradation of the polymer matrix process, the tensile strength of tubular 3D printouts varies. Full article
(This article belongs to the Special Issue Hydrogels and Microgels: Fundamentals, Fabrication and Applications)
Show Figures

Figure 1

Back to TopTop