Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (523)

Search Parameters:
Keywords = hadronization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1071 KiB  
Review
Lepton Flavor Universality Tests in Semileptonic bc Decays
by Suzanne Klaver and Marcello Rotondo
Symmetry 2024, 16(8), 964; https://doi.org/10.3390/sym16080964 - 29 Jul 2024
Viewed by 310
Abstract
Semileptonic decays of b- to c-hadrons provide an exciting environment to probe new physics and currently present some of the most compelling anomalies in the field of flavor physics. Measurements of the lepton flavor universality ratios R(D*), comparing [...] Read more.
Semileptonic decays of b- to c-hadrons provide an exciting environment to probe new physics and currently present some of the most compelling anomalies in the field of flavor physics. Measurements of the lepton flavor universality ratios R(D*), comparing branching fractions with τ and μ leptons, show a discrepancy of over 3σ with respect to the Standard Model, and suggest that the coupling to τ leptons is stronger than predicted. Measurements of angular distributions as well as polarization in b- to c-hadron decays provide additional sensitivity to new physics. This review article offers an overview of the theory of semileptonic b- to c-hadron decays, presents the experiments and experimental techniques used to perform measurements of these decays, and summarizes the latest experimental results with their implications. Full article
(This article belongs to the Special Issue Symmetries and Anomalies in Flavour Physics)
Show Figures

Figure 1

30 pages, 1240 KiB  
Review
On the Energy Budget of Quarks and Hadrons, Their Inconspicuous “Strong Charge”, and the Impact of Coulomb Repulsion on the Charged Ground States
by Dimitris M. Christodoulou and Demosthenes Kazanas
Particles 2024, 7(3), 653-682; https://doi.org/10.3390/particles7030038 - 26 Jul 2024
Viewed by 314
Abstract
We review and meta-analyze particle data and properties of hadrons with measured rest masses. The results of our study are summarized as follows. (1) The strong-force suppression of the repulsive Coulomb forces between quarks is sufficient to explain the differences between mass deficits [...] Read more.
We review and meta-analyze particle data and properties of hadrons with measured rest masses. The results of our study are summarized as follows. (1) The strong-force suppression of the repulsive Coulomb forces between quarks is sufficient to explain the differences between mass deficits in nucleons and pions (and only them), the ground states with the longest known mean lifetimes; (2) unlike mass deficits, the excitations in rest masses of all particle groups are effectively quantized, but the rules are different in baryons and mesons; (3) the strong field is aware of the extra factor of ϑe=2 in the charges (Q) of the positively charged quarks; (4) mass deficits incorporate contributions proportional to the mass of each valence quark; (5) the scaling factor of these contributions is the same for each quark in each group of particles, provided that the factor ϑe=2 is taken into account; (6) besides hypercharge (Y), the much lesser-known “strong charge” (Q=YQ) is very useful in SU(3) in describing properties of particles located along the right-leaning sides and diagonals of the weight diagrams; (7) strong decays in which Q is conserved are differentiated from weak decays, even for the same particle; and (8) the energy diagrams of (anti)quark transitions indicate the origin of CP violation. Full article
Show Figures

Figure 1

30 pages, 2160 KiB  
Article
Isospin QCD as a Laboratory for Dense QCD
by Toru Kojo, Daiki Suenaga and Ryuji Chiba
Universe 2024, 10(7), 293; https://doi.org/10.3390/universe10070293 - 12 Jul 2024
Cited by 1 | Viewed by 372
Abstract
QCD with the isospin chemical potential μI is a useful laboratory to delineate the microphysics in dense QCD. To study the quark–hadron continuity, we use a quark–meson model that interpolates hadronic and quark matter physics at microscopic level. The equation of state [...] Read more.
QCD with the isospin chemical potential μI is a useful laboratory to delineate the microphysics in dense QCD. To study the quark–hadron continuity, we use a quark–meson model that interpolates hadronic and quark matter physics at microscopic level. The equation of state is dominated by mesons at low density but taken over by quarks at high density. We extend our previous studies with two flavors to the three-flavor case to study the impact of the strangeness, which may be brought by kaons (K+,K0)=(us¯,sd¯) and the UA(1) anomaly. In the normal phase, the excitation energies of kaons are reduced by μI in the same way as hyperons in nuclear matter at the finite baryon chemical potential. Once pions condense, kaon excitation energies increase as μI does. Moreover, strange quarks become more massive through the UA(1) coupling to the condensed pions. Hence, at zero and low temperature, the strange hadrons and quarks are highly suppressed. The previous findings in two-flavor models, sound speed peak, negative trace anomaly, gaps insensitive to μI, persist in our three-flavor model and remain consistent with the lattice results to μI 1 GeV. We discuss the non-perturbative power corrections and quark saturation effects as important ingredients to understand the crossover equations of state measured on the lattice. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Show Figures

Figure 1

28 pages, 715 KiB  
Article
Bubble Dynamics in the Polyakov Quark-Meson Model
by Junrong Wang, Jinshuang Jin and Hong Mao
Symmetry 2024, 16(7), 893; https://doi.org/10.3390/sym16070893 - 12 Jul 2024
Cited by 1 | Viewed by 672
Abstract
In the framework of the Polyakov quark-meson model with two flavors, the bubble dynamics of a first-order phase transition in the region of high density and low temperature are investigated by using the homogeneous thermal nucleation theory. In mean-field approximation, after obtaining the [...] Read more.
In the framework of the Polyakov quark-meson model with two flavors, the bubble dynamics of a first-order phase transition in the region of high density and low temperature are investigated by using the homogeneous thermal nucleation theory. In mean-field approximation, after obtaining the effective potential with the inclusion of the fermionic vacuum term, we build a geometric method to search two existing minima, which can be actually connected by a bounce interpolated between a local minimum to an adjacent global one. For both weak and strong first-order hadron quark phase transitions, as fixing the chemical potentials at μ=306MeV and μ=310MeV, the bubble profiles, the surface tension, the typical radius of the bounce, and the saddle-point action as a function of temperature are numerically calculated in the presence of a nucleation bubble. It is found that the surface tension remains at a very small value even when the density is high. It is also noticed that the deconfinement phase transition does not change the chiral phase transition dramatically for light quarks and phase boundaries for hadron and quark matter should be resized properly according to the saddle-point action evaluated on the bounce solution. Full article
(This article belongs to the Special Issue Symmetry in Hadron Physics)
Show Figures

Figure 1

13 pages, 9643 KiB  
Article
Mono-Higgs and Mono-Z Production in the Minimal Vector Dark Matter Model
by Gonzalo Benítez-Irarrázabal and Alfonso Zerwekh
Universe 2024, 10(7), 288; https://doi.org/10.3390/universe10070288 - 2 Jul 2024
Cited by 1 | Viewed by 454
Abstract
The minimal vector dark matter is a viable realization of the minimal dark matter paradigm. It extends the standard model by the inclusion of a vector matter field in the adjoint representation of SU(2)L. The dark matter candidate [...] Read more.
The minimal vector dark matter is a viable realization of the minimal dark matter paradigm. It extends the standard model by the inclusion of a vector matter field in the adjoint representation of SU(2)L. The dark matter candidate corresponds to the neutral component of the new vector field (V0). Previous studies have shown that the model can explain the observed dark matter abundance while evading direct and indirect searches. At colliders, the attention has been put on the production of the charged companions of the dark matter candidate. In this work, we focus on the mono-Higgs and mono-Z signals at Hadron colliders. The new charged vectors (V±) are invisible unless a dedicated search is performed. Consequently, we assume that the mono-Higgs and mono-Z processes correspond to the pphV+,0V,0 and ppZV+,0V,0 reactions, respectively. We show that, while the pphV+,0V,0 is more important, both channels may produce significant signals at the HL-LHC and colliders running at s=27 TeV and 100 TeV, probing almost the complete parameter space. Full article
(This article belongs to the Special Issue Search for New Physics at the LHC and Future Colliders)
Show Figures

Figure 1

31 pages, 1771 KiB  
Article
Energetic Particles and High-Energy Processes in Cosmological Filaments and Their Astronomical Implications
by Kinwah Wu, Ellis R. Owen, Qin Han, Yoshiyuki Inoue and Lilian Luo
Universe 2024, 10(7), 287; https://doi.org/10.3390/universe10070287 - 1 Jul 2024
Viewed by 650
Abstract
Large-scale cosmic filaments connect galaxies, clusters, and voids. They are permeated by magnetic fields with a variety of topologies. Cosmic rays with energies up to 1020eV can be produced in astrophysical environments associated with star-formation and AGN activities. The fate of [...] Read more.
Large-scale cosmic filaments connect galaxies, clusters, and voids. They are permeated by magnetic fields with a variety of topologies. Cosmic rays with energies up to 1020eV can be produced in astrophysical environments associated with star-formation and AGN activities. The fate of these cosmic rays in filaments, which cannot be directly observed on Earth, are rarely studied. We investigate the high-energy processes associated with energetic particles (cosmic rays) in filaments, adopting an ecological approach that includes galaxies, clusters/superclusters, and voids as key cosmological structures in the filament ecosystem. We derive the phenomenology for modelling interfaces between filaments and these structures, and investigate how the transfer and fate of energetic cosmic ray protons are affected by the magnetism of the interfaces. We consider different magnetic field configurations in filaments and assess the implications for cosmic ray confinement and survival against hadronic pion-producing and photo-pair interactions. Our analysis shows that the fate of the particles depends on the location of their origin within a filament ecosystem, and that filaments act as ‘highways’, channelling cosmic rays between galaxies, galaxy clusters, and superclusters. Filaments can also operate as cosmic ‘fly paper’, capturing cosmic ray protons with energies up to 1018eV from cosmic voids. Our analysis predicts the presence of a population of ∼10121016eV cosmic ray protons in filaments and voids accumulated continually over cosmic time. These protons do not suffer significant energy losses through photo-pair or pion production, nor can they be cooled efficiently. Instead, they form a cosmic ray fossil record of the power generation history of the Universe. Full article
Show Figures

Figure 1

15 pages, 3695 KiB  
Article
Lepton Flavour Universality in Rare B Decays
by Paula Álvarez Cartelle and Richard Morgan Williams
Symmetry 2024, 16(7), 822; https://doi.org/10.3390/sym16070822 - 30 Jun 2024
Viewed by 726
Abstract
Tests of lepton flavour universality in rare decays of b hadrons mediated by flavour-changing neutral-current transitions constitute sensitive probes for physics beyond the standard model. In recent years, such tests have become increasingly precise and have attracted significant theoretical and experimental attention. In [...] Read more.
Tests of lepton flavour universality in rare decays of b hadrons mediated by flavour-changing neutral-current transitions constitute sensitive probes for physics beyond the standard model. In recent years, such tests have become increasingly precise and have attracted significant theoretical and experimental attention. In this article, we review the status of searches for lepton flavour universality violations in these processes and discuss prospects for future measurements at various facilities. Full article
(This article belongs to the Special Issue Symmetries and Anomalies in Flavour Physics)
Show Figures

Figure 1

16 pages, 545 KiB  
Article
The cos 2ϕh Asymmetry in K± Mesons and the Λ-Hyperon-Produced SIDIS Process at Electron Ion Colliders
by Jianxi Song, Yanli Li, Shi-Chen Xue, Hui Li and Xiaoyu Wang
Universe 2024, 10(7), 280; https://doi.org/10.3390/universe10070280 - 28 Jun 2024
Viewed by 418
Abstract
We investigate the cos2ϕh azimuthal asymmetry contributed by the coupling of the Boer–Mulders function and the Collins function in K±- and Λ-hyperon-produced SIDIS process. The asymmetry is studied under the transverse-momentum-dependent (TMD) factorization framework at the leading [...] Read more.
We investigate the cos2ϕh azimuthal asymmetry contributed by the coupling of the Boer–Mulders function and the Collins function in K±- and Λ-hyperon-produced SIDIS process. The asymmetry is studied under the transverse-momentum-dependent (TMD) factorization framework at the leading order by considering the TMD evolution effects that utilize the parametrization for non-perturbative Sudakov form factors. The DGLAP evolution effects of the collinear counterpart of the Collins function of the final-state hadrons are considered by introducing the approximated evolution kernels. We utilize the available parametrization for the proton Boer–Mulders function and the Collins function of K±. For the Collins function of the Λ hyperon, the result of the diquark spectator model is adopted due to the absence of parametrization. The numerical results of the cos2ϕh azimuthal asymmetry are obtained in the kinematic regions of EIC and EicC. It can be shown that the asymmetry is much smaller than the Sivers asymmetry, which means that the convolution of the Boer–Mulders function and the Collins function may not be the main contributor to the cos2ϕh asymmetry. We emphasize the importance of future measurement of the cos2ϕh asymmetry to unravel different contributors. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

41 pages, 6388 KiB  
Review
Forward & Far-Forward Heavy Hadrons with Jethad: A High-Energy Viewpoint
by Francesco Giovanni Celiberto
Particles 2024, 7(3), 502-542; https://doi.org/10.3390/particles7030029 - 24 Jun 2024
Viewed by 435
Abstract
Inspired by recent findings that semi-inclusive detections of heavy hadrons exhibit fair stabilization patterns in high-energy resummed distributions against (missing) higher-order corrections, we review and extend our studies on the hadroproduction of light and heavy hadrons tagged in forward and far-forward rapidity ranges. [...] Read more.
Inspired by recent findings that semi-inclusive detections of heavy hadrons exhibit fair stabilization patterns in high-energy resummed distributions against (missing) higher-order corrections, we review and extend our studies on the hadroproduction of light and heavy hadrons tagged in forward and far-forward rapidity ranges. We analyze the NLL/NLO+ behavior of rapidity rates and angular multiplicities via the Jethad method, where the resummation of next-to-leading energy logarithms and beyond is consistently embodied in the collinear picture. We explore kinematic regions that are within LHC typical acceptances, as well as novel sectors accessible thanks the combined tagging of a far-forward light or heavy hadron at future Forward Physics Facilities and a of central particle at LHC experiments via a precise timing-coincidence setup. Full article
(This article belongs to the Special Issue Feature Papers for Particles 2023)
Show Figures

Figure 1

18 pages, 1775 KiB  
Article
A Lightweight Algorithm to Model Radiation Damage Effects in Monte Carlo Events for High-Luminosity Large Hadron Collider Experiments
by Keerthi Nakkalil and Marco Bomben
Sensors 2024, 24(12), 3976; https://doi.org/10.3390/s24123976 - 19 Jun 2024
Viewed by 411
Abstract
Radiation damage significantly impacts the performance of silicon tracking detectors in Large Hadron Collider (LHC) experiments such as ATLAS and CMS, with signal reduction being the most critical effect; adjusting sensor bias voltage and detection thresholds can help mitigate these effects, generating simulated [...] Read more.
Radiation damage significantly impacts the performance of silicon tracking detectors in Large Hadron Collider (LHC) experiments such as ATLAS and CMS, with signal reduction being the most critical effect; adjusting sensor bias voltage and detection thresholds can help mitigate these effects, generating simulated data that accurately mirror the performance evolution with the accumulation of luminosity, hence fluence, is crucial. The ATLAS and CMS collaborations have developed and implemented algorithms to correct simulated Monte Carlo (MC) events for radiation damage effects, achieving impressive agreement between collision data and simulated events. In preparation for the high-luminosity phase (HL-LHC), the demand for a faster ATLAS MC production algorithm becomes imperative due to escalating collision, events, tracks, and particle hit rates, imposing stringent constraints on available computing resources. This article outlines the philosophy behind the new algorithm, its implementation strategy, and the essential components involved. The results from closure tests indicate that the events simulated using the new algorithm agree with fully simulated events at the level of few %. The first tests on computing performance show that the new algorithm is as fast as it is when no radiation damage corrections are applied. Full article
Show Figures

Figure 1

13 pages, 478 KiB  
Article
Model-Independent Odderon Results Based on New TOTEM Data on Elastic Proton–Proton Collisions at 8 TeV
by Tamás Csörgő, Tamás Novák, Roman Pasechnik, András Ster and István Szanyi
Universe 2024, 10(6), 264; https://doi.org/10.3390/universe10060264 - 17 Jun 2024
Viewed by 484
Abstract
Evaluating the H(x,s|pp) scaling function of elastic proton–proton (pp) collisions from recent TOTEM data at s=8 TeV and comparing it with the same function of elastic proton–antiproton ( [...] Read more.
Evaluating the H(x,s|pp) scaling function of elastic proton–proton (pp) collisions from recent TOTEM data at s=8 TeV and comparing it with the same function of elastic proton–antiproton (pp¯) data of the D0 collaboration at s=1.96 TeV, we find, from this comparison alone, an at least 3.79 σ signal of odderon exchange. If we combine this model-independently obtained result with that of a similar analysis but using TOTEM elastic pp scattering data at s=7 TeV, which resulted in an at least 6.26 σ signal, the combined significance of odderon exchange increases to at least 7.08 σ. Further combinations of various datasets in the TeV energy range are detailed in the manuscript. Full article
(This article belongs to the Special Issue Multiparticle Dynamics)
Show Figures

Figure 1

21 pages, 1039 KiB  
Article
Charmonium Transport in Heavy-Ion Collisions at the LHC
by Biaogang Wu and Ralf Rapp
Universe 2024, 10(6), 244; https://doi.org/10.3390/universe10060244 - 31 May 2024
Cited by 1 | Viewed by 409
Abstract
We provide an update on our semi-classical transport approach for quarkonium production in high-energy heavy-ion collisions, focusing on J/ψ and ψ(2S) mesons in 5.02 TeV Pb-Pb collisions at the Large Hadron Collider (LHC) at both forward and [...] Read more.
We provide an update on our semi-classical transport approach for quarkonium production in high-energy heavy-ion collisions, focusing on J/ψ and ψ(2S) mesons in 5.02 TeV Pb-Pb collisions at the Large Hadron Collider (LHC) at both forward and mid-rapidity. In particular, we employ the most recent charm-production cross sections reported in pp collisions, which are pivotal for the magnitude of the regeneration contribution, and their modifications due to cold-nuclear-matter (CNM) effects. Multi-differential observables are calculated in terms of nuclear modification factors as a function of centrality, transverse momentum, and rapidity, including the contributions from feeddown from bottom hadron decays. For our predictions for ψ(2S) production, the mechanism of sequential regeneration relative to the more strongly bound J/ψ meson plays an important role in interpreting recent ALICE data. Full article
Show Figures

Figure 1

14 pages, 1900 KiB  
Article
Personalized Setup Optimization Strategies to Improve Clinical Workflow in Image-Guided Pediatric Particle Therapy
by Matteo Pepa, Andrea Pella, Giulia Sellaro, Federica Galante, Alfredo Mirandola, Angelica Ghirelli, Sabina Vennarini, Francesca Colombo, Sara Imparato, Alberto Iannalfi, Mario Ciocca, Chiara Paganelli, Ester Orlandi and Guido Baroni
Appl. Sci. 2024, 14(11), 4658; https://doi.org/10.3390/app14114658 - 28 May 2024
Viewed by 469
Abstract
The purpose of this retrospective study was to simulate a daily pre-alignment strategy to mitigate systematic positioning errors in image-guided pediatric hadron therapy. All pediatric patients (32 patients, 853 fractions) treated from December 2021 and September 2022 at our Institution were retrospectively considered. [...] Read more.
The purpose of this retrospective study was to simulate a daily pre-alignment strategy to mitigate systematic positioning errors in image-guided pediatric hadron therapy. All pediatric patients (32 patients, 853 fractions) treated from December 2021 and September 2022 at our Institution were retrospectively considered. For all fractions, daily correction vectors (CVs) resulting from image registration for patient positioning were retrieved in the form of txt files from the hospital database. For each fraction, an adjusted correction vector (V′) was then computed as the difference between the actual one (V) and the algebraic average of the previous ones, as to simulate patient pre-alignment before imaging. The Euclidean norm of each V′ was computed and normalized with respect to that of the corresponding V to derive N. Pre-correcting all the coordinate values led to a 46% average reduction (min 20%, max 60%) in CVs, considering the first 27 fractions (average value in this cohort of patients). Such a potential improvement (N < 1) was observed for the most patients’ fractions (781/853, 91.6%). For the remaining 72/853 cases (8.4%), a remarkable worsening (N > 2) involved only 7/853 (0.82%) fractions. The presented strategy shows promising outcomes in order to ameliorate pediatric patient setup before imaging. However, further investigations to identify patients most likely to benefit from this approach are warranted. Full article
Show Figures

Figure 1

14 pages, 684 KiB  
Article
Quantum Vision Transformers for Quark–Gluon Classification
by Marçal Comajoan Cara, Gopal Ramesh Dahale, Zhongtian Dong, Roy T. Forestano, Sergei Gleyzer, Daniel Justice, Kyoungchul Kong, Tom Magorsch, Konstantin T. Matchev, Katia Matcheva and Eyup B. Unlu
Axioms 2024, 13(5), 323; https://doi.org/10.3390/axioms13050323 - 13 May 2024
Viewed by 1000
Abstract
We introduce a hybrid quantum-classical vision transformer architecture, notable for its integration of variational quantum circuits within both the attention mechanism and the multi-layer perceptrons. The research addresses the critical challenge of computational efficiency and resource constraints in analyzing data from the upcoming [...] Read more.
We introduce a hybrid quantum-classical vision transformer architecture, notable for its integration of variational quantum circuits within both the attention mechanism and the multi-layer perceptrons. The research addresses the critical challenge of computational efficiency and resource constraints in analyzing data from the upcoming High Luminosity Large Hadron Collider, presenting the architecture as a potential solution. In particular, we evaluate our method by applying the model to multi-detector jet images from CMS Open Data. The goal is to distinguish quark-initiated from gluon-initiated jets. We successfully train the quantum model and evaluate it via numerical simulations. Using this approach, we achieve classification performance almost on par with the one obtained with the completely classical architecture, considering a similar number of parameters. Full article
(This article belongs to the Section Mathematical Analysis)
Show Figures

Figure 1

18 pages, 980 KiB  
Article
Dip-Bump Structure in Proton’s Single Diffractive Dissociation at the Large Hadron Collider
by László Jenkovszky, Rainer Schicker and István Szanyi
Universe 2024, 10(5), 208; https://doi.org/10.3390/universe10050208 - 7 May 2024
Viewed by 715
Abstract
By extending the dipole Pomeron (DP) model, successful in describing elastic nucleon–nucleon scattering, to proton single diffractive dissociation (SD), we predict a dip-bump structure in the squared four-momentum transfer (t) distribution of proton’s SD. Structures in the t distribution of single [...] Read more.
By extending the dipole Pomeron (DP) model, successful in describing elastic nucleon–nucleon scattering, to proton single diffractive dissociation (SD), we predict a dip-bump structure in the squared four-momentum transfer (t) distribution of proton’s SD. Structures in the t distribution of single diffractive dissociation are predicted around t=4GeV2 at LHC energies in the range of 3 GeV2|t| 7 GeV2. Apart from the dependence on s (total energy squared) and t (squared momentum transfer), we predict also a dependence on missing masses. We include the minimum set of Regge trajectories, namely the Pomeron and the Odderon, indispensable at the LHC. Further generalization, e.g., by the inclusion of non-leading Regge trajectories, is straightforward. The present model contains two types of Regge trajectories: those connected with t-channel exchanges (the Pomeron, the Odderon, and non-leading (secondary) reggeons) appearing at small and moderate t, where they are real and nearly linear, as well as direct-channel trajectories α(M2) related to missing masses. In this paper, we concentrate on structures in t neglecting (for the time being) resonances in M2. Full article
(This article belongs to the Special Issue Multiparticle Dynamics)
Show Figures

Figure 1

Back to TopTop