Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (158)

Search Parameters:
Keywords = geobia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 25203 KiB  
Article
Integrating Physical-Based Models and Structure-from-Motion Photogrammetry to Retrieve Fire Severity by Ecosystem Strata from Very High Resolution UAV Imagery
by José Manuel Fernández-Guisuraga, Leonor Calvo, Luis Alfonso Pérez-Rodríguez and Susana Suárez-Seoane
Fire 2024, 7(9), 304; https://doi.org/10.3390/fire7090304 - 27 Aug 2024
Viewed by 467
Abstract
We propose a novel mono-temporal framework with a physical basis and ecological consistency to retrieve fire severity at very high spatial resolution. First, we sampled the Composite Burn Index (CBI) in 108 field plots that were subsequently surveyed through unmanned aerial vehicle (UAV) [...] Read more.
We propose a novel mono-temporal framework with a physical basis and ecological consistency to retrieve fire severity at very high spatial resolution. First, we sampled the Composite Burn Index (CBI) in 108 field plots that were subsequently surveyed through unmanned aerial vehicle (UAV) flights. Then, we mimicked the field methodology for CBI assessment in the remote sensing framework. CBI strata were identified through individual tree segmentation and geographic object-based image analysis (GEOBIA). In each stratum, wildfire ecological effects were estimated through the following methods: (i) the vertical structural complexity of vegetation legacies was computed from 3D-point clouds, as a proxy for biomass consumption; and (ii) the vegetation biophysical variables were retrieved from multispectral data by the inversion of the PROSAIL radiative transfer model, with a direct physical link with the vegetation legacies remaining after canopy scorch and torch. The CBI scores predicted from UAV ecologically related metrics at the strata level featured high fit with respect to the field-measured CBI scores (R2 > 0.81 and RMSE < 0.26). Conversely, the conventional retrieval of fire effects using a battery of UAV structural and spectral predictors (point height distribution metrics and spectral indices) computed at the plot level provided a much worse performance (R2 = 0.677 and RMSE = 0.349). Full article
(This article belongs to the Special Issue Drone Applications Supporting Fire Management)
Show Figures

Figure 1

17 pages, 13631 KiB  
Article
Ensemble Machine Learning on the Fusion of Sentinel Time Series Imagery with High-Resolution Orthoimagery for Improved Land Use/Land Cover Mapping
by Mukti Ram Subedi, Carlos Portillo-Quintero, Nancy E. McIntyre, Samantha S. Kahl, Robert D. Cox, Gad Perry and Xiaopeng Song
Remote Sens. 2024, 16(15), 2778; https://doi.org/10.3390/rs16152778 - 30 Jul 2024
Viewed by 1421
Abstract
In the United States, several land use and land cover (LULC) data sets are available based on satellite data, but these data sets often fail to accurately represent features on the ground. Alternatively, detailed mapping of heterogeneous landscapes for informed decision-making is possible [...] Read more.
In the United States, several land use and land cover (LULC) data sets are available based on satellite data, but these data sets often fail to accurately represent features on the ground. Alternatively, detailed mapping of heterogeneous landscapes for informed decision-making is possible using high spatial resolution orthoimagery from the National Agricultural Imagery Program (NAIP). However, large-area mapping at this resolution remains challenging due to radiometric differences among scenes, landscape heterogeneity, and computational limitations. Various machine learning (ML) techniques have shown promise in improving LULC maps. The primary purposes of this study were to evaluate bagging (Random Forest, RF), boosting (Gradient Boosting Machines [GBM] and extreme gradient boosting [XGB]), and stacking ensemble ML models. We used these techniques on a time series of Sentinel 2A data and NAIP orthoimagery to create a LULC map of a portion of Irion and Tom Green counties in Texas (USA). We created several spectral indices, structural variables, and geometry-based variables, reducing the dimensionality of features generated on Sentinel and NAIP data. We then compared accuracy based on random cross-validation without accounting for spatial autocorrelation and target-oriented cross-validation accounting for spatial structures of the training data set. Comparison of random and target-oriented cross-validation results showed that autocorrelation in the training data offered overestimation ranging from 2% to 3.5%. The XGB-boosted stacking ensemble on-base learners (RF, XGB, and GBM) improved model performance over individual base learners. We show that meta-learners are just as sensitive to overfitting as base models, as these algorithms are not designed to account for spatial information. Finally, we show that the fusion of Sentinel 2A data with NAIP data improves land use/land cover classification using geographic object-based image analysis. Full article
(This article belongs to the Special Issue Mapping Essential Elements of Agricultural Land Using Remote Sensing)
Show Figures

Graphical abstract

22 pages, 3980 KiB  
Article
A Geographic Object-Based Image Approach Based on the Sentinel-2 Multispectral Instrument for Lake Aquatic Vegetation Mapping: A Complementary Tool to In Situ Monitoring
by Maria Tompoulidou, Elpida Karadimou, Antonis Apostolakis and Vasiliki Tsiaoussi
Remote Sens. 2024, 16(5), 916; https://doi.org/10.3390/rs16050916 - 5 Mar 2024
Viewed by 1726
Abstract
Aquatic vegetation is an essential component of lake ecosystems, used as a biological indicator for in situ monitoring within the Water Framework Directive. We developed a hierarchical object-based image classification model with multi-seasonal Sentinel-2 imagery and suitable spectral indices in order to map [...] Read more.
Aquatic vegetation is an essential component of lake ecosystems, used as a biological indicator for in situ monitoring within the Water Framework Directive. We developed a hierarchical object-based image classification model with multi-seasonal Sentinel-2 imagery and suitable spectral indices in order to map the aquatic vegetation in a Mediterranean oligotrophic/mesotrophic deep lake; we then applied the model to another lake with similar abiotic and biotic characteristics. Field data from a survey of aquatic macrophytes, undertaken on the same dates as EO data, were used within the accuracy assessment. The aquatic vegetation was discerned into three classes: emergent, floating, and submerged aquatic vegetation. Geographic object-based image analysis (GEOBIA) proved to be effective in discriminating the three classes in both study areas. Results showed high effectiveness of the classification model in terms of overall accuracy, particularly for the emergent and floating classes. In the case of submerged aquatic vegetation, challenges in their classification prompted us to establish specific criteria for their accurate detection. Overall results showed that GEOBIA based on spectral indices was suitable for mapping aquatic vegetation in oligotrophic/mesotrophic deep lakes. EO data can contribute to large-scale coverage and high-frequency monitoring requirements, being a complementary tool to in situ monitoring. Full article
(This article belongs to the Special Issue Advances of Remote Sensing and GIS Technology in Surface Water Bodies)
Show Figures

Graphical abstract

26 pages, 43921 KiB  
Article
Performance Comparison of Deep Learning (DL)-Based Tabular Models for Building Mapping Using High-Resolution Red, Green, and Blue Imagery and the Geographic Object-Based Image Analysis Framework
by Mohammad D. Hossain and Dongmei Chen
Remote Sens. 2024, 16(5), 878; https://doi.org/10.3390/rs16050878 - 1 Mar 2024
Cited by 1 | Viewed by 993
Abstract
Identifying urban buildings in high-resolution RGB images presents challenges, mainly due to the absence of near-infrared bands in UAVs and Google Earth imagery and the diversity in building attributes. Deep learning (DL) methods, especially Convolutional Neural Networks (CNNs), are widely used for building [...] Read more.
Identifying urban buildings in high-resolution RGB images presents challenges, mainly due to the absence of near-infrared bands in UAVs and Google Earth imagery and the diversity in building attributes. Deep learning (DL) methods, especially Convolutional Neural Networks (CNNs), are widely used for building extraction but are primarily pixel-based. Geographic Object-Based Image Analysis (GEOBIA) has emerged as an essential approach for high-resolution imagery. However, integrating GEOBIA with DL models presents challenges, including adapting DL models for irregular-shaped segments and effectively merging DL outputs with object-based features. Recent developments include tabular DL models that align well with GEOBIA. GEOBIA stores various features for image segments in a tabular format, yet the effectiveness of these tabular DL models for building extraction still needs to be explored. It also needs to clarify which features are crucial for distinguishing buildings from other land-cover types. Typically, GEOBIA employs shallow learning (SL) classifiers. Thus, this study evaluates SL and tabular DL classifiers for their ability to differentiate buildings from non-building features. Furthermore, these classifiers are assessed for their capacity to handle roof heterogeneity caused by sun exposure and roof materials. This study concludes that some SL classifiers perform similarly to their DL counterparts, and it identifies critical features for building extraction. Full article
(This article belongs to the Special Issue Advances in Deep Learning Approaches in Remote Sensing)
Show Figures

Figure 1

18 pages, 12795 KiB  
Article
Maize Crop Detection through Geo-Object-Oriented Analysis Using Orbital Multi-Sensors on the Google Earth Engine Platform
by Ismael Cavalcante Maciel Junior, Rivanildo Dallacort, Cácio Luiz Boechat, Paulo Eduardo Teodoro, Larissa Pereira Ribeiro Teodoro, Fernando Saragosa Rossi, José Francisco de Oliveira-Júnior, João Lucas Della-Silva, Fabio Henrique Rojo Baio, Mendelson Lima and Carlos Antonio da Silva Junior
AgriEngineering 2024, 6(1), 491-508; https://doi.org/10.3390/agriengineering6010030 - 22 Feb 2024
Viewed by 1149
Abstract
Mato Grosso state is the biggest maize producer in Brazil, with the predominance of cultivation concentrated in the second harvest. Due to the need to obtain more accurate and efficient data, agricultural intelligence is adapting and embracing new technologies such as the use [...] Read more.
Mato Grosso state is the biggest maize producer in Brazil, with the predominance of cultivation concentrated in the second harvest. Due to the need to obtain more accurate and efficient data, agricultural intelligence is adapting and embracing new technologies such as the use of satellites for remote sensing and geographic information systems. In this respect, this study aimed to map the second harvest maize cultivation areas at Canarana-MT in the crop year 2019/2020 by using geographic object-based image analysis (GEOBIA) with different spatial, spectral, and temporal resolutions. MSI/Sentinel-2, OLI/Landsat-8, MODIS-Terra and MODIS-Aqua, and PlanetScope imagery were used in this assessment. The maize crops mapping was based on cartographic basis from IBGE (Brazilian Institute of Geography and Statistics) and the Google Earth Engine (GEE), and the following steps of image filtering (gray-level co-occurrence matrix—GLCM), vegetation indices calculation, segmentation by simple non-iterative clustering (SNIC), principal component (PC) analysis, and classification by random forest (RF) algorithm, followed finally by confusion matrix analysis, kappa, overall accuracy (OA), and validation statistics. From these methods, satisfactory results were found; with OA from 86.41% to 88.65% and kappa from 81.26% and 84.61% among the imagery systems considered, the GEOBIA technique combined with the SNIC and GLCM spectral and texture feature discriminations and the RF classifier presented a mapping of the corn crop of the study area that demonstrates an improved and aided the performance of automated multispectral image classification processes. Full article
Show Figures

Figure 1

19 pages, 14538 KiB  
Article
Evaluating the Performance of Geographic Object-Based Image Analysis in Mapping Archaeological Landscapes Previously Occupied by Farming Communities: A Case of Shashi–Limpopo Confluence Area
by Olaotse Lokwalo Thabeng, Elhadi Adam and Stefania Merlo
Remote Sens. 2023, 15(23), 5491; https://doi.org/10.3390/rs15235491 - 24 Nov 2023
Viewed by 1059
Abstract
The use of pixel-based remote sensing techniques in archaeology is usually limited by spectral confusion between archaeological material and the surrounding environment because they rely on the spectral contrast between features. To deal with this problem, we investigated the possibility of using geographic [...] Read more.
The use of pixel-based remote sensing techniques in archaeology is usually limited by spectral confusion between archaeological material and the surrounding environment because they rely on the spectral contrast between features. To deal with this problem, we investigated the possibility of using geographic object-based image analysis (GEOBIA) to predict archaeological and non-archaeological features. The chosen study area was previously occupied by farming communities and is characterised by natural soils (non-sites), vitrified dung, non-vitrified dung, and savannah woody vegetation. The study uses a three-stage GEOBIA that comprises (1) image object segmentation, (2) feature selection, and (3) object classification. The spectral mean of each band and the area extent of an object were selected as input variables for object classifications in support vector machines (SVM) and random forest (RF) classifiers. The results of this study have shown that GEOBIA approaches have the potential to map archaeological landscapes. The SVM and RF classifiers achieved high classification accuracies of 96.58% and 94.87%, respectively. Visual inspection of the classified images has demonstrated the importance of the aforementioned models in mapping archaeological and non-archaeological features because of their ability to manage the spectral confusion between non-sites and vitrified dung sites. In summary, the results have demonstrated that the GEOBIAs ability to incorporate spatial elements in the classification model ameliorates the chances of distinguishing materials with limited spectral differences. Full article
Show Figures

Graphical abstract

18 pages, 17294 KiB  
Article
Spectral Patterns of Pixels and Objects of the Forest Phytophysiognomies in the Anauá National Forest, Roraima State, Brazil
by Tiago Monteiro Condé, Niro Higuchi, Adriano José Nogueira Lima, Moacir Alberto Assis Campos, Jackelin Dias Condé, André Camargo de Oliveira and Dirceu Lucio Carneiro de Miranda
Ecologies 2023, 4(4), 686-703; https://doi.org/10.3390/ecologies4040045 - 28 Oct 2023
Viewed by 1046
Abstract
Forest phytophysiognomies have specific spatial patterns that can be mapped or translated into spectral patterns of vegetation. Regions of spectral similarity can be classified by reference to color, tonality or intensity of brightness, reflectance, texture, size, shape, neighborhood influence, etc. We evaluated the [...] Read more.
Forest phytophysiognomies have specific spatial patterns that can be mapped or translated into spectral patterns of vegetation. Regions of spectral similarity can be classified by reference to color, tonality or intensity of brightness, reflectance, texture, size, shape, neighborhood influence, etc. We evaluated the power of accuracy of supervised classification algorithms via per-pixel (maximum likelihood) and geographic object-based image analysis (GEOBIA) for distinguishing spectral patterns of the vegetation in the northern Brazilian Amazon. A total of 280 training samples (70%) and 120 validation samples (30%) of each of the 11 vegetation cover and land-use classes (N = 4400) were classified based on differences in their visible (RGB), near-infrared (NIR), and medium infrared (SWIR 1 or MIR) Landsat 8 (OLI) bands. Classification by pixels achieved a greater accuracy (Kappa = 0.75%) than GEOBIA (Kappa = 0.72%). GEOBIA, however, offers a greater plasticity and the possibility of calibrating the spectral rules associated with vegetation indices and spatial parameters. We conclude that both methods enabled precision spectral separations (0.45–1.65 μm), contributing to the distinctions between forest phytophysiognomies and land uses—strategic factors in the planning and management of natural resources in protected areas in the Amazon region. Full article
Show Figures

Figure 1

16 pages, 5353 KiB  
Article
Land Use and Land Cover Mapping with VHR and Multi-Temporal Sentinel-2 Imagery
by Suzanna Cuypers, Andrea Nascetti and Maarten Vergauwen
Remote Sens. 2023, 15(10), 2501; https://doi.org/10.3390/rs15102501 - 10 May 2023
Cited by 10 | Viewed by 6733
Abstract
Land Use/Land Cover (LULC) mapping is the first step in monitoring urban sprawl and its environmental, economic and societal impacts. While satellite imagery and vegetation indices are commonly used for LULC mapping, the limited resolution of these images can hamper object recognition for [...] Read more.
Land Use/Land Cover (LULC) mapping is the first step in monitoring urban sprawl and its environmental, economic and societal impacts. While satellite imagery and vegetation indices are commonly used for LULC mapping, the limited resolution of these images can hamper object recognition for Geographic Object-Based Image Analysis (GEOBIA). In this study, we utilize very high-resolution (VHR) optical imagery with a resolution of 50 cm to improve object recognition for GEOBIA LULC classification. We focused on the city of Nice, France, and identified ten LULC classes using a Random Forest classifier in Google Earth Engine. We investigate the impact of adding Gray-Level Co-Occurrence Matrix (GLCM) texture information and spectral indices with their temporal components, such as maximum value, standard deviation, phase and amplitude from the multi-spectral and multi-temporal Sentinel-2 imagery. This work focuses on identifying which input features result in the highest increase in accuracy. The results show that adding a single VHR image improves the classification accuracy from 62.62% to 67.05%, especially when the spectral indices and temporal analysis are not included. The impact of the GLCM is similar but smaller than the VHR image. Overall, the inclusion of temporal analysis improves the classification accuracy to 74.30%. The blue band of the VHR image had the largest impact on the classification, followed by the amplitude of the green-red vegetation index and the phase of the normalized multi-band drought index. Full article
(This article belongs to the Special Issue Multi-Source Data with Remote Sensing Techniques)
Show Figures

Figure 1

24 pages, 2950 KiB  
Article
Can Plot-Level Photographs Accurately Estimate Tundra Vegetation Cover in Northern Alaska?
by Hana L. Sellers, Sergio A. Vargas Zesati, Sarah C. Elmendorf, Alexandra Locher, Steven F. Oberbauer, Craig E. Tweedie, Chandi Witharana and Robert D. Hollister
Remote Sens. 2023, 15(8), 1972; https://doi.org/10.3390/rs15081972 - 8 Apr 2023
Cited by 2 | Viewed by 2094
Abstract
Plot-level photography is an attractive time-saving alternative to field measurements for vegetation monitoring. However, widespread adoption of this technique relies on efficient workflows for post-processing images and the accuracy of the resulting products. Here, we estimated relative vegetation cover using both traditional field [...] Read more.
Plot-level photography is an attractive time-saving alternative to field measurements for vegetation monitoring. However, widespread adoption of this technique relies on efficient workflows for post-processing images and the accuracy of the resulting products. Here, we estimated relative vegetation cover using both traditional field sampling methods (point frame) and semi-automated classification of photographs (plot-level photography) across thirty 1 m2 plots near Utqiaġvik, Alaska, from 2012 to 2021. Geographic object-based image analysis (GEOBIA) was applied to generate objects based on the three spectral bands (red, green, and blue) of the images. Five machine learning algorithms were then applied to classify the objects into vegetation groups, and random forest performed best (60.5% overall accuracy). Objects were reliably classified into the following classes: bryophytes, forbs, graminoids, litter, shadows, and standing dead. Deciduous shrubs and lichens were not reliably classified. Multinomial regression models were used to gauge if the cover estimates from plot-level photography could accurately predict the cover estimates from the point frame across space or time. Plot-level photography yielded useful estimates of vegetation cover for graminoids. However, the predictive performance varied both by vegetation class and whether it was being used to predict cover in new locations or change over time in previously sampled plots. These results suggest that plot-level photography may maximize the efficient use of time, funding, and available technology to monitor vegetation cover in the Arctic, but the accuracy of current semi-automated image analysis is not sufficient to detect small changes in cover. Full article
(This article belongs to the Special Issue Advanced Technologies in Wetland and Vegetation Ecological Monitoring)
Show Figures

Figure 1

24 pages, 7027 KiB  
Article
Urban Structure Changes in Three Areas of Detroit, Michigan (2014–2018) Utilizing Geographic Object-Based Classification
by Vera De Wit and K. Wayne Forsythe
Land 2023, 12(4), 763; https://doi.org/10.3390/land12040763 - 28 Mar 2023
Viewed by 1396
Abstract
The following study utilized geographic object-based image analysis methods to detect pervious and impervious landcover with respect to residential structure changes. The datasets consist of freely available very high-resolution orthophotos acquired under the United States National Agriculture Imagery Program. Over the last several [...] Read more.
The following study utilized geographic object-based image analysis methods to detect pervious and impervious landcover with respect to residential structure changes. The datasets consist of freely available very high-resolution orthophotos acquired under the United States National Agriculture Imagery Program. Over the last several decades, cities in America’s Rust Belt region have experienced population and economic declines—most notably, the city of Detroit. With increased property vacancies, many residential structures are abandoned and left vulnerable to degradation. In many cases, one of the answers is to demolish the structure, leaving a physical, permanent change to the urban fabric. This study investigates the performance of object-based classification in segmenting and classifying orthophotos across three neighbourhoods (Crary/St. Mary, Core City, Pulaski) with different demolition rates within Detroit. The research successfully generated the distinction between pervious and impervious land cover and linked those to parcel lot administrative boundaries within the city of Detroit. Successful detection rates of residential parcels containing structures ranged from a low of 63.99% to a high of 92.64%. Overall, if there were more empty residential parcels, the detection method performed better. Pervious and impervious overall classification accuracy for the 2018 and 2014 imagery was 98.333% (kappa 0.966) with some slight variance in the producers and users statistics for each year. Full article
(This article belongs to the Section Land Systems and Global Change)
Show Figures

Figure 1

20 pages, 12825 KiB  
Article
A Comparison of Machine Learning Models for Mapping Tree Species Using WorldView-2 Imagery in the Agroforestry Landscape of West Africa
by Muhammad Usman, Mahnoor Ejaz, Janet E. Nichol, Muhammad Shahid Farid, Sawaid Abbas and Muhammad Hassan Khan
ISPRS Int. J. Geo-Inf. 2023, 12(4), 142; https://doi.org/10.3390/ijgi12040142 - 25 Mar 2023
Cited by 4 | Viewed by 2934
Abstract
Farmland trees are a vital part of the local economy as trees are used by farmers for fuelwood as well as food, fodder, medicines, fibre, and building materials. As a result, mapping tree species is important for ecological, socio-economic, and natural resource management. [...] Read more.
Farmland trees are a vital part of the local economy as trees are used by farmers for fuelwood as well as food, fodder, medicines, fibre, and building materials. As a result, mapping tree species is important for ecological, socio-economic, and natural resource management. The study evaluates very high-resolution remotely sensed WorldView-2 (WV-2) imagery for tree species classification in the agroforestry landscape of the Kano Close-Settled Zone (KCSZ), Northern Nigeria. Individual tree crowns extracted by geographic object-based image analysis (GEOBIA) were used to remotely identify nine dominant tree species (Faidherbia albida, Anogeissus leiocarpus, Azadirachta indica, Diospyros mespiliformis, Mangifera indica, Parkia biglobosa, Piliostigma reticulatum, Tamarindus indica, and Vitellaria paradoxa) at the object level. For every tree object in the reference datasets, eight original spectral bands of the WV-2 image, their spectral statistics (minimum, maximum, mean, standard deviation, etc.), spatial, textural, and color-space (hue, saturation), and different spectral vegetation indices (VI) were used as predictor variables for the classification of tree species. Nine different machine learning methods were used for object-level tree species classification. These were Extra Gradient Boost (XGB), Gaussian Naïve Bayes (GNB), Gradient Boosting (GB), K-nearest neighbours (KNN), Light Gradient Boosting Machine (LGBM), Logistic Regression (LR), Multi-layered Perceptron (MLP), Random Forest (RF), and Support Vector Machines (SVM). The two top-performing models in terms of highest accuracies for individual tree species classification were found to be SVM (overall accuracy = 82.1% and Cohen’s kappa = 0.79) and MLP (overall accuracy = 81.7% and Cohen’s kappa = 0.79) with the lowest numbers of misclassified trees compared to other machine learning methods. Full article
Show Figures

Figure 1

12 pages, 1747 KiB  
Article
Application of Precision Agriculture for the Sustainable Management of Fertilization in Olive Groves
by Eliseo Roma, Vito Armando Laudicina, Mariangela Vallone and Pietro Catania
Agronomy 2023, 13(2), 324; https://doi.org/10.3390/agronomy13020324 - 20 Jan 2023
Cited by 10 | Viewed by 2378
Abstract
Olive tree growing (Olea europaea L.) has considerably increased in the last decades, as has the consumption of extra virgin olive oil in the world. Precision agriculture is increasingly being applied in olive orchards as a new method to manage agronomic variability [...] Read more.
Olive tree growing (Olea europaea L.) has considerably increased in the last decades, as has the consumption of extra virgin olive oil in the world. Precision agriculture is increasingly being applied in olive orchards as a new method to manage agronomic variability with the aim of providing individual plants with the right input amount, limiting waste or excess. The objective of this study was to develop a methodology on a GIS platform using GEOBIA algorithms in order to build prescription maps for variable rate (VRT) nitrogen fertilizers application in an olive orchard. The fertilization plan was determined for each tree by applying its own nitrogen balance, taking into account the variability of nitrogen in soil, leaf, production, and actual biometric and spectral conditions. Each olive tree was georeferenced using the S7-G Stonex instrument with real-time kinematic RTK positioning correction and the trunk cross section area (TCSA) was measured. Soil and leaves were sampled to study nutrient variability. Soil and plant samples were analyzed for all major physical and chemical properties. Spectral data were obtained using a multispectral camera (DJI multispectral) carried by an unmanned aerial vehicle (UAV) platform (DJI Phantom4). The biometric characteristics of the plants were extracted from the achieved normalized vegetation index (NDVI) map. The obtained prescription map can be used for variable rate fertilization with a tractor and fertilizer spreader connected via the ISOBUS system. Using the proposed methodology, the variable rate application of nitrogen fertilizer resulted in a 31% reduction in the amount to be applied in the olive orchard compared to the standard dose. Full article
Show Figures

Figure 1

25 pages, 17884 KiB  
Article
The Effects of Spatial Resolution and Resampling on the Classification Accuracy of Wetland Vegetation Species and Ground Objects: A Study Based on High Spatial Resolution UAV Images
by Jianjun Chen, Zizhen Chen, Renjie Huang, Haotian You, Xiaowen Han, Tao Yue and Guoqing Zhou
Drones 2023, 7(1), 61; https://doi.org/10.3390/drones7010061 - 15 Jan 2023
Cited by 23 | Viewed by 3720
Abstract
When employing remote sensing images, it is challenging to classify vegetation species and ground objects due to the abundance of wetland vegetation species and the high fragmentation of ground objects. Remote sensing images are classified primarily according to their spatial resolution, which significantly [...] Read more.
When employing remote sensing images, it is challenging to classify vegetation species and ground objects due to the abundance of wetland vegetation species and the high fragmentation of ground objects. Remote sensing images are classified primarily according to their spatial resolution, which significantly impacts the classification accuracy of vegetation species and ground objects. However, there are still some areas for improvement in the study of the effects of spatial resolution and resampling on the classification results. The study area in this paper was the core zone of the Huixian Karst National Wetland Park in Guilin, Guangxi, China. The aerial images (Am) with different spatial resolutions were obtained by utilizing the UAV platform, and resampled images (An) with different spatial resolutions were obtained by utilizing the pixel aggregation method. In order to evaluate the impact of spatial resolutions and resampling on the classification accuracy, the Am and the An were utilized for the classification of vegetation species and ground objects based on the geographic object-based image analysis (GEOBIA) method in addition to various machine learning classifiers. The results showed that: (1) In multi-scale images, both the optimal scale parameter (SP) and the processing time decreased as the spatial resolution diminished in the multi-resolution segmentation process. At the same spatial resolution, the SP of the An was greater than that of the Am. (2) In the case of the Am and the An, the appropriate feature variables were different, and the spectral and texture features in the An were more significant than those in the Am. (3) The classification results of various classifiers in the case of the Am and the An exhibited similar trends for spatial resolutions ranging from 1.2 to 5.9 cm, where the overall classification accuracy increased and then decreased in accordance with the decrease in spatial resolution. Moreover, the classification accuracy of the Am was higher than that of the An. (4) When vegetation species and ground objects were classified at different spatial scales, the classification accuracy differed between the Am and the An. Full article
Show Figures

Figure 1

18 pages, 82838 KiB  
Article
GEOBIA and Vegetation Indices in Extracting Olive Tree Canopies Based on Very High-Resolution UAV Multispectral Imagery
by Ante Šiljeg, Rajko Marinović, Fran Domazetović, Mladen Jurišić, Ivan Marić, Lovre Panđa, Dorijan Radočaj and Rina Milošević
Appl. Sci. 2023, 13(2), 739; https://doi.org/10.3390/app13020739 - 4 Jan 2023
Cited by 10 | Viewed by 2159
Abstract
In recent decades, precision agriculture and geospatial technologies have made it possible to ensure sustainability in an olive-growing sector. The main goal of this study is the extraction of olive tree canopies by comparing two approaches, the first of which is related to [...] Read more.
In recent decades, precision agriculture and geospatial technologies have made it possible to ensure sustainability in an olive-growing sector. The main goal of this study is the extraction of olive tree canopies by comparing two approaches, the first of which is related to geographic object-based analysis (GEOBIA), while the second one is based on the use of vegetation indices (VIs). The research area is a micro-location within the Lun olives garden, on the island of Pag. The unmanned aerial vehicle (UAV) with a multispectral (MS) sensor was used for generating a very high-resolution (VHR) UAVMS model, while another mission was performed to create a VHR digital orthophoto (DOP). When implementing the GEOBIA approach in the extraction of the olive canopy, user-defined parameters and classification algorithms support vector machine (SVM), maximum likelihood classifier (MLC), and random trees classifier (RTC) were evaluated. The RTC algorithm achieved the highest overall accuracy (OA) of 0.7565 and kappa coefficient (KC) of 0.4615. The second approach included five different VIs models (NDVI, NDRE, GNDVI, MCARI2, and RDVI2) which are optimized using the proposed VITO (VI Threshold Optimizer) tool. The NDRE index model was selected as the most accurate one, according to the ROC accuracy measure with a result of 0.888 for the area under curve (AUC). Full article
Show Figures

Graphical abstract

22 pages, 5998 KiB  
Article
On the Choice of the Most Suitable Period to Map Hill Lakes via Spectral Separability and Object-Based Image Analyses
by Antonino Maltese
Remote Sens. 2023, 15(1), 262; https://doi.org/10.3390/rs15010262 - 2 Jan 2023
Cited by 2 | Viewed by 1860
Abstract
Technological advances in Earth observation made images characterized by high spatial and temporal resolutions available, nevertheless bringing with them the radiometric heterogeneity of small geographical entities, often also changing in time. Among small geographical entities, hill lakes exhibit a widespread distribution, and their [...] Read more.
Technological advances in Earth observation made images characterized by high spatial and temporal resolutions available, nevertheless bringing with them the radiometric heterogeneity of small geographical entities, often also changing in time. Among small geographical entities, hill lakes exhibit a widespread distribution, and their census is sometimes partial or shows unreliable data. High resolution and heterogeneity have boosted the development of geographic object-based image analysis algorithms. This research analyzes which is the most suitable period for acquiring satellite images to identify and delimitate hill lakes. This is achieved by analyzing the spectral separability of the surface reflectance of hill lakes from surrounding bare or vegetated soils and by implementing a semiautomatic procedure to enhance the segmentation phase of a GEOBIA algorithm. The proposed procedure was applied to high spatial resolution satellite images acquired in two different climate periods (arid and temperate), corresponding to dry and vegetative seasons. The segmentation parameters were tuned by minimizing an under- and oversegmentation metric on surfaces and perimeters of hill lakes selected as the reference. The separability of hill lakes from their surrounding was evaluated using Euclidean and divergence metrics both in the arid and temperate periods. The classification accuracy was evaluated by calculating the error matrix and normalized error matrix. Classes’ reflectances in the image acquired in the arid period show the highest average separability (3–4 higher than in the temperate one). The segmentation based on the reference areas performs more than that based on the reference perimeters (metric ≈ 20% lower). Both separability metrics and classification accuracies indicate that images acquired in the arid period are more suitable than temperate ones to map hill lakes. Full article
(This article belongs to the Special Issue Remote Sensing in Geomatics)
Show Figures

Figure 1

Back to TopTop